Namespaces
Variants
Actions

Object in a category

From Encyclopedia of Mathematics
Revision as of 17:06, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

A term used to denote elements of an arbitrary category, playing the role of sets, groups, topological spaces, etc. An object in a category is an undefined concept. Every category consists of elements of two classes, the class of objects and the class of morphisms. The class of objects of a category is usually denoted by . With any object of there is associated a unique identity morphism , so that different identity morphisms correspond to different objects. Hence the concept of a category can be formally defined by means of morphisms alone. However, the term "object in a category" is a linguistic convenience which is practically always used. The division of the elements of a category into objects and morphisms is only meaningful within a fixed category, since the objects of one category can be the morphisms of another. Thanks to the presence of morphisms, interrelations can be defined between the objects of a category, allowing one to single out special classes of objects (cf. Integral object of a category; Null object of a category; Small object; Projective object of a category; Injective object; etc.).


Comments

Cf. also Generator of a category.

How to Cite This Entry:
Object in a category. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Object_in_a_category&oldid=48035
This article was adapted from an original article by M.Sh. Tsalenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article