User:Maximilian Janisch/latexlist/latex/NoNroff/74
List
1. ; $\operatorname {rist}_{G} ( u ) = \{ g \in G : g \ \text {acts trivially on } T \backslash T _ { u } \}$ ; confidence 0.155
2. ; $L y \equiv \rho _ { n } \frac { d } { d x } \left( \rho _ { n - 1} \cdots \frac { d } { d x } \left( \rho _ { 1 } \frac { d } { d x } ( \rho _ { 0 } y) \right) \ldots \right) , \rho _ { i } > 0,$ ; confidence 0.155
3. ; $Z [ e ^ { 2 \pi i m t } f ] ( t , w ) = e ^ { 2 \pi i m t } ( Z f ) ( t , w ).$ ; confidence 0.155
4. ; $w ^ { em } = \mathbf{J} . \mathbf{E} + \frac { \partial \mathbf{P} } { \partial t } . \mathbf{E} - \mathbf{M} . \frac { \partial \mathbf{B} } { \partial t } + \nabla . ( \mathbf{v} ( \mathbf{P} . \mathbf{E} ) ).$ ; confidence 0.154
5. ; $x \dashv \vdash_{\mathcal{D}} E ( K ( x ) , L ( x ) )$ ; confidence 0.154
6. ; $a \in \mathbf{C} ^ {n }$ ; confidence 0.154
7. ; $c _{n + 1}$ ; confidence 0.154
8. ; $aa$ ; confidence 0.154
9. ; $f _ { j } : \Delta \rightarrow \mathbf{C} ^ { n }$ ; confidence 0.154
10. ; $\mathbf{S}$ ; confidence 0.154
11. ; $\alpha_{1} , \ldots , \alpha _ { n }$ ; confidence 0.154
12. ; $\psi : \mathcal{K} ^ { n } \rightarrow \mathcal{K} ^ { n }$ ; confidence 0.154
13. ; $\phi_{ *} ( \operatorname { ind } ( D ) ) = c _ { q } ( \operatorname { Ch } ( D ) \mathcal{T} ( M ) f ^ { * } ( \phi ) ) [ T M ]$ ; confidence 0.154
14. ; $v _ { i } = - \frac { D x _ { i } } { D t } = \left( \frac { \partial x _ { i } } { \partial t } \right) | _ { x _ { k }^{ 0} }.$ ; confidence 0.154
15. ; $g _ { k + 1 } ( z ) = z g _ { k } ( z ) - \phi _ { k } f ( z ) , \quad k = 0,1 , \ldots ; \quad g _ { 0 } ( z ) = 1;$ ; confidence 0.153
16. ; $I_{i j} = - 1$ ; confidence 0.153
17. ; $\mathfrak { S } _ { w } \in \mathbf{Z} [ x _ { 1 } , x _ { 2 } , \ldots ]$ ; confidence 0.153
18. ; $\sum ^ { i _ { 1 } , \dots , i _ { r }}$ ; confidence 0.153
19. ; $\operatorname { max }N_{\tilde{\mathbf{c}}^{T}\mathbf{x}} ( \tilde { G } )$ ; confidence 0.153
20. ; $f_{*} : H _ { q } ( X , X _ { 0 } ) \rightarrow H _ { q } ( Y , Y _ { 0 } )$ ; confidence 0.153
21. ; $E _ { n } ( x , a ) = \sum _ { i = 0 } ^ { | n / 2 | } \left( \begin{array} { c } { n - i } \\ { i } \end{array} \right) ( - a ) ^ { i } x ^ { n - 2 i }.$ ; confidence 0.153
22. ; $axb=cxd$ ; confidence 0.152
23. ; $\mathcal{P} = \langle a _ { 1 } , \dots , a _ { g } | R _ { 1 } , \dots , R _ { n } \rangle$ ; confidence 0.152
24. ; $n ^ { k } a ^ { n }$ ; confidence 0.152
25. ; $\operatorname { Mod}^ { *\text{L} } \mathcal{D} ( \mathsf{K} ) = \mathbf{SPP} _ { \text{U} } \mathsf{K}$ ; confidence 0.152
26. ; $\mathcal{S} ( \mathbf{R} ^ { 2 n } )$ ; confidence 0.152
27. ; $\mathbf{Me}_{\mathcal{S} _ { P }} \mathfrak { M }$ ; confidence 0.152
28. ; $\mathbf{E} ^ { n }$ ; confidence 0.152
29. ; $\operatorname { det } [ I _ { n } \lambda - A _ { 1 } ] = \sum _ { i = 0 } ^ { n } a _ { i } \lambda ^ { i } ( a _ { n } = 1 ).$ ; confidence 0.152
30. ; $uu_x$ ; confidence 0.152
31. ; $\left\{ \begin{array} { l l } { \alpha _ { i } \alpha _ { j } + \alpha _ { j } \alpha _ { i } = 0 } & { \text { for } i, j \in \{ x , y , z \} , i \neq j, } \\ { \alpha _ { i } \beta + \beta \alpha _ { i } = 0 } & { \text { for } i , j \in \{ x , y , z \}. } \end{array} \right.$ ; confidence 0.152
32. ; $\operatorname {Id} = \{ \langle a , \ldots , a \rangle : a \in U \}$ ; confidence 0.152
33. ; $\tilde { x } = \sum _ { k \in R ^ { \prime } } \overline { \mu } _ { k } \tilde { x } ^ { ( k ) }$ ; confidence 0.152
34. ; $K _ { 0 } ( \mathcal{O} _ { n } ) = \mathbf{Z} _ { n - 1}$ ; confidence 0.151
35. ; $\| x \| _ { p } = \| u \| _ { p }$ ; confidence 0.151
36. ; $x \in \mathbf{R} _ { + } , f _ { m } ( x , k ) = e ^ { i k x } + o ( 1 ) \operatorname { as } x \rightarrow + \infty.$ ; confidence 0.151
37. ; $K _ { p } ( f ) = \sum _ { r = 0 } ^ { m } \int _ { [ p _ { 0 } \ldots p _ { r } ] } D _ { x - p _ { 0 }} \cdots D _ { x - p _ { r - 1 } }f,$ ; confidence 0.151
38. ; $( r _ { \mathcal{D} } \oplus z _ { \mathcal{D} } ) \otimes \mathbf{R} : ( H _ { \mathcal{M} } ^ { i + 1 } ( X , \mathbf{Q} ( m + 1 ) )_{ \mathbf{Z}} \otimes \mathbf{R} ) \oplus ( B ^ { m } ( X ) \otimes \mathbf{R} ) \overset{\sim}{\rightarrow} H _ { \mathcal{D} } ^ { i + 1 } ( X _ { / \mathbf{R} } , \mathbf{R} ( m + 1 ) )$ ; confidence 0.151
39. ; $\mathcal{Z} _ { m} ^{\pi }$ ; confidence 0.151
40. ; $\mathfrak{M}_2$ ; confidence 0.151
41. ; $( B , \delta ) : 0 \rightarrow B _ { r } \stackrel { \delta _ { r } } { \rightarrow } \ldots \stackrel { \delta _ { 1 } } { \rightarrow } B _ { 1 } \stackrel { \delta _ { 0 } } { \rightarrow } L ( \lambda ) \rightarrow 0$ ; confidence 0.151
42. ; $a _ { 1 } , \dots , a _ { 2k } $ ; confidence 0.151
43. ; $L _ { 3 } ^ { \prime \prime }$ ; confidence 0.151
44. ; $\operatorname { ch } _ { \mathcal{D} } : K _ { i } ( X ) \rightarrow \oplus H ^ { 2 j - i _ { \mathcal{D} } } ( X , A ( j ) )$ ; confidence 0.151
45. ; $i_1$ ; confidence 0.151
46. ; $u _ { i + 1 / 2 } ^ { n + 1 / 2 } = \frac { 1 } { 2 } ( u _ { i } ^ { n } + u _ { i + 1 } ^ { n } ) + \frac { 1 } { 2 } \frac { \Delta t } { \Delta x } ( f _ { i } ^ { n } - f _ { i + 1 } ^ { n } ).$ ; confidence 0.151
47. ; $+ \sum _ { 0 \leq k < N } 2 ^ { - k } \sum _ { | \alpha | + | \beta | = k } \frac { ( - 1 ) ^ { | \beta | } } { \alpha ! \beta ! } D _ { \xi } ^ { \alpha } \partial _ { x } ^ { \beta } a D _ { \xi } ^ { \beta } \partial _ { x } ^ { \alpha } b,$ ; confidence 0.150
48. ; $\overset{\rightharpoonup} { \theta } = \sum t _ { n } \overset{\rightharpoonup} { V } _ { n }$ ; confidence 0.150
49. ; $\phi : E \rightarrow \operatorname {GF} ( q ) ^ { n }$ ; confidence 0.150
50. ; $\overline { a _ { 1 } } / q _ { 1 }$ ; confidence 0.150
51. ; $\operatorname { dim } _ { \Phi } L ( \varepsilon ) = 2 ( \operatorname { dim } _ { \Phi } U ( \varepsilon ) + \operatorname { dim } _ { \Phi } \{ K ( x , y ) \} _ { \operatorname { span } } )+$ ; confidence 0.150
52. ; $( a _ { j } ) _ { j = 1 } ^ { \infty } $ ; confidence 0.150
53. ; $\frac { ( n - 1 ) ! } { ( 2 \pi i ) ^ {n } } \int _ { \partial D } \varphi \frac { \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } w _ { k } d w [ k ] \wedge d f } { \langle w , f \rangle ^ { n } } =$ ; confidence 0.149
54. ; $\omega \bigwedge \mathcal{L} _ { K } = \mathcal{L} ( \omega \bigwedge K ) + ( - 1 ) ^ { q + k - 1 } i ( d \omega \bigwedge K ) , [ \omega \bigwedge L _ { 1 } , L _ { 2 } ] ^ { \bigwedge } = \omega \bigwedge [ L _ { 1 } , L _ { 2 } ] +$ ; confidence 0.149
55. ; $g _ { i } \Theta _ { i } = \left( \begin{array} { l l l } { \delta _ { i } } & { 0 } & { \ldots } & { 0 } \end{array} \right),$ ; confidence 0.149
56. ; $\langle M _ { p } ( n ) \hat { f } , \hat {g} \rangle = \tau ( p f \overline{g} )$ ; confidence 0.149
57. ; $\overline{ c }_{j} = 1$ ; confidence 0.149
58. ; $\sigma ( \Omega ( A ) ) = \left\{ \begin{array} { c c } { \text { boundary of } K _ { 1,2 } ( A ) } & { n = 2; } \\ { \cup _ { i , j = 1 , i \neq j } ^ { n } K _ { i , j } ( A ) } & { n \geq 3. } \end{array} \right.$ ; confidence 0.149
59. ; $\pi = w _ { 1 } \dots w _ { n }$ ; confidence 0.149
60. ; $q_{Q} ( \underline { \operatorname { dim } } \mathbf{X} ) = \chi _ { Q } ( [ \mathbf{X} ] )$ ; confidence 0.149
61. ; $\|A\|_{2}= \text{largest singular value of A} , \| A \| _ { \infty } = \operatorname { max } _ { j } \sum _ { i } | a _ { i j} |,$ ; confidence 0.149
62. ; $\operatorname { cr } ( K _ { n , m} )$ ; confidence 0.149
63. ; $R _ {l + 1 } ^ { ( i ) } ( z ) = \frac { l R _ { l } ^ { ( i ) } ( z ) - 1 } { z }.$ ; confidence 0.149
64. ; $\{ P _ { n } ^ { \prime \prime } \}$ ; confidence 0.149
65. ; $LM$ ; confidence 0.149
66. ; $\operatorname { pr } _{( \alpha _ { 1 } , \dots , \alpha _ { n } )}$ ; confidence 0.149
67. ; $a \in \mathbf{R} ^ { n }$ ; confidence 0.149
68. ; $+\frac { ( - 1 ) ^ { ( k - 1 ) \text{l} } } { ( k - 1 ) ! ( \text{l} - 1 ) ! 2 ! } \times \times \sum _ { \sigma } \operatorname { sign } \sigma K ( L ( [ X _ { \sigma 1 } , X _ { \sigma 2 } ] , X _ { \sigma 3 } , \ldots ) , X _ { \sigma ( \text{l} + 2 ) , \ldots } ).$ ; confidence 0.149
69. ; $e _ { i } ^ { n _ { i j } }$ ; confidence 0.149
70. ; $\xi _ { \underline{x}^{*}} ( . , \dots , . )$ ; confidence 0.149
71. ; $= \left( \frac { e ^ { \sum _ { 1 }^{\infty} y _ { i } z ^ { - i } } \tau _ { n + 1 } ( x , y - [ z ] ) z ^ { n } } { \tau _ { n } ( x , y ) } \right) _ { n \in \mathbf{Z} } , ( L _ { 1 } , L _ { 2 } ) ( \Psi _ { 1 } ( z ) , \Psi _ { 2 } ( z ) ) = ( z , z ^ { - 1 } ) ( \Psi _ { 1 } ( z ) , \Psi _ { 2 } ( z ) ),$ ; confidence 0.149
72. ; $\hat { \beta } = ( \mathbf{X} ^ { \prime } \mathbf{X} ) ^ { - 1 } \mathbf{X} ^ { \prime } \mathbf{y}$ ; confidence 0.148
73. ; $\mathcal{K} _ { 0 }$ ; confidence 0.148
74. ; $S ( \theta ) _ { j _{1} , \cdots , j _ { q } } ^ { i _ { 1 } \ldots i _ { p } }$ ; confidence 0.148
75. ; $E _ { k }$ ; confidence 0.148
76. ; $E _ { 2 } ( | x - y | ) = \operatorname { ln } \frac { 1 } { | x - y | } , \quad E _ { n } ( | x - y | ) = \frac { 1 } { | x - y | ^ { n - 2 } },$ ; confidence 0.148
77. ; $\frac { \mathcal{D} \dot { x } ^ { i } } { d t } = \varepsilon ^ { i } = \frac { 1 } { 2 } g ^ { i } ; r \dot { x } \square ^ { r } - g ^ { i }.$ ; confidence 0.148
78. ; $x \sim_{ i} y \Leftrightarrow x = y$ ; confidence 0.148
79. ; $\mathbf{\mathsf{Alg}} _ {\vdash } ( L _ { n } )$ ; confidence 0.148
80. ; $\operatorname { det } \left( \begin{array} { c c c } { I } & { \ldots } & { I } \\ { X _ { 1 } } & { \ldots } & { X _ { n } } \\ { \vdots } & { \ldots } & { \vdots } \\ { X _ { 1 } ^ { n - 1 } } & { \ldots } & { X _ { n } ^ { n - 1 } } \end{array} \right)$ ; confidence 0.148
81. ; $\otimes \rightarrow \otimes ^ { \text{op} }$ ; confidence 0.147
82. ; $\tilde { \gamma } = \tilde { \gamma } ^ { \prime \prime }$ ; confidence 0.147
83. ; $\mathbf{Z} [ \zeta _ { e } ]$ ; confidence 0.147
84. ; $a \in \hat { K } _ { \text{p} }$ ; confidence 0.147
85. ; $P _ { n } ^ { \prime } ( A _ { n } ) \rightarrow 0$ ; confidence 0.146
86. ; $a \circ_{k} b$ ; confidence 0.146
87. ; $T _ { \text { prod } } ( a , b ) = a . b$ ; confidence 0.146
88. ; $\otimes ^ { r + 2 } \mathcal{E}$ ; confidence 0.146
89. ; $\mu : = \operatorname { max } \operatorname { deg } _ { x _ { 0 } } a _ { i }$ ; confidence 0.145
90. ; $M = ( K _ { s } ( \overline { \sigma } ) \cap K _ { \text{tot} S} ) _ { \text{ins} }$ ; confidence 0.145
91. ; $\operatorname {exp}$ ; confidence 0.145
92. ; $\Lambda = \left( \begin{array} { c c c c } { z ^ { k _ { 1 } } } & { 0 } & { \ldots } & { 0 } \\ { 0 } & { z ^ { k_{2} } } & { \ldots } & { 0 } \\ { \vdots } & { \vdots } & { \ddots } & { \vdots } \\ { 0 } & { 0 } & { \ldots } & { z ^ { k _ { n } } } \end{array} \right) , k _ { 1 } , \ldots , k _ { n } \in \mathbf{Z},$ ; confidence 0.145
93. ; $O _ { \text{p} } = \{ x \in L : | x | _ { \text{p} } \leq 1 \}$ ; confidence 0.145
94. ; $K _ { X _ { n } } + B _ { n }$ ; confidence 0.145
95. ; $A = \mathbf{C} \{ Z _ { 1 } , \dots , Z _ { r } \}$ ; confidence 0.145
96. ; $h_{1}$ ; confidence 0.145
97. ; $S _ { j _ { 1 } \square \dots j_q } ^ { i _ { 1 } \cdots j _ { p } }$ ; confidence 0.145
98. ; $\tilde { E }$ ; confidence 0.144
99. ; $A \in \mathbf{R} ^ { m \times n }$ ; confidence 0.144
100. ; $\operatorname{Mod} ^ { * \text{ L}} \mathcal{D} = \mathbf{SP} \operatorname{Mod} ^ { * \text{ L}} \mathcal{D}$ ; confidence 0.144
101. ; $\mu _ { 0 } ( k _ { c } , R _ { c } ) = i \mu _ { c }$ ; confidence 0.144
102. ; $\mathbf{k} . \mathbf{x} = k _ { 1 } x _ { 1 } + \ldots + k _ { n } x _ { n }$ ; confidence 0.144
103. ; $U$ ; confidence 0.144
104. ; $I _ { 2 } \subset I _ { 1 }$ ; confidence 0.144
105. ; $\int _ { - \infty } ^ { \infty } \int _ { - \infty } ^ { \infty } | f ( x ) | \left| \hat { f } ( y ) \right| e ^ { 2 \pi | xy | } < \infty,$ ; confidence 0.144
106. ; $C _ { k } = \Lambda ^ { k } T ^ { * } M \otimes R _ { m } / \delta ( \Lambda ^ { k - 1 } T ^ { * } M \otimes g _ { m + 1 } )$ ; confidence 0.144
107. ; $u _ { i } ^ { n + 1 } = b _ { - 1 } u _ { i - 1 } ^ { n } + b _ { 0 } u _ { i } ^ { n } + b _ { 1 } u _ { i + 1 } ^ { n },$ ; confidence 0.144
108. ; $J = ( j _ { 1 } , \ldots , j _ { n } ) \in \mathbf{N} ^ { n }$ ; confidence 0.144
109. ; $\sum _ { i = 0 } ^ { k } \alpha _ { i } y _ { m + i } = h \sum _ { i = 0 } ^ { k } \beta _ { i } f ( x _ { m + i} , y _ { m + i } ).$ ; confidence 0.143
110. ; $f : \overline { \Omega } \subset \mathbf{R} ^ { n } \rightarrow \mathbf{R} ^ { n }$ ; confidence 0.143
111. ; $e \preceq c _ { i } \preceq b _ { i }$ ; confidence 0.143
112. ; $\mathcal{D} _ { n } ^ { r } = \mathbf{R} [ x _ { 1 } , \ldots , x _ { n } ] / \langle x _ { 1 } , \ldots , x _ { n } \rangle ^ { r + 1 }$ ; confidence 0.143
113. ; $s _{( l )} = h _ { l } \text { and } s _ { ( 1 ^ { l }) } = e_{ l},$ ; confidence 0.143
114. ; $\{ I ^ { 1 } , I ^ { 2 } , I ^ { 3 } \}$ ; confidence 0.143
115. ; $1 ^{ G } _ { P }$ ; confidence 0.143
116. ; $F _ { x } ( q ) = \frac { 1 } { 2 \pi } \int _ { S ^ { 1 } } X f ( \theta , x . \theta + q ) d \theta$ ; confidence 0.143
117. ; $[ H _ { \mathfrak{M} } ^ { i } ( R ) ] _ { n } = ( 0 )$ ; confidence 0.143
118. ; $u_{:m}$ ; confidence 0.143
119. ; $= \frac { 1 } { k ! \text{l} ! } \sum _ { \sigma } \operatorname { sign } \sigma \times \times \mathcal{L} ( K(X _ { \sigma 1 } , \ldots , X _ { \sigma k } ) ) ( \omega ( X _ { \sigma ( k + 1 ) } , \ldots , X _ { \sigma ( k + 1 ) } ) ) +$ ; confidence 0.142
120. ; $\operatorname { lim } _ { n } u _ { n } = \frac { 1 } { \mathsf{E} X _ { 1 } }.$ ; confidence 0.142
121. ; $ro$ ; confidence 0.142
122. ; $\operatorname { lim } _ { i \rightarrow \infty } \sum _ { j = 1 } ^ { \infty } x _ { n_i n_j } = 0.$ ; confidence 0.142
123. ; $(C) \int a . f d m = a . ( C ) \int f d m$ ; confidence 0.142
124. ; $T , \varphi \vdash_{\mathcal{D}} \psi$ ; confidence 0.142
125. ; $\sum _ { p \in \text{E,G} } \rho _ { p } \mathsf{E} [ W _ { p } ] + \sum _ { p \in \text{L} } \rho _ { p } \left( 1 - \frac { \lambda _ { p } R } { 1 - \rho } \right) \mathsf{E} [ W _ { p } ] =$ ; confidence 0.142
126. ; $\| u \| A _ { 2 ^{ ( G )}} = \operatorname { inf } \{ N _ { 2 } ( k ) N _ { 2 } ( l ) : k , l \in \mathcal{L} _ { \text{C} } ^ { 2 } ( G ) , u = \overline { k } * \check{t} \}.$ ; confidence 0.142
127. ; $\{ \rho _ { n } ( \phi ) \} _ { n \geq 0} \in \text{l} ^ { p }$ ; confidence 0.142
128. ; $a _ { n } = \frac { 2 } { N } \frac { 1 } { \overline { c } _ { n } } \sum _ { j = 0 } ^ { N } u ( x _ { j } ) \frac { T _ { n } ( x _ { j } ) } { \overline { c } _ { j } }.$ ; confidence 0.142
129. ; $\{ f _ { n } \} _ { n }$ ; confidence 0.142
130. ; $\frac { d ^ { 2 } \xi ^ { i } } { d t ^ { 2 } } + g _ { ; r } ^ { i } \frac { d \xi ^ { r } } { d t } + g _ {, r } ^ { i } \xi ^ { r } = 0,$ ; confidence 0.142
131. ; $y \in K _ { j } ^ { c }$ ; confidence 0.141
132. ; $M > 0$ ; confidence 0.141
133. ; $p _ { 1 }$ ; confidence 0.141
134. ; $H _ { \mathcal{M} } ^ { \bullet } ( M _ { \mathbf{Z} } , \mathbf{Q} ( * ) )$ ; confidence 0.141
135. ; $[ e _ { i } , e _ { j } ] = \left( \left( \begin{array} { c } { i + j + 1 } \\ { j } \end{array} \right) - \left( \begin{array} { c } { i + j + 1 } \\ { i } \end{array} \right) \right) e _ { i + j }.$ ; confidence 0.141
136. ; $\mathcal{C} ^ { * } \otimes_{ k} \mathcal{C}$ ; confidence 0.141
137. ; $\delta_{\text{BRST}}$ ; confidence 0.141
138. ; $\psi ( v ) = \operatorname { sup } _ { u > 0 } \{ u v - \varphi ( u ) \}$ ; confidence 0.141
139. ; $( a _ { 1 } , \dots , a _ { i - 1 } ) : a _ { i } = ( a _ { 1 } , \dots , a _ { i - 1 } ) : \mathfrak{m}$ ; confidence 0.141
140. ; $\langle . , . \rangle _ { D ^{ 2} f ( x ^ { * } )}$ ; confidence 0.140
141. ; $\mathcal{L} ( \tau ) = \langle \operatorname { Fm} _ { \tau } , \operatorname { Mod} _ { \tau } , \models _ { \tau } , \operatorname { mng} _ { \tau } , \vdash _ { \tau } \rangle$ ; confidence 0.140
142. ; $x \in X _ { n }$ ; confidence 0.140
143. ; $( f ^ { * } d \mu ) _ { N } ( x ) = \sum _ { k } \lambda \left( \frac { k } { N } \right) \hat { f } ( k ) e ^ { i k x },$ ; confidence 0.140
144. ; $\left. - \frac { 1 } { \langle \rho ^ { \prime } , \zeta \rangle ^ { n } } \sum _ { | \alpha | = 0 } ^ { m } \frac { ( | \alpha | + n - 1 ) ! } { \alpha _ { 1 } ! \ldots \alpha _ { n } ! } \left( \frac { \rho ^ { \prime } ( \zeta ) } { \langle \rho ^ { \prime } , \zeta \rangle } \right) ^ { \alpha } z ^ { \alpha } \sigma \right],$ ; confidence 0.140
145. ; $\| \mathbf{U} ^ { n } \| _ { \infty } \leq C \| \mathbf{U} ^ { 0 } \| _ { \infty } , 1 \leq n,$ ; confidence 0.140
146. ; $ca<cb$ ; confidence 0.140
147. ; $\phi _ { - } ^ { - 1 } \frac { \partial } { \partial t _ { n } } - Q _ { 0 } z ^ { n } \phi _ { - } = \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) }.$ ; confidence 0.140
148. ; $e _ { 1 } , \ldots , e _ { n }$ ; confidence 0.140
149. ; $\{ B _ { j } ( t , x , D _ { x } ) \} _ { j = 1 } ^ { m }$ ; confidence 0.140
150. ; $\times \int _ { - \infty } ^ { \infty } \tau \left| \Gamma \left( c - a + \frac { i \tau } { 2 } \right) \right| ^ { 2 } \times \times \square _ { 2 } F _ { 1 } \left( a + \frac { i \tau } { 2 } , a - \frac { i \tau } { 2 } ; c ; - \frac { 1 } { x } \right) f ( \tau ) d \tau.$ ; confidence 0.140
151. ; $+ \sigma ^ { 2 } ( t ) f _ { x x } ^ { \prime \prime } ( t , X _ { t } ) / 2 ] d t + \sigma ( t ) f _ { x } ^ { \prime } ( t , X _ { t } ) d W _ { t }.$ ; confidence 0.139
152. ; $f (\tilde{y}) \cong 0$ ; confidence 0.139
153. ; $\phi _ { i } : \operatorname { CH} ^ { i } ( X ) ^ { 0 } \rightarrow \operatorname { Ext } _ { \mathcal{H} } ^ { 1 } ( \mathbf{Z} ( 0 ) , h ^ { 2 i - 1 } ( X ) ( i ) )$ ; confidence 0.139
154. ; $\overline { R } ^ { n }_{ +}$ ; confidence 0.139
155. ; $L _ { 1 } ^ { \prime \prime }$ ; confidence 0.139
156. ; $\mathbf{\mathsf{Alg}} _ { \vdash } ( \mathcal{L} ) = \mathbf{\mathsf{Alg}}_ { \models } ( \mathcal{L} )$ ; confidence 0.139
157. ; $+ \frac {\# \{ U _ { i } = ( u _ { i + 1} , \ldots , u _ { t + k} ) : s _ { j } < u_{i + j} \leq t _ { j } , 1 \leq j \leq k \} } { \# \{ U _ { i } = ( u _ { i + 1} , \ldots , u _ { i + k}) \} }$ ; confidence 0.139
158. ; $e = \frac { | U | } { | G | } \left( \sum _ { b \in B } b \right) \left( \sum _ { w \in W } \operatorname { sign } ( w ) w \right)$ ; confidence 0.138
159. ; $\hat { A } ( t | \beta ) = \int _ { ]0 , t] } \frac { 1 } { \sum _ { k = 1 } ^ { n } I _ { k } ( s - ) e ^ { Z _ { k } ^ { T } ( s - ) \beta } } d \overline { N } ( s ),$ ; confidence 0.138
160. ; $L ^ { * } ( h ^ { i } ( X ) , s ) _ { s = m } \equiv \operatorname { det } ( \Pi ) . \operatorname { det } \langle . , . \rangle$ ; confidence 0.138
161. ; $\mathbf{c} ^ { \text{em} }$ ; confidence 0.137
162. ; $\operatorname { Aut } ( \tilde { G } , \tilde{c} )$ ; confidence 0.137
163. ; $f ( x _ { 1 } , \dots , x _ { n } ) = g ( a _ { 1 } x _ { 1 } + \ldots + a _ { n } x _ { n } ) = g ( \mathbf{a}. \mathbf{x} ),$ ; confidence 0.137
164. ; $\frac { \partial } { \partial t _ { n } } Q = [ Q ^ { ( n ) } , Q ] , n \geq 1,$ ; confidence 0.137
165. ; $\sigma _ { \text{H} } : = \sigma _ { \text{I} } \cup \sigma _ { \text{r} }$ ; confidence 0.137
166. ; $\overline { k } _ { s }$ ; confidence 0.137
167. ; $a _ { n } | a _ {n + 1} = a _ { n }$ ; confidence 0.137
168. ; $n_t$ ; confidence 0.137
169. ; $\operatorname { Cd}$ ; confidence 0.137
170. ; $dm / \ ds$ ; confidence 0.137
171. ; $( \kappa \partial _ { a} + M _ { a } ) \psi = 0$ ; confidence 0.136
172. ; $| u ( y ) | \leq \sum _ { j = 1 } ^ { \infty } | u _ { j } , \varphi _ { j } ( y ) | \leq c \Lambda \| _ { V } \| = c \Lambda \| u \| _ { + }$ ; confidence 0.136
173. ; $\sigma e _ { t } = e _ { \sigma t}$ ; confidence 0.136
174. ; $h : \mathbf{Fm} _ { P } \rightarrow \mathbf{Me} _ { \mathcal{S} _ { P } } \mathfrak { M }$ ; confidence 0.136
175. ; $*$ ; confidence 0.136
176. ; $q_ { A }$ ; confidence 0.136
177. ; $\left\{ \begin{array}{l}{ U _ { 0 } ^ { ( k ) } ( x ) = 0, }\\{ U _ { 1 } ^ { ( k ) } ( x ) = 1, }\\{ U _ { n } ^ { ( k ) } ( x ) = \sum _ { j = 1 } ^ { n } x ^ { k - j } U _ { n - j } ^ { ( k ) } ( x ) , \quad n = 2 , \ldots , k, }\\{ U _ { n } ^ { ( k ) } ( x ) = \sum _ { j = 1 } ^ { k } x ^ { k - j } U _ { n - j } ^ { ( k ) } ( x ), }\\{ n = k + 1 , k + 2 , \ldots . }\end{array} \right.$ ; confidence 0.136
178. ; $\mathcal{L} _ { \text{Z} ^ { k } } ( L , \Delta ) = Z ^ { k }\lrcorner d L \Delta + d ( Z ^ { k } \lrcorner L \Delta )$ ; confidence 0.136
179. ; $( X , \mathcal{T} ) \in | L \square \mathbf{FTOP}|$ ; confidence 0.136
180. ; $\mathfrak { M } \in \operatorname { Mod }_{\mathcal{S}_P}$ ; confidence 0.136
181. ; $w \in \mathcal{S} _ { \infty } = \cup \mathcal{S} _ { n }$ ; confidence 0.136
182. ; $s ^ { 2 } \tilde { g } \in \mathsf{S} ^ { 2 } \tilde{\mathcal{E}}$ ; confidence 0.135
183. ; $e ^ { 2 \pi i m n a b } e ^ { 2 \pi i m b x }\hat{ g} ( \gamma - m b )$ ; confidence 0.135
184. ; $\mathbf{C} ^ { n }$ ; confidence 0.135
185. ; $L ( \theta | Y _ { \text{obs}} ) = \int _ { \mathcal{M} ( Y _ { \text { aug } } ) = Y _ { \text { obs } } } L ( \theta | Y _ { \text { aug } } ) d Y _ { \text { aug } }$ ; confidence 0.135
186. ; $u_{1}^{*}$ ; confidence 0.135
187. ; $\Sigma ( \Gamma ) : = \left\{ f \in [ 0,1 ] ^ { \Gamma } : \begin{array} { c c } { f ( \gamma ) \neq 0 } \\ { \text { for at most countable } \gamma } \end{array} \right\}$ ; confidence 0.135
188. ; $\sigma ( B ) \subseteq \cup _ { i , j = 1 \atop i \neq j } ^ { n } K _ { i , j } ( A ) \subseteq \cup _ { i = 1 } ^ { n } G _ { i } ( A )$ ; confidence 0.135
189. ; $\rho ( v ) = v ^ { ( 1 ) } \otimes v ^ { ( 2 ) } \in V \otimes _ { k } A$ ; confidence 0.135
190. ; $- \mathsf{P} [ ( X - \tilde { X } ) ( Y - \tilde { Y } ) < 0 ] =$ ; confidence 0.134
191. ; $F = ( F _ { 1 } , \dots , F _ { n } ) : \mathbf{C} ^ { n } \rightarrow \mathbf{C} ^ { n }$ ; confidence 0.134
192. ; $\mathcal{A} ^ { * } = \left\{ f : \| f \| _ { \mathcal{A}^ { * } } = \sum _ { k = 0 } ^ { \infty } \operatorname { sup } _ { k \leq |m | < \infty } | \hat { f } ( m ) | < \infty \right\}.$ ; confidence 0.134
193. ; $\square _{D(A)} \operatorname{Mod}$ ; confidence 0.134
194. ; $\hat { \psi } \pm S \ \hat { \sigma }_{ \hat { \psi }}$ ; confidence 0.134
195. ; $T _ { W d } = T_{V}$ ; confidence 0.134
196. ; $\left\{ \sum _ { n = 1 } ^ { \infty } N _ { p } ( k _ { n } ) N _ { p^{\prime} } ( l _ { n } ) : \begin{array} { c c } {((k_n)^{\infty}_{n=1} , (l_n)^{\infty}_{n=1}) \in \mathcal{A}_{p} (G) } \\ {\text { with } u = \sum _ { n = 1 } ^ { \infty } \overline { k _ { n } } * \check{l}_ { n }} \end{array} \right\}.$ ; confidence 0.134
197. ; $l \subset \mathbf{C} ^ { 2 }$ ; confidence 0.134
198. ; $\hat { c } _ { l } ^ { 2 } < 0$ ; confidence 0.134
199. ; $\hat { a } _ { i } = \alpha _ { i } ( u _ { k } , T _ { 1 } , \hat{T} _ { n > 1 } = 0 ) = T _ { 1 } a _ { i } ( u _ { k } , \Lambda = 1 ) = a _ { i } ( \hat { u } _ { k } , \Lambda = T _ { 1 } )$ ; confidence 0.134
200. ; $f ( Z ) = \sum _ { \begin{array} { c c } { 0 < T = \square ^ { t } T}\\{\text{semi}\square\text{integral} } \end{array}} c ( T ) e ^ { 2 \pi i \operatorname { Tr } ( T Z ) }.$ ; confidence 0.134
201. ; $w \in \mathcal{S} _ { n }$ ; confidence 0.134
202. ; $w ( a , b , c , d ) = w \left( \square _ { a } ^ { d } \square \square _ { b } ^ { c } \right) = \operatorname { exp } \left( - \frac { \epsilon ( a , b , c , d ) } { k _ { B } T } \right).$ ; confidence 0.134
203. ; $\| u - q _ { l } \| _ { p , \Omega } \leq C \rho ^ { 2 } | u | _ { p , 2 , \Omega }.$ ; confidence 0.133
204. ; $+ , - , * , :$ ; confidence 0.133
205. ; $C ^ { 0 } ( \mathcal{C} , M ) = \prod _ { C \in \text{OC} } M ( C ),$ ; confidence 0.133
206. ; $\left[ \begin{array} { c c } { E _ { 1 } } & { E _ { 2 } } \\ { E _ { 3 } } & { E _ { 4 } } \end{array} \right] \left[ \begin{array} { c } { x _ { i + 1} ^ { h } , j } \\ { x _ { i , j + 1 } ^ { \nu } } \end{array} \right] = \left[ \begin{array} { c c } { A _ { 1 } } & { A _ { 2 } } \\ { A _ { 3 } } & { A _ { 4 } } \end{array} \right] \left[ \begin{array} { c } { x _ { i j } ^ { h } } \\ { x _ { i j } ^ { \nu } } \end{array} \right] + \left[ \begin{array} { c } { B _ { 1 } } \\ { B _ { 2 } } \end{array} \right] u _ { ij },$ ; confidence 0.133
207. ; $\Xi . M = \hat{x} . x + \hat { \xi } . D _{x}$ ; confidence 0.133
208. ; $\alpha = s _ { n-1 } ^ { T } d / y _ { n-1 } ^ { T }$ ; confidence 0.133
209. ; $\mathcal{R}(hg\bigotimes f ) = \sum \mathcal{R} ( h \bigotimes f _ { ( 1 ) } ) \mathcal{R} ( g \bigotimes f_{ ( 2 )} ) , \mathcal{R} ( h \bigotimes g f ) = \sum \mathcal{R}(h_{(1)} \bigotimes f) \mathcal{R}(h_{(2)} \bigotimes g), $ ; confidence 0.133
210. ; $K ^ { 2 } \stackrel { 3 } { \searrow } L ^ { 2 }$ ; confidence 0.132
211. ; $e_{ \lambda}$ ; confidence 0.132
212. ; $ \operatorname {GL} _ { n } ( K )$ ; confidence 0.132
213. ; $L _ { \gamma , n } > L _ { \gamma , n } ^ { c }$ ; confidence 0.132
214. ; $( \alpha _ { 1 } , \dots , \alpha _ { n } ) \in \mathbf{C} ^ { n }$ ; confidence 0.132
215. ; $\sum _ { i } \overline { m } _ { n } ( h ) h$ ; confidence 0.132
216. ; $x _ { 1 } , \ldots , x _ { m }$ ; confidence 0.132
217. ; $= \operatorname { dim } H _ { \mathcal{D} } ^ { i + 1 } ( X _ { / \mathbf{R} } , \mathbf{R} ( i + 1 - m ) ),$ ; confidence 0.131
218. ; $\mathbf{V}$ ; confidence 0.131
219. ; $p ^ { * } ( a , t ) = c_{0} e ^ { \lambda ^ { * } ( t - a ) } \Pi ( a ) = e ^ { \lambda ^ { * } t } w ^ { * } ( a ) $ ; confidence 0.131
220. ; $A = A _ { 1 } \oplus \ldots \oplus A _ { k }$ ; confidence 0.131
221. ; $E x _ { i + 1 , j + 1 } = A _ { 0} x _ {i j } + A _ { 1 } x _ { i + 1 , j } + A _ { 2 } x _ { i , j + 1 } + B u _ { i j },$ ; confidence 0.131
222. ; $h _ { n } = \mathcal{M} _ { s } f _ { 2n }$ ; confidence 0.131
223. ; $zz ^ { * }$ ; confidence 0.131
224. ; $a _ { e } ( x , \alpha , p ) : = \frac { a ( x , \alpha , p ) + a ( x , - \alpha , - p ) } { 2 }$ ; confidence 0.131
225. ; $= 2 ^ { 2 n k } \int _ { \Phi ^ { 2 k } } a _ { 1 } ( Y _ { 1 } ) \ldots a _ { 2 k } ( Y _ { 2 k } ) \text{..} a _ { 2 k + 1 } \left( X + \sum _ { 1 \leq j < l \leq 2 k } ( - 1 ) ^ { j + l } ( Y _ { j } - Y _ { l } ) \right).$ ; confidence 0.131
226. ; $\text{JBW}$ ; confidence 0.131
227. ; $\text{I} _ { p }$ ; confidence 0.131
228. ; $\{ \tilde { p } : p \in N _ { i } \}$ ; confidence 0.131
229. ; $\kappa \partial _ { s } H _ { r } - \kappa \partial _ { r } H _ { s } + \{ H _ { s } , H _ { r } \} _ { 0 } = 0.$ ; confidence 0.131
230. ; $ker T$ ; confidence 0.131
231. ; $+ F ( d x \bigotimes d y + d y \bigotimes d x ) + G d y \bigotimes d y$ ; confidence 0.130
232. ; $g _ { m }$ ; confidence 0.130
233. ; $= \sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { i = 0 } ^ { r _ { 2 } } a _ { i j } z_{1}^ {i} z _ { 2 } ^ { j }$ ; confidence 0.130
234. ; $\{ e ^ { 2 \pi i m b x } g ( x - n a ) : n , m \in \mathbf{Z} \} = \{ g _ { n , m} : n , m \in \mathbf{Z} \},$ ; confidence 0.130
235. ; $u _ { m + 1} = R _ { 0 } ^ { ( s + 1 ) } ( h \lambda ) u _ { m }.$ ; confidence 0.130
236. ; $\sum g _{( 1 )} h _ { ( 1 ) } \mathcal{R} ( h _ { ( 2 ) } \bigotimes g _ { ( 2 ) } ) = \sum \mathcal{R }( h _ { ( 1 ) } \bigotimes g _ { ( 1 ) } ) h _ { ( 2 ) } g_{ ( 2 )},$ ; confidence 0.130
237. ; $abcd$ ; confidence 0.129
238. ; $*$ ; confidence 0.129
239. ; $A \hookrightarrow \mathcal{Q} ( \mathcal{H} )$ ; confidence 0.129
240. ; $L \overline{L} \overline{L} L$ ; confidence 0.129
241. ; $X _ { n } ^ { h }$ ; confidence 0.129
242. ; $\sum _ { m = 0 } ^ { \infty } \frac { 1 } { ( 2 \pi i ) ^ { m } } \int _ { T } \sum _ { P = \{ ( z _ { j } , z _ { j } ^ { \prime } ) \} } ( - 1 ) ^ { \downarrow } D _ { P } \bigwedge _ { j = 1 } ^ { m } \frac { d z _ { j } - d z _ { j } ^ { \prime } } { z _ { j } - z _ { j } ^ { \prime } }.$ ; confidence 0.129
243. ; $\tilde { \nabla } ^ { q } W ( \tilde { g } )$ ; confidence 0.129
244. ; $( \text{P} ) v ^ { * } = \left\{ \begin{array} { c c } { \operatorname { min } } & { c ^ { T } x } \\ { \text { s.t. } } & { A _ { 1 } x \leq b _ { 1 }, } \\ { } & { A _ { 2 } x \leq b _ { 2 }, } \\ {} & { x \geq 0. } \end{array} \right.$ ; confidence 0.129
245. ; $a \overline{u} $ ; confidence 0.129
246. ; $w _ { j } = \frac { \Phi ^ { \prime z _ { j } } } { ( \operatorname { grad } _ { z } \Phi , z ) } , j = 1 , \ldots , n,$ ; confidence 0.129
247. ; $g_{0}$ ; confidence 0.129
248. ; $\epsilon _ { n } \rightarrow 0$ ; confidence 0.129
249. ; $\rho$ ; confidence 0.129
250. ; $L _ { m , n } = ( \phi _ { m } , L \phi_{ n } )$ ; confidence 0.128
251. ; $\operatorname { Var } | W ^ { a } ( t ) | \asymp \left\{ \begin{array} { l l } { t , } & { d = 1, } \\ { \frac { t ^ { 2 } } { \operatorname { log } ^ { 4 } t } , } & { d = 2, } \\ { \operatorname { tlog } t , } & { d = 3, } \\ { t , } & { d \geq 4 } \end{array} \right.$ ; confidence 0.128
252. ; $\mathcal{A} = \{ a _ { 1 } ^ { \pm 1 } , \ldots , a _ { m } ^ { \pm 1 } \}$ ; confidence 0.128
253. ; $\operatorname { lim}\operatorname { sup}_{| q | \rightarrow \infty} \sqrt[ |c _ { q } | d _ { q } ( \Omega ) ] { | q | } \leq 1$ ; confidence 0.127
254. ; $2 ^ { r(m-1) + m - 1}$ ; confidence 0.127
255. ; $\left\{ x _ { n_j } , : x _ { n_j } , \in X _ { n_j } \right\}$ ; confidence 0.127
256. ; $p _ { M } = p | _ { - k } ^ { \mathbf{v} } M - p , M \in \Gamma ,$ ; confidence 0.127
257. ; $\xi ^ {a } = I ^ { a} ( \partial _ { r } )$ ; confidence 0.127
258. ; $M _ { 0 } ( k ) = \sum _ { j = 1 } ^ { n } | b _ { j } \| z _ { j } | ^ { k }$ ; confidence 0.127
259. ; $\psi ^ { k }$ ; confidence 0.127
260. ; $f \in H _ { p } ^ { r _ { 1 } , \ldots , r _ { n } } ( M _ { 1 } , \ldots , M _ { n } ; \mathbf{R} ^ { n } )$ ; confidence 0.127
261. ; $\otimes\hat{}$ ; confidence 0.127
262. ; $\text{bDB} _ { 1 }$ ; confidence 0.127
263. ; $S_{i + 1 }\rightarrow \langle m \rangle$ ; confidence 0.127
264. ; $x _ { v , n }$ ; confidence 0.126
265. ; $\square ^ { 1 } R _ { n + 1}$ ; confidence 0.126
266. ; $i \mathfrak{h} _ { R }$ ; confidence 0.126
267. ; $L _ { a }$ ; confidence 0.126
268. ; $\mathcal{H} ^ { 1 }$ ; confidence 0.126
269. ; $H ^{\otimes n}$ ; confidence 0.126
270. ; $na$ ; confidence 0.126
271. ; $\theta _ { r }$ ; confidence 0.126
272. ; $J ^ { \circ_E } $ ; confidence 0.126
273. ; $\phi h = \sum h _{( 2 )} \phi_{ ( 2 )} \langle S h _ { ( 1 ) } , \phi _ { ( 1 ) } \rangle \langle h _ { ( 3 ) } , \phi _ { ( 3 ) } \rangle$ ; confidence 0.126
274. ; $\delta _ { ( 2 ) } < K _ { ( 2 ) } / K _ { ( 1 ) }$ ; confidence 0.126
275. ; $Y _ { \operatorname { aug } }$ ; confidence 0.125
276. ; $\| \varphi \| = \operatorname { sup } _ { | \operatorname {Im } z|< \delta } | \varphi ( z ) | e ^ { \delta | \operatorname { Re } z | }.$ ; confidence 0.125
277. ; $\left\langle G \bigcup \{ t \} : ( \operatorname { ker } ( \tau _ { G } ) ) \bigcup \left\{ t ^ { - 1 } a ^ { - 1 } t \mu ( a ) : \forall a \in A \right\} \right\rangle.$ ; confidence 0.125
278. ; $\mathsf{P} ( A _ { 1 } \bigcup \ldots \bigcup A _ { n } ) \geq S _ { 1 } - S _ { 2 } + \ldots + S _ { m - 1 } - S _ { m }$ ; confidence 0.125
279. ; $\exists \underline{x} = ( x _ { 1 } , \dots , x _ { n } ) \in \mathbf{R} ^ { n }$ ; confidence 0.125
280. ; $\mu _ { \tilde{A} \mathbf{x} } ( \mathbf{z} ) = \operatorname { sup } _ { \mathbf{z} = A \mathbf{x} } \mu _ { \tilde{A} } ( A ).$ ; confidence 0.125
281. ; $\operatorname{RM}( 2 , m )$ ; confidence 0.125
282. ; $j_ { 0 } ^ { k } ( \phi ) j_ { 0 } ^ { k } ( u ) = j _ { x } ^ { k } ( \phi \circ u ) , \quad j _ { 0 } ^ { k } ( \phi ) \in \operatorname{GL} ^ { k } ( n ) , \quad j _ { x } ^ { k } ( u ) \in M _ { k },$ ; confidence 0.124
283. ; $\operatorname{Vec}_{1}$ ; confidence 0.124
284. ; $\times e ^ { \sum ( y _ { i } - y _ { i } ^ { \prime } ) z ^ { - i } } z ^ { n - m - 1 } d z,$ ; confidence 0.124
285. ; $\operatorname {CH} ^ { p } ( X ) ^ { 0 } = \operatorname { Ker } ( \operatorname {CH} ^ { p } ( X ) \rightarrow H ^ { 2 p_{\text{B}} } ( X _ { \text{C} } , \mathbf{Q} ( p ) ) )$ ; confidence 0.124
286. ; $\overline { a }$ ; confidence 0.124
287. ; $B _ { n }$ ; confidence 0.124
288. ; $v_{1} \wedge \ldots \wedge v _ { m }$ ; confidence 0.124
289. ; $\alpha = ( a _ { 1 } , \dots , a _ { n } )$ ; confidence 0.124
290. ; $H_{*} ( X , x _ { 0 } ; G ) \overset{\approx}{\rightarrow} \prod _ { 1 } ^ { \infty } H_{*} ( X _ { i } , x _ { i 0 } ; G ).$ ; confidence 0.124
291. ; $\phi _ { n } ^ { * } ( z ) = z ^ {n } \overline { \phi _ { n } ( 1 / \overline{z} ) }$ ; confidence 0.124
292. ; $\| \Delta _ { h } ^ { k } f ^ { ( s ) } \| _ { L _ { p } ( \Omega _ { k | h | } ) } \leq M | h | ^ { r - s },$ ; confidence 0.123
293. ; $r _{V} : V \rightarrow V \otimes \underline { 1 }$ ; confidence 0.123
294. ; $A \in M _ { m \times n } ( K )$ ; confidence 0.123
295. ; $( \mathfrak { B } b ) \sim _ { l } ( \mathfrak { A } a )$ ; confidence 0.123
296. ; $\overline { \mathcal{V}_{ g , n} }$ ; confidence 0.123
297. ; $\hat { \sigma }$ ; confidence 0.123
298. ; $\overline { \sigma } = ( \sigma _ { 1 } , \ldots , \sigma _ { e } ) \in G ( K ) ^ { e }$ ; confidence 0.123
299. ; $R ^ { - \# }$ ; confidence 0.123
300. ; $L = \oplus _ { n \in \mathbf{Z} } L _ { n }$ ; confidence 0.122
Maximilian Janisch/latexlist/latex/NoNroff/74. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/74&oldid=49828