Namespaces
Variants
Actions

Stochastic equivalence

From Encyclopedia of Mathematics
Revision as of 17:20, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

The equivalence relation between random variables that differ only on a set of probability zero. More precisely, two random variables and , defined on a common probability space , are called stochastically equivalent if . In most problems of probability theory one deals with classes of equivalent random variables, rather than with the random variables themselves.

Two stochastic processes and , , defined on a common probability space are called stochastically equivalent if for any stochastic equivalence holds between the corresponding random variables: . With regard to stochastic processes and with coinciding finite-dimensional distributions, the term "stochastic equivalence" is sometimes used in the broad sense.


Comments

The members of a stochastic equivalence class (of random variables or stochastic processes) are sometimes referred to as versions (of each other or of the equivalence class). A version of a random variable or stochastic process is also called a modification.

References

[a1] J.L. Doob, "Classical potential theory and its probabilistic counterpart" , Springer (1984) pp. 390
[a2] I.I. [I.I. Gikhman] Gihman, A.V. [A.V. Skorokhod] Skorohod, "The theory of stochastic processes" , 1 , Springer (1974) pp. 43ff (Translated from Russian)
[a3] C. Dellacherie, "Capacités et processus stochastiques" , Springer (1972) pp. 46
[a4] A.V. [A.V. Skorokhod] Skorohod, "Random processes with independent increments" , Kluwer (1991) pp. 9 (Translated from Russian)
[a5] R.Sh. Liptser, A.N. [A.N. Shiryaev] Shiryayev, "Theory of martingales" , Kluwer (1989) pp. 4 (Translated from Russian)
How to Cite This Entry:
Stochastic equivalence. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stochastic_equivalence&oldid=17201
This article was adapted from an original article by A.V. Prokhorov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article