Namespaces
Variants
Actions

Specialization of a point

From Encyclopedia of Mathematics
Revision as of 17:11, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

of a topological space

A point for which the inclusion holds (this is equivalent to the inclusion ). A point is called generic if any point of is a specialization of it, that is, if . The other extreme case is that of a closed point: A point which has a unique specialization, namely the point itself.

For the affine scheme of a ring , a point is a specialization of a point if for the corresponding prime ideals of the inclusion holds. When is a ring without zero divisors, the point is the generic one. The relation of specialization distributes into levels: the highest are the closed points, on the next level are the points whose specializations are closed, and on the -th level are the points whose specializations belong to the levels with labels . For example, for there are levels: closed points, generic points of curves, generic points of surfaces the generic point of the -dimensional affine space.

References

[1] Yu.I. Manin, "Lectures on algebraic geometry" , 1 , Moscow (1970) (In Russian)
[2] A. Grothendieck, J. Dieudonné, "Eléments de géometrie algébrique" , I. Le langage des schémes , Springer (1971)


Comments

Of course, denotes the closure of the set . The closure of a point is an irreducible subset of , and conversely, every irreducible subset of has a generic point.

References

[a1] R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. Sect. IV.2
How to Cite This Entry:
Specialization of a point. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Specialization_of_a_point&oldid=15043
This article was adapted from an original article by V.V. Shokurov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article