Namespaces
Variants
Actions

Euler-Frobenius polynomials

From Encyclopedia of Mathematics
Revision as of 17:20, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The Euler–Frobenius polynomials of degree are characterized by the Frobenius reciprocal identity ([a1], [a2], [a3])

Thus, is invariant under the reflection

of the indeterminate . The best way to implement an invariance of this kind is to look for an appropriate space with which the Euler–Frobenius polynomials are attached in a spectral geometric way.

So, let denote a symplectic vector space of dimension (cf. also Symplectic space). Then the characteristic polynomial of each symplectic automorphism of is an Euler–Frobenius polynomial of odd degree .

The proof follows from the fact that the determinant of each symplectic automorphism of equals , so that there is a natural imbedding

Thus, preserves the symplectic volume spanned by vectors of the vector space .

A consequence is that each eigenvalue of a symplectic endomorphism of having multiplicity gives rise to a reciprocal eigenvalue of the same multiplicity .

In view of the self-reciprocal eigenvalue

of for even , of course, spectral theory suggests a complex contour integral representation of the Euler–Frobenius polynomials , as follows.

Let denote a complex number such that . Let denote a path in the complex plane which forms the boundary of a closed vertical strip in the open right or left half-plane of according as or , respectively. Let be oriented so that its topological index satisfies . Then, for each integer , the complex contour integral representation

holds.

The proof follows from the expansion

with strictly positive integer coefficients, where denote the basis spline functions (cf. [a3] and also Spline).

A consequence is that the Euler–Frobenius polynomials provide the coefficients of the local power series expansion of the function

which is meromorphic on the complex plane .

The Euler–Frobenius polynomials satisfy the three-term recurrence relation

A direct proof follows from the complex contour integral representations of the derivatives , which can be derived from the complex contour integral representation given above for the Euler–Frobenius polynomials.

The preceding recurrence relation opens a simple way to calculate the coefficients of the Euler–Frobenius polynomials ([a1], [a3]).

References

[a1] L. Euler, "Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum" , Acad. Imper. Sci. Petropolitanæ (1775) (Opera Omnis Ser. I (Opera Math.), Vol. X, Teubner, 1913)
[a2] F.G. Frobenius, "Über die Bernoullischen Zahlen und die Eulerschen Polynome" Sitzungsber. K. Preuss. Akad. Wissenschaft. Berlin (1910) pp. 809–847 (Gesammelte Abh. Vol. III, pp. 440-478, Springer 1968)
[a3] W. Schempp, "Complex contour integral representation of cardinal spline functions" , Contemp. Math. , 7 , Amer. Math. Soc. (1982)
How to Cite This Entry:
Euler-Frobenius polynomials. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Euler-Frobenius_polynomials&oldid=17228
This article was adapted from an original article by Walter Schempp (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article