Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/NoNroff/54

From Encyclopedia of Mathematics
Jump to: navigation, search

List

1. a120160135.png ; $r _ { 12 } ( X _ { 12 } )$ ; confidence 0.576

2. k055840397.png ; $S _ { f } ( z , \overline { \rho } ) =\left. \frac { 1 - f ( z ) \overline { f ( \rho ) } } { 1 - z \overline { \rho } }\right)$ ; confidence 0.576

3. j12002089.png ; $\| Y \| _{*}$ ; confidence 0.576

4. o13003039.png ; $f _ { j k l }$ ; confidence 0.576

5. q12001035.png ; $\operatorname { lim } _ { t \rightarrow \infty } \int e ^ { i q ( f ) } d \mu _ { t } ( q ) = \int e ^ { i q ( f ) } d \mu ( q ) = : S ( f )$ ; confidence 0.576

6. b12002048.png ; $\beta _ { n }$ ; confidence 0.575

7. a1103203.png ; $u_{m}$ ; confidence 0.575

8. d11022013.png ; $\eta ( a )$ ; confidence 0.575

9. s1201603.png ; $I _ { d } ( f ) = \int _ { [ 0,1 ] ^ { d } } f ( x ) d x\; \text { or }\; I _ { d } ( f ) = f,$ ; confidence 0.575

10. d13006016.png ; $\operatorname { Pl } ( A ) = 1 - \operatorname { Bel } ( \Xi - A )$ ; confidence 0.575

11. q120070132.png ; $k \langle t ^ { i } \square_j \rangle$ ; confidence 0.575

12. q12001079.png ; $C \subset \text{q}$ ; confidence 0.575

13. s12018037.png ; $\langle x , y \rangle ^ { * } = \langle y , x \rangle$ ; confidence 0.575

14. a12002018.png ; $H : A \times \mathbf{I} \rightarrow Z$ ; confidence 0.575

15. t12002028.png ; $\mathcal{T}^{-}$ ; confidence 0.575

16. d12024033.png ; $\operatorname { dim } \mathfrak { g } - \operatorname { dim } \mathfrak { g } ( f )$ ; confidence 0.575

17. e1200902.png ; $\nabla \times H = \frac { 1 } { c } \left( \frac { \partial E } { \partial t } + J \right)$ ; confidence 0.575

18. o1200104.png ; $\operatorname { div } \mathbf{v} = \frac { f ^ { \prime } ( \theta ) } { f ( \theta ) } \left( \frac { \partial \theta } { \partial t } + \nabla \theta \cdot \mathbf{v} \right) = \alpha ( \theta ) \left( \frac { \partial \theta } { \partial t } + \nabla \theta \cdot \mathbf{v} \right),$ ; confidence 0.575

19. s13064047.png ; $\theta _ { 1 } , \dots , \theta _ { R } \in [ 0,2 \pi )$ ; confidence 0.575

20. b01681024.png ; $\epsilon_{i}$ ; confidence 0.575

21. a01212032.png ; $\tilde { G }$ ; confidence 0.574

22. e12021016.png ; $\operatorname { Sp } ( E ) \hookrightarrow \operatorname { SL } ( E ).$ ; confidence 0.574

23. a130240107.png ; $i = 1 , \dots , n$ ; confidence 0.574

24. p12012011.png ; $C$ ; confidence 0.574

25. l13006027.png ; $0 , \ldots , 2 ^ { E } - 1$ ; confidence 0.574

26. c026010543.png ; $\mathcal{F} _ { t }$ ; confidence 0.574

27. s1303707.png ; $\| x \| = \operatorname { sup } _ { 0 \leq t \leq 1} | x ( t ) |$ ; confidence 0.574

28. b120310107.png ; $\delta > | 1 / n p - 1 / 2 n | - 1 / 2$ ; confidence 0.574

29. a12022041.png ; $r _ { ess } ( S ) \leq r _ { ess } ( T )$ ; confidence 0.574

30. f041060146.png ; $\lambda = ( \lambda _ { 1 } , \ldots , \lambda _ { n } )$ ; confidence 0.574

31. t12001014.png ; $\xi $ ; confidence 0.574

32. a12011035.png ; $\alpha ( m , n ) = \operatorname { min } \{ r \geq 1 : T ( r , 4 \lceil m / n ] ) > \operatorname { log } _ { 2 } n \}$ ; confidence 0.574

33. l12013056.png ; $V ( \tilde{\mathbf{Z}} ) \neq \emptyset$ ; confidence 0.574

34. t120140160.png ; $\Phi = \Psi _ { 2 } ^ { * } \wedge \Psi _ { 1 },$ ; confidence 0.574

35. f04125056.png ; $\xi_2$ ; confidence 0.574

36. v096900169.png ; $g \in H$ ; confidence 0.574

37. c1302109.png ; $( a | b ) | ( c | d ) = ( a | c ) | ( b | d )$ ; confidence 0.574

38. o12002014.png ; $L _ { 2 } ( \mathbf{R} _ { + } ; x ^ { - 1 } ( 1 + x ) ^ { c - 2 a } )$ ; confidence 0.574

39. a12013032.png ; $P _ { \theta _ { n } } ( X _ { n - 1 } , d x )$ ; confidence 0.574

40. e120020107.png ; $Y \ncong Z$ ; confidence 0.574

41. k13007058.png ; $k = O ( 1 )$ ; confidence 0.573

42. b11022035.png ; $M ^ { \vee }$ ; confidence 0.573

43. s13051022.png ; $b _ { i } \in \mathbf{Z} ^ { 0 }$ ; confidence 0.573

44. c12018094.png ; $W ( g ) \in \otimes ^ { 4 } \mathcal{E}$ ; confidence 0.573

45. q130050107.png ; $h \in \operatorname{QS} ( \mathbf{T} , \mathbf{C} )$ ; confidence 0.573

46. a12015066.png ; $G = \operatorname{GL} ( n , \mathbf{C} )$ ; confidence 0.573

47. b12050017.png ; $M _ { t }$ ; confidence 0.573

48. n12011023.png ; $x _ { 1 } ^ { * } , \ldots , x _ { n } ^ { * }$ ; confidence 0.573

49. g1200301.png ; $\int _ { a } ^ { b } p ( x ) f ( x ) d x \approx Q _ { 2 n + 1 } ^ { G K } [ f ] =$ ; confidence 0.573

50. o1300206.png ; $2r_2$ ; confidence 0.573

51. a01198074.png ; $G = \mathbf{R} ^ { n }$ ; confidence 0.573

52. h13007011.png ; $a _ { i j } \in R$ ; confidence 0.573

53. t12014047.png ; $\operatorname{Ker} T _ { \phi } = \{ 0 \}$ ; confidence 0.573

54. t12006057.png ; $E ^ { \text{TF} } ( N ) = E ^ { \text{TF} } ( Z )$ ; confidence 0.573

55. a12027060.png ; $E / K$ ; confidence 0.573

56. f12024074.png ; $\overline { t _ { 0 } } = t _ { 0 }$ ; confidence 0.573

57. b12009083.png ; $r \rightarrow 1$ ; confidence 0.573

58. w120110260.png ; $H ( 1 , G ) = L ^ { 2 } ( \mathbf{R} ^ { n } )$ ; confidence 0.572

59. s120040105.png ; $\chi \in R ^ { x }$ ; confidence 0.572

60. e12012074.png ; $L ( \mu , \Sigma | Y _ { \text{aug} } )$ ; confidence 0.572

61. z12001061.png ; $e _ { p - 2}$ ; confidence 0.572

62. l11001080.png ; $x \preceq y \Rightarrow y - x \in P$ ; confidence 0.572

63. a12006041.png ; $u = u ( t )$ ; confidence 0.572

64. b12032011.png ; $\| x + y \| _ { p } = \| u + v \| _ { p }$ ; confidence 0.572

65. m12027025.png ; $f _ { j } = z _ { j } ^ { k _ { j } } + P _ { j } ( z ) , \quad j = 1 , \dots , n,$ ; confidence 0.572

66. q12005018.png ; $D ^ { 2 } f ( x ^ { k } ) \cdot d = - D ^ { T } f ( x ^ { k } )$ ; confidence 0.572

67. f1201609.png ; $\chi _ { T } = \operatorname { dim } \operatorname { ker } T - \operatorname { dim } \text { coker } T;$ ; confidence 0.572

68. s130540122.png ; $= y ( - b ( 1 + a b ) ^ { - 1 } ) x ( a ) y ( b ) x ( - ( 1 + a b ) ^ { - 1 } a ) h ( 1 + a b ) ^ { - 1 }$ ; confidence 0.572

69. b12034063.png ; $\sum _ { k = 0 } ^ { \infty } | c _ { k } z ^ { k } | < 2 f ( 0 )$ ; confidence 0.572

70. e1201509.png ; $g ^ { i }$ ; confidence 0.572

71. m12007022.png ; $\| P \| _ { \infty } = \operatorname { max } _ { | z | = 1 } | P ( z ) |$ ; confidence 0.572

72. k055840159.png ; $z _ { 0 } \neq \overline{z} _ { 0 }$ ; confidence 0.572

73. q12005035.png ; $\langle x , y \rangle _ { R } = x ^ { T } R y$ ; confidence 0.572

74. h11001017.png ; $S _ { f } ( a ) = \sum _ { p } 1 / p \cdot ( 1 - \operatorname { Re } ( f ( p ) p ^ { - i a } ) )$ ; confidence 0.571

75. i13009092.png ; $\operatorname {Coker} \varphi$ ; confidence 0.571

76. f13007035.png ; $F ^ { k / l } ( 2 , m ) =$ ; confidence 0.571

77. h1200306.png ; $v _ { g }$ ; confidence 0.571

78. a1200307.png ; $( - 1 ) ^ { n } f ^ { ( n ) } ( x ) \geq 0 \text { on } I.$ ; confidence 0.571

79. c12004053.png ; $\operatorname {CF}$ ; confidence 0.571

80. p120170111.png ; $V$ ; confidence 0.571

81. c12004044.png ; $w \in C _ { \zeta } ^ { 1 } ( \Gamma )$ ; confidence 0.571

82. a12018056.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { S _ { n + 1 } - S } { S _ { n } - S } = \lambda,$ ; confidence 0.571

83. c12019019.png ; $\operatorname {ind}( D ) \in K _ { 0 } ^ { \text{alg} } ( \mathcal{C} _ { 1 } \bigotimes \mathbf{C} [ \Gamma ] ),$ ; confidence 0.571

84. e13007044.png ; $\left| \sum _ { M < n \leq M + N } e ^ { 2 \pi i f ( n ) } \right| ^ { 2 } \ll$ ; confidence 0.571

85. b12040071.png ; $\mathfrak { h } _ { R } \rightarrow \mathfrak { h } _ { R } ^ { * } : = \operatorname { hom } _ { \mathbf{R} } ( \mathfrak { h } _ { R } , \mathbf{R} )$ ; confidence 0.571

86. a13013066.png ; $s$ ; confidence 0.571

87. w13004043.png ; $K = - \left( \frac { 4 | d g | } { ( 1 + | g | ^ { 2 } ) ^ { 2 } | \eta | } \right) ^ { 2 }.$ ; confidence 0.571

88. b11066040.png ; $\| T _ { 1 } + i t ( f ) \| _ { * } \leq C \| f \| _ { \infty }$ ; confidence 0.571

89. q12008040.png ; $\mathsf{E} [ W _ { p } ] = \infty$ ; confidence 0.571

90. q120070118.png ; $S d = a , S a = d , S b = - q b , S c = - q ^ { - 1 } c$ ; confidence 0.571

91. c12021017.png ; $\operatorname {sup}$ ; confidence 0.571

92. s13036032.png ; $Y _ { t } = Y _ { 0 } + B _ { t } + \int _ { 0 } ^ { t } \mathbf{n} ( Y _ { s } ) d \text{l} _ { s } ,\; t \geq 0,$ ; confidence 0.571

93. w120110171.png ; $\{ a _ { m } = 0 , d a _ { m } = 0 \}$ ; confidence 0.571

94. g12005026.png ; $( k _ { c } , R _ { c } )$ ; confidence 0.571

95. d12005039.png ; $f ( x ) = \left\{ \begin{array} { l l } { \operatorname { sin } \frac { 1 } { x } , } & { x \neq 0, } \\ { a , } & { x = 0, } \end{array} \right.$ ; confidence 0.571

96. m1200704.png ; $\operatorname { log } | P ( x _ { 1 } , \dots , x _ { n } ) |$ ; confidence 0.570

97. o13003036.png ; $j = 1 , \dots , 8$ ; confidence 0.570

98. m13022015.png ; $G _ { g } \leq \operatorname {SL} _ { 2 } ( \mathbf{R} )$ ; confidence 0.570

99. g13001055.png ; $B = ( \beta _ { 0 } , \dots , \beta _ { n - 1 } )$ ; confidence 0.570

100. a13013059.png ; $c$ ; confidence 0.570

101. a13032033.png ; $H _ { 1 }$ ; confidence 0.570

102. i13005011.png ; $k_ j > 0$ ; confidence 0.570

103. a12012037.png ; $A v$ ; confidence 0.570

104. c13008014.png ; $N ( \mathfrak{p} )$ ; confidence 0.570

105. n12011015.png ; $B _ { \alpha } = \{ x \in \mathbf{R} : \xi ( x ) \geq \alpha \}$ ; confidence 0.570

106. f12021073.png ; $l = 0$ ; confidence 0.569

107. t13005038.png ; $\operatorname { Ran } D _ { A } = \operatorname { Ker } D_ { A } $ ; confidence 0.569

108. s1306409.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { \operatorname { det } T _ { n } ( a ) } { \operatorname { det } T _ { n - 1 } ( a ) } = G ( a ),$ ; confidence 0.569

109. b13012025.png ; $\lambda ( x ) = \int _ { \mathbf{R} } e ^ { - i x t } d \mu ( t ),$ ; confidence 0.569

110. f110160106.png ; $S = \{ \phi _ { 1 } , \dots , \phi _ { m } \}$ ; confidence 0.569

111. c12002061.png ; $\mu_{ \gamma , t}$ ; confidence 0.569

112. h1300208.png ; $w ^ { l } = ( w _ { 1 } ^ { l } , \dots , w _ { n } ^ { l } )$ ; confidence 0.569

113. p12015029.png ; $r_{1} / r _ { 2 } \notin Z _ { n }$ ; confidence 0.569

114. b110100121.png ; $\operatorname {SL} _ { n }$ ; confidence 0.569

115. c13010016.png ; $0 < a _ { 1 } < \ldots < a _ { n }$ ; confidence 0.569

116. r13007029.png ; $\lambda_j > 0$ ; confidence 0.569

117. i13002023.png ; $\mathsf{P} ( A _ { 1 } \bigcap \ldots \bigcap A _ { n } ) = \sum _ { k = 1 } ^ { n } ( - 1 ) ^ { k - 1 } \frac { 1 } { k ! }.$ ; confidence 0.569

118. b12052076.png ; $w _ { n } = \frac { B _ { n } ^ { - 1 } u _ { n } } { 1 + v _ { n } ^ { T } B _ { n } ^ { - 1 } u _ { n } },$ ; confidence 0.569

119. i130090109.png ; $\mu _ { p } ( K / k ) \geq 0$ ; confidence 0.569

120. k12008036.png ; $\lambda ( p ) = \{ \lambda ( p _ { 0 } ) , \ldots , \lambda ( p _ { m } ) \}$ ; confidence 0.569

121. r13014022.png ; $\operatorname { lim } _ { n \rightarrow \infty } \| T ^ { n } \| ^ { 1 / n } = 0$ ; confidence 0.569

122. k11001070.png ; $\mathbf{R} ^ { 2 n + 2 }$ ; confidence 0.569

123. z130100102.png ; $\forall v \exists u ( \forall w \varphi \leftrightarrow u = w )$ ; confidence 0.569

124. f04049020.png ; $B _ { l_{1} , l _ { 2 } } ( x )$ ; confidence 0.569

125. b13002011.png ; $J ^ { \prime }$ ; confidence 0.569

126. b12050013.png ; $W ^ { o } : = \{ M _ { t } - W _ { t } : t \geq 0 \}$ ; confidence 0.569

127. m06536024.png ; $i,j = 1 , \dots , k$ ; confidence 0.568

128. a11066072.png ; $\text{l} ^ { \infty }$ ; confidence 0.568

129. d03029012.png ; $i = 0 , \dots , n + 1$ ; confidence 0.568

130. q12007025.png ; $\mathbf{Z} _ { q , n }$ ; confidence 0.568

131. b120400120.png ; $p \in \mathfrak{h} _ { R } ^ { * } \subset \mathfrak{h} ^ { * }$ ; confidence 0.568

132. t120070158.png ; $a _ { 1 } ( g )$ ; confidence 0.568

133. a12015036.png ; $\operatorname {ad} ( \mathfrak{g} ) = \{ 0 \}$ ; confidence 0.568

134. a13023028.png ; $f _ { l } = ( P _ { n } \ldots P _ { 1 } ) ^ { \text{l} } f$ ; confidence 0.568

135. k055840298.png ; $\mathcal{K} _ { 1 }$ ; confidence 0.568

136. f12021062.png ; $\lambda _ { 1 } - \lambda _ { i } , \ldots , \lambda _ { i - 1 } - \lambda _ { i }$ ; confidence 0.568

137. d12012023.png ; $F : \mathcal{C} \rightarrow \mathcal{C} ^ { \prime }$ ; confidence 0.568

138. z13013029.png ; $r < r_{0}$ ; confidence 0.568

139. a01197057.png ; $k = 1,2 , \dots ,$ ; confidence 0.568

140. h13012022.png ; $a ( x ) = \operatorname { lim } _ { n \rightarrow \infty } 2 ^ { - n } f ( 2 ^ { n } x ).$ ; confidence 0.568

141. r13007057.png ; $v \in H _ { 0 }$ ; confidence 0.568

142. d12011025.png ; $\| - x \| = \| x \| , \| x + y \| \leq \| x \| + \| y \|,$ ; confidence 0.567

143. h1300301.png ; $H = ( h _ { i , j} )$ ; confidence 0.567

144. o12001033.png ; $\left\{ \begin{array} { l } { \operatorname { Re } ( \nabla p _ { 0 } + \mathbf{b} ) = 0, } \\ { \Lambda _ { 1 } C ( \theta _ { r } ) \left( \frac { \partial \theta _ { 0 } } { \partial t } + \nabla \theta _ { 0 } \cdot \mathbf{v} _ { 0 } \right) = \Delta \theta _ { 0 }, } \\ { \operatorname { div } \mathbf{v} _ { 0 } = 0. } \end{array} \right.$ ; confidence 0.567

145. b130200141.png ; $0 \neq a \in G _ { i }$ ; confidence 0.567

146. t13021044.png ; $2 ^ { \alpha }$ ; confidence 0.567

147. b13020095.png ; $\operatorname { dim } \mathfrak { g } ^ { \pm \alpha _ { i }} = 1$ ; confidence 0.567

148. n067520376.png ; $Y \equiv ( y _ { 1 } , \dots , y _ { n } ) = 0$ ; confidence 0.567

149. z13011031.png ; $k f _{( k , n )} \approx \mu _ { n } ,\; k = 1,2 , \ldots,$ ; confidence 0.567

150. d13017039.png ; $\lambda _ { k } \geq \frac { 4 \pi k } { A }\; \text { for } k = 1,2 , \ldots,$ ; confidence 0.567

151. f120110174.png ; $\text{SS} \ f$ ; confidence 0.567

152. z130110132.png ; $\frac { \mu _ { N } ( x ) } { M } \stackrel { \mathsf{P} } { \rightarrow } \int _ { 0 } ^ { 1 } u ( 1 - u ) ^ { x - 1 } F ( d x ).$ ; confidence 0.567

153. b1200203.png ; $\Gamma _ { n } ( t ) = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } 1 _ { [ 0 , t ] } ( U _ { i } )$ ; confidence 0.567

154. b12055049.png ; $\iota ( M )$ ; confidence 0.567

155. w130080107.png ; $\infty_{\pm}$ ; confidence 0.567

156. b12002039.png ; $\beta _ { n , F } = f \circ Q n ^ { 1 / 2 } ( Q _ { n } - Q )$ ; confidence 0.567

157. w12021054.png ; $i = 1 , \dots , 8$ ; confidence 0.567

158. c13008021.png ; $\sigma _ { \mathfrak{P} }$ ; confidence 0.567

159. a120280148.png ; $E \subseteq \hat { G }$ ; confidence 0.567

160. r08232074.png ; $a = d + e$ ; confidence 0.567

161. b1200201.png ; $U _ { 1 } , \dots , U _ { n } , \dots$ ; confidence 0.567

162. i120080137.png ; $\{ S _ { 1 } , \ldots , S _ { N } \}$ ; confidence 0.566

163. c12017040.png ; $K = \mathbf{R} ^ { n }$ ; confidence 0.566

164. a01406027.png ; $\phi_{0}$ ; confidence 0.566

165. b13020015.png ; $[ h _ { i } e _ { j } ] = a _ { ij } e _ { j }$ ; confidence 0.566

166. t13007025.png ; $( K x ) ( t ) : = \frac { 1 } { 2 \pi } \text{P} \cdot \text{V} \cdot \int _ { 0 } ^ { 2 \pi } x ( s ) \operatorname { cot } \frac { t - s } { 2 } d s \ (a.e.) .$ ; confidence 0.566

167. a120280142.png ; $S _ { E }$ ; confidence 0.566

168. d120020167.png ; $\tilde{u} _ { 1 } \geq 0$ ; confidence 0.566

169. b11039025.png ; $\gamma _ { j k } ^ { i }$ ; confidence 0.566

170. t12020059.png ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k = 1 , \ldots , n } \frac { | s _ { k } | } { M _ { 1 } ( k ) } = 1$ ; confidence 0.566

171. i12008073.png ; $= \sum _ { S _ { 1 } = \pm 1 } \ldots \sum _ { S _ { N } = \pm 1 } \prod _ { i = 1 } ^ { N } \langle S _ { i } | \mathcal{P} | S _ { i+ 1 } \rangle$ ; confidence 0.566

172. c12030025.png ; $\square ^ { 0 } \mathcal{O} _ { \mathcal{H} } ^ { ( k ) }$ ; confidence 0.566

173. b12003027.png ; $\{ g _ { n , m} : n , m \in \mathbf{Z} \}$ ; confidence 0.566

174. b12052021.png ; $\| x _ { n + 1} - x ^ { * } \| = O ( \| x _ { n } - x ^ { * } \| ^ { 2 } ),$ ; confidence 0.566

175. a0122105.png ; $x = ( x _ { 1 } , \ldots , x _ { n } )$ ; confidence 0.566

176. y120010128.png ; $\widetilde { A ( R )}$ ; confidence 0.566

177. v13007057.png ; $k = \frac { \gamma b ^ { 2 } \pi ^ { 2 } } { 12 \mu U a ^ { 2 } ( 1 - \lambda ) ^ { 2 } }.$ ; confidence 0.566

178. o07010011.png ; $x ^ { - 1 } P x \subseteq P$ ; confidence 0.565

179. a130040567.png ; $\Lambda _ { \mathcal{D}} \operatorname { Thm } \mathcal{D}$ ; confidence 0.565

180. e13006049.png ; $\mathcal{C} ( Y , \hat{X} )$ ; confidence 0.565

181. d12006010.png ; $u_m ( x , t )$ ; confidence 0.565

182. c12002038.png ; $A ^ { 0 } = I$ ; confidence 0.565

183. d130080146.png ; $\{ F ^ { n } \}$ ; confidence 0.565

184. p1201408.png ; $N ( x ) = \lfloor x + 1 / 2 \rfloor$ ; confidence 0.565

185. i13009036.png ; $2 r_ 2 ( k )$ ; confidence 0.565

186. d13011024.png ; $S ^ { - 1 }$ ; confidence 0.565

187. a130240481.png ; $n _ { 1 } + 1 , \ldots , n _ { 1 } + n _ { 2 }$ ; confidence 0.565

188. t12003026.png ; $\Phi _ { 2 } = \pm \Phi _ { 1 } + \text{const}$ ; confidence 0.565

189. q13004022.png ; $K_{\text{O}} ( f )$ ; confidence 0.565

190. a12006023.png ; $u = ( u _ { 1 } , \ldots , u _ { p } )$ ; confidence 0.565

191. o12001018.png ; $Re = \frac { \rho L U } { \mu } , \quad \varepsilon = U ( \frac { \rho } { g \mu } ) ^ { 1 / 3 },$ ; confidence 0.565

192. n1201107.png ; $I_{ \{ x \} } ( \cdot )$ ; confidence 0.565

193. s12027030.png ; $R _ { l } ^ { B }$ ; confidence 0.564

194. a12020057.png ; $\sum _ { j = 1 } ^ { n } P _ { j } = I$ ; confidence 0.564

195. b12049052.png ; $E \in \mathcal{A}$ ; confidence 0.564

196. a01018054.png ; $s = 1$ ; confidence 0.564

197. s13049047.png ; $i = 0 , \ldots , h$ ; confidence 0.564

198. c130160143.png ; $\text{ATIMEALT} [ t ( n ) , a ( n )]$ ; confidence 0.564

199. o130010122.png ; $\overline { H } ^ { 1 } ( D )$ ; confidence 0.564

200. c130070103.png ; $\leq d$ ; confidence 0.564

201. b13020082.png ; $\text{degree}- \alpha_{i}$ ; confidence 0.564

202. c120080100.png ; $T _ { 10 } = \left[ \begin{array} { c c } { A _ { 1 } } & { A _ { 2 } } \\ { 0 } & { 0 } \end{array} \right] ,\; T _ { 01 } = \left[ \begin{array} { c c } { 0 } & { 0 } \\ { A _ { 3 } } & { A _ { 4 } } \end{array} \right].$ ; confidence 0.564

203. f12005048.png ; $q \geq 4$ ; confidence 0.564

204. m13020019.png ; $\alpha ^ { \prime } : \mathfrak { g } \rightarrow \mathfrak { X } ( M , \omega )$ ; confidence 0.564

205. w13007019.png ; $S _ { \lambda } = e ^ { \lambda + \rho } \sum _ { \gamma } ( - 1 ) ^ { | \gamma | } e ^ { - \gamma }$ ; confidence 0.564

206. w120110221.png ; $\operatorname { sup } _ { X \in \Phi } \| a ^ { ( k ) } ( X ) \| _ { G _ { X } } m ( X ) ^ { - 1 } < \infty.$ ; confidence 0.564

207. w120110126.png ; $\operatorname {Op} ( a ) \operatorname {Op} ( b ) = \operatorname {Op} ( a \circ b )$ ; confidence 0.564

208. b130290189.png ; $R = \oplus _ { n \geq 0} R _ { n }$ ; confidence 0.563

209. o13005066.png ; $U = \left( \begin{array} { c c } { T } & { F } \\ { G } & { H } \end{array} \right)$ ; confidence 0.563

210. a130240280.png ; $\hat { \sigma }_{ \hat { \psi }} = \| \mathbf{d} \| ( \text{MS} _ { e } ) ^ { 1 / 2 }$ ; confidence 0.563

211. w120110160.png ; $a = a _ { m } + a _ { m - 1 } + r _ { m - 2 },$ ; confidence 0.563

212. a110040188.png ; $D_i$ ; confidence 0.563

213. a110010277.png ; $C$ ; confidence 0.563

214. a130040606.png ; $\mathfrak { M } \models _ { \mathcal{S} _ { P }} \varphi$ ; confidence 0.563

215. b13019017.png ; $y _ { 1 } ( a / q ) = - \overline { a } / q$ ; confidence 0.563

216. a130040711.png ; $X ^ { \omega }$ ; confidence 0.563

217. l1201702.png ; $\tilde { K } ^ { 2 }$ ; confidence 0.563

218. w120110163.png ; $a _ { j } ( x , \lambda \xi ) = \lambda ^ { j } a _ { j } ( x , \xi ) , \text { for } | \xi | \geq 1 , \lambda \geq 1,$ ; confidence 0.563

219. i13007048.png ; $\alpha _ { 0 } \in S ^ { 2 }$ ; confidence 0.563

220. a13022061.png ; $S _ { C }$ ; confidence 0.563

221. e120010127.png ; $d : B \rightarrow A$ ; confidence 0.563

222. z13007064.png ; $U ^ { 6 } = I$ ; confidence 0.563

223. s13013037.png ; $\mathbf{Q} ( \chi )$ ; confidence 0.563

224. w130080187.png ; $i = 1 , \dots , M = ( N ^ { 2 } - 1 ) ( g - 1 )$ ; confidence 0.563

225. p13010040.png ; $\hat { K } = \mathbf{C} \backslash \Omega _ { \infty }$ ; confidence 0.562

226. z1300108.png ; $\{ a ^ { n } \}$ ; confidence 0.562

227. t130130115.png ; $[ \cdot ]$ ; confidence 0.562

228. a120050112.png ; $v \in Y$ ; confidence 0.562

229. l06003051.png ; $a \| b$ ; confidence 0.562

230. d03006016.png ; $\{ | x - x_{ 0} | < a T \}$ ; confidence 0.562

231. f13001024.png ; $( f _ { 1 } , f _ { 2 } , \ldots )$ ; confidence 0.562

232. t1201306.png ; $\frac { \partial M } { \partial y _ { n } } = - M ( \Lambda ^ { t } ) ^ { n },$ ; confidence 0.562

233. a130240393.png ; $\operatorname { tr } ( \mathbf{M} _ { \mathcal{H} } ( \mathbf{M} _ { H } + \mathbf{M} _ { \mathsf{E} } ) ^ { - 1 } ) > \text{const}$ ; confidence 0.562

234. n12002061.png ; $\overline{X} _ { n } \in M _ { F }$ ; confidence 0.562

235. a01419073.png ; $v _ { t }$ ; confidence 0.562

236. t120010140.png ; $\geq 7$ ; confidence 0.562

237. l120120134.png ; $M = M ^ { \prime } \cap K _ { \operatorname { tot } S }$ ; confidence 0.562

238. m12012061.png ; $R = F \langle x , y \rangle$ ; confidence 0.562

239. b13028057.png ; $( \mathbf{Z} / 2 ) ^ { k }$ ; confidence 0.562

240. b120150140.png ; $i \in \{ 1 , \ldots , m \} \backslash \{ j \}$ ; confidence 0.562

241. e120120109.png ; $t = 0,1 , \ldots$ ; confidence 0.562

242. v12004026.png ; $r \geq n$ ; confidence 0.561

243. a12002019.png ; $H _ { 0 }$ ; confidence 0.561

244. s13065028.png ; $\{ \Phi _ { k } \} _ { k = 0 } ^ { \infty }$ ; confidence 0.561

245. k13005025.png ; $\frac { \text{Ma} } { \text{Re} } = \frac { u / c } { u l / \nu } = \frac { 1 } { c } \frac { \nu } { \lambda },$ ; confidence 0.561

246. w120110179.png ; $b ^ { s } _{m - 1}$ ; confidence 0.561

247. t130140164.png ; $q _ { \Lambda } : \mathbf{Z} ^ { n } \rightarrow \mathbf{Z}$ ; confidence 0.561

248. a12024056.png ; $\omega ^ { 2 }$ ; confidence 0.561

249. l057000186.png ; $\lambda x \cdot f ( x ) = \{ ( b , \beta ) : b \in f ( \beta ) \} \in D _ { A }$ ; confidence 0.561

250. f130290112.png ; $L ^ { X }$ ; confidence 0.561

251. a12017024.png ; $\int _ { 0 } ^ { + \infty } e ^ { - \lambda a } \beta ( a ) \Pi ( a ) d a = 1,$ ; confidence 0.561

252. d120020135.png ; $\lambda_{l}$ ; confidence 0.561

253. a130050200.png ; $\mathbf{p} ( n )$ ; confidence 0.561

254. b12043071.png ; $\operatorname {GL} _ { q } ( 2 )$ ; confidence 0.561

255. p1201409.png ; $E ( 3,5 ) = \{ 3,5,8,13 , \dots \}$ ; confidence 0.560

256. b12014035.png ; $a ( z ) , b ( z ) \in \mathbf{F} _ { q } [ z ]$ ; confidence 0.560

257. c12017075.png ; $p , q \in P _ { n }$ ; confidence 0.560

258. w13017040.png ; $H _ { y } ( t )$ ; confidence 0.560

259. b12043015.png ; $c , d \in C$ ; confidence 0.560

260. c1302507.png ; $u _ { k } ( t ) = \alpha ( t ) e ^ { z _ { k } ^ { T } ( t ) \beta }.$ ; confidence 0.560

261. j13002024.png ; $\Delta = o ( \lambda )$ ; confidence 0.560

262. r13013032.png ; $P _ { \sigma } + P _ { \tau } =\operatorname {id}$ ; confidence 0.560

263. s12022029.png ; $\operatorname { spec } ( M , \Delta )$ ; confidence 0.560

264. n067520249.png ; $\overline { b }_j$ ; confidence 0.560

265. z13002024.png ; $\overline { f } _{-\text{ap}} = - \infty$ ; confidence 0.560

266. w13009051.png ; $f \in H ^ { \hat{\otimes} n }$ ; confidence 0.560

267. b12009051.png ; $w ^ { \frac { m } { 1 + a i } } =$ ; confidence 0.560

268. a011600190.png ; $H _ { f }$ ; confidence 0.560

269. z13011014.png ; $260,430$ ; confidence 0.560

270. f120110136.png ; $\operatorname { supp } f _ { \Delta _ { k } } \subset - \Delta _ { k } ^ { \circ }$ ; confidence 0.560

271. k12002010.png ; $c _ { 1 } ( M ) _ { \mathbf{R} } < 0$ ; confidence 0.560

272. b130120107.png ; $\omega ( f ^ { \prime } ; t ) _ { \infty } = O \left( \left( \operatorname { ln } \frac { 1 } { t } \right) ^ { - 1 / 2 } \right).$ ; confidence 0.560

273. s13048019.png ; $R _ { m } \subset J ^ { m } ( \alpha )$ ; confidence 0.560

274. n06752033.png ; $N \in M _ { m \times n } ( K )$ ; confidence 0.560

275. v096900232.png ; $\mathbf{III} _ { 0 }$ ; confidence 0.560

276. c120210115.png ; $P _ { n , \theta }$ ; confidence 0.560

277. a130240337.png ; $\mathbf{F}$ ; confidence 0.560

278. d1201103.png ; $f : \mathcal{S} \rightarrow [ 0 , + \infty )$ ; confidence 0.560

279. a13008069.png ; $\pm$ ; confidence 0.560

280. a1100202.png ; $v$ ; confidence 0.560

281. t13014040.png ; $\tilde{\mathbf{E}} _ { 7 }$ ; confidence 0.560

282. a130060114.png ; $P ^ { \# } ( n ) \sim C q ^ { n } n ^ { - \alpha } \;\text { as } n \rightarrow \infty.$ ; confidence 0.559

283. p07452012.png ; $P \subset R$ ; confidence 0.559

284. e120240134.png ; $\operatorname { deg } \phi$ ; confidence 0.559

285. b12005055.png ; $\mathcal{A} = \mathcal{H} _ { uc } ^ { \infty } ( B _ { E } )$ ; confidence 0.559

286. e12016017.png ; $R_{h}$ ; confidence 0.559

287. a130040509.png ; $\mathbf{A}$ ; confidence 0.559

288. w1301701.png ; $\{ x _ { t } : t \in \mathbf{Z} \}$ ; confidence 0.559

289. a12031081.png ; $\{ z \in A : z a = a z \text { for each } a \in A \}$ ; confidence 0.559

290. b12040093.png ; $\check{R} : G \rightarrow V ^ { * }$ ; confidence 0.559

291. a130070137.png ; $S _ { n }$ ; confidence 0.559

292. t12003042.png ; $\psi = \Psi ^ { \prime 2}$ ; confidence 0.559

293. m13022062.png ; $Z ( e , h ; z ) = T _ { h } ( z )$ ; confidence 0.559

294. s1202902.png ; $\sum x _ { k }$ ; confidence 0.559

295. s13064010.png ; $G ( a ) = \operatorname { exp } ( [ \operatorname { log } a ] _ { 0 } )$ ; confidence 0.559

296. e12011022.png ; $\mathbf{P} = \mathbf{M} = \mathbf{J} = 0$ ; confidence 0.559

297. c12016047.png ; $\operatorname {rank} ( A ) = r$ ; confidence 0.559

298. c12026056.png ; $( \mathcal{L} _ { h k } V ) _ { j } ^ { n + 1 } \leq 0,1 \leq j \leq J - 1,0 \leq n \leq N - 1,$ ; confidence 0.559

299. i13005010.png ; $1 \leq j \leq J$ ; confidence 0.559

300. i13007059.png ; $\mathbf{R} _ { - } ^ { 3 } : = \{ x : x _ { 3 } < 0 \}$ ; confidence 0.559

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/54. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/54&oldid=49729