Namespaces
Variants
Actions

Connes-Moscovici index theorem

From Encyclopedia of Mathematics
Revision as of 17:06, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Gamma index theorem, index theorem

A theorem [a3] which computes the pairing of a cyclic cocycle of the group algebra with the algebraic -theory index of an invariant (pseudo-) differential operator on a covering with Galois group (or group of deck transformations) (cf. also Cohomology).

The ingredients of this theorem are stated in more detail below. Let be a smooth compact manifold.

First, any -invariant, elliptic partial differential operator (cf. Elliptic partial differential equation) on has an algebraic -theory index . The definition of is obtained using the boundary mapping on applied to , the principal symbol of (cf. also Symbol of an operator). This gives

where is the algebra of trace-class operators on (cf. also Trace). More generally, one can assume that is an invariant pseudo-differential operator on (with nice support).

Secondly, it is known [a2] that any group-cohomology -cocycle of can be represented by an anti-symmetric function, and hence it defines a cyclic cocycle on the group algebra of the group . Moreover, the class of this cocycle in the periodic cyclic cohomology group , also denoted by , depends only on the class of in . Here, as customary, denotes the classifying space of , whose simplicial cohomology is known to be isomorphic to , the group cohomology of .

Finally, any element gives rise to a group morphism , see [a2]. In particular, any group cocycle gives rise to a mapping

using also the trace on .

The Connes–Moscovici index theorem now states [a3]): Let be the mapping classifying the covering , let be the Todd class of , and let be the Chern character of the element in defined by , as in the Atiyah–Singer index theorem (see [a1] and Index formulas). Then

is a pairing of a compactly supported cohomology class with the fundamental class of . Here, .

The Connes–Moscovici index theorem is sometimes called the higher index theorem for coverings and is the prototype of a higher index theorem.

References

[a1] M.F. Atiyah, I.M. Singer, "The index of elliptic operators I" Ann. of Math. , 93 (1971) pp. 484–530
[a2] A. Connes, "Non-commutative differential geometry" Publ. Math. IHES , 62 (1985) pp. 41–144
[a3] A. Connes, H. Moscovici, "Cyclic cohomology, the Novikov conjecture and hyperbolic groups" Topology , 29 (1990) pp. 345–388
[a4] G. Lusztig, "Novikov's higher signature and families of elliptic operators" J. Diff. Geom. , 7 (1972) pp. 229–256
How to Cite This Entry:
Connes-Moscovici index theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Connes-Moscovici_index_theorem&oldid=13937
This article was adapted from an original article by V. Nistor (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article