Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/NoNroff/48

From Encyclopedia of Mathematics
Jump to: navigation, search

List

1. i12010028.png ; $\{ \pm i C ( t ) , 0 , \ldots , 0 \}$ ; confidence 0.678

2. c13007039.png ; $( n - 1 ) ( n - 2 ) / 2$ ; confidence 0.678

3. c130160111.png ; $\operatorname{NL}$ ; confidence 0.678

4. a1104601.png ; $\overset{\rightharpoonup} { B }$ ; confidence 0.678

5. a01149054.png ; $x _ { 2 }$ ; confidence 0.678

6. m12003037.png ; $\operatorname { IF } ( x ; T , F _ { \theta } ) = \frac { \Psi ( x , \theta ) } { \int \frac { \partial } { \partial \theta } \Psi ( y , \theta ) d F _ { \theta } ( y ) }.$ ; confidence 0.678

7. d13017054.png ; $\sum _ { k = 1 } ^ { \infty } e ^ { - \lambda _ { k } t } \approx \frac { A } { 4 \pi t } + \frac { L } { 8 \sqrt { \pi } t } + \frac { 1 } { 6 } ( 1 - r ) + O ( t ),$ ; confidence 0.678

8. l1201505.png ; $[ a , [ b , c ] ] = [ [ a , b ] , c ] + [ b , [ a , c ] ],$ ; confidence 0.678

9. m13014067.png ; $\int u ( x + r t ) d \mu ( t ) = 0 , \quad x \in \mathbf{R} ^ { n } , r \in \mathbf{R} ^ { + },$ ; confidence 0.678

10. t12014048.png ; $\operatorname { Ker } T _ { \phi } ^ { * } = \{ 0 \}$ ; confidence 0.678

11. j13003034.png ; $\| a \square a ^ { * } \| = \| a \| ^ { 2 }$ ; confidence 0.678

12. a01301024.png ; $t _ { 1 } , \ldots , t _ { m }$ ; confidence 0.678

13. m12027019.png ; $d f = d f _ { 1 } \wedge \ldots \wedge d f _ { n }$ ; confidence 0.678

14. m13011020.png ; $D f / D t$ ; confidence 0.678

15. f12024048.png ; $\dot { x } ( t ) = f ( t , x _ { t } ).$ ; confidence 0.678

16. a1201701.png ; $p ( a , t )$ ; confidence 0.678

17. m13011092.png ; $\mathbf{x} ^ { 0 }$ ; confidence 0.678

18. a11006015.png ; $\mathsf{P}$ ; confidence 0.678

19. s130620152.png ; $q _ { 1 } ( x ) \rightarrow 0$ ; confidence 0.677

20. q13002050.png ; $\hat { f } | x , 1 , w \rangle \rightarrow | x , 1 - f ( x ) , w \rangle$ ; confidence 0.677

21. b13029091.png ; $\{ h _ { i } \} _ { 0 \leq i \leq d - 1 }$ ; confidence 0.677

22. a130040314.png ; $\epsilon _ { i , j } ^ { \mathbf{A} } ( a , b , c , d ) = h ( \epsilon _ { i , j } ( x , y , z , w ) )$ ; confidence 0.677

23. j120020127.png ; $H _ { 0 } ^ { 1 }$ ; confidence 0.677

24. m12003065.png ; $\hat { \theta } = T _ { n }$ ; confidence 0.677

25. d11008029.png ; $K v$ ; confidence 0.677

26. b0167402.png ; $U _ { 2 }$ ; confidence 0.677

27. d12030041.png ; $\frac { d \mu _ { Y } } { d \mu _ { Z } } = \mathsf{E} _ { \mu _ { X } } [ \psi ( T ) ],$ ; confidence 0.677

28. b13010047.png ; $\tilde { \varphi } ( z ) = ( 1 - | z | ^ { 2 } ) ^ { 2 } \int _ { D } \frac { \varphi ( w ) } { | 1 - z w | ^ { 4 } } d A ( w ).$ ; confidence 0.677

29. a01139019.png ; $\hat{\mu}$ ; confidence 0.677

30. f12019095.png ; $K [ N ]$ ; confidence 0.677

31. f0404906.png ; $\times \,x ^ { ( \nu _ { 1 } / 2 ) - 1 } \left( 1 + \frac { \nu _ { 1 } } { \nu _ { 2 } } x \right) ^ { ( \nu _ { 1 } + \nu _ { 2 } ) / 2 } , \quad x > 0,$ ; confidence 0.677

32. c13025027.png ; $Y _ { 1 } , \dots , Y _ { j - 1 }$ ; confidence 0.677

33. a1302708.png ; $\operatorname { dim } X _ { n } = \operatorname { dim } Y _ { n }$ ; confidence 0.677

34. b1302006.png ; $a _ { i j } \leq 0$ ; confidence 0.677

35. b13020071.png ; $\mathfrak { g }_{ +}$ ; confidence 0.677

36. f130090106.png ; $0 < q _ { 1 } + \ldots + q _ { k } < 1$ ; confidence 0.676

37. a130060153.png ; $\mathcal{S} _ { \text{E} }$ ; confidence 0.676

38. e12015011.png ; $( ( x )_{ 0} , ( \dot { x } ) _ { 0 } , t _ { 0 } ) \in \Omega$ ; confidence 0.676

39. b13021013.png ; $F = ( F _ { r } ) _ { r \in R _ { W } , w \in W }$ ; confidence 0.676

40. h12012078.png ; $\phi ^ { \prime } = \phi \sum _ { i = 0 } ^ { \infty } ( - 1 ) ^ { i } ( t \phi ) ^ { i }$ ; confidence 0.676

41. j13001033.png ; $D _{f , 1}$ ; confidence 0.676

42. l13010044.png ; $\alpha : = \xi / | \xi |$ ; confidence 0.676

43. b1102502.png ; $M _ { 3 }$ ; confidence 0.676

44. s13036039.png ; $\int _ { 0 } ^ { t } I _ { \partial D } ( Y _ { s } ) d \text{l} _ { s } = \text{l} _ { t }$ ; confidence 0.676

45. b12022044.png ; $M _ { f } ( t , x , \xi ) = M ( u ( t , x ) , \xi ),$ ; confidence 0.676

46. a13020019.png ; $( \text { End } V ) ^ { + }$ ; confidence 0.676

47. a01227057.png ; $S _ { 1 }$ ; confidence 0.676

48. d12019025.png ; $\lambda _ { n } ( \Omega ) = \operatorname { inf } \{ \lambda ( L ) : L \subseteq C ^ { \infty _0 } ( \Omega ) , \operatorname { dim } ( L ) = n \},$ ; confidence 0.676

49. p12013043.png ; $S ^ { \prime \prime }$ ; confidence 0.676

50. s08602035.png ; $\alpha ^ { \prime } < 1$ ; confidence 0.676

51. k055840401.png ; $( N _ { f } ( z _ { i } , z _ { j } ) ) _ { 1 } ^ { n }$ ; confidence 0.675

52. a01130064.png ; $k_i$ ; confidence 0.675

53. j12002092.png ; $X ^ { * } = \operatorname { sup } _ { s \geq 0 } X _ { s }$ ; confidence 0.675

54. d13008090.png ; $= \left\{ z \in \mathcal{D} : \operatorname { limsup } _ { w \rightarrow x } [ K _ { \mathcal{D} } ( z , w ) - K _ { \mathcal{D} } ( z _ { 0 } , w ) ] < \frac { 1 } { 2 } \operatorname { log } R \right\},$ ; confidence 0.675

55. c130070225.png ; $\mathfrak { R } ( C _ { 1 } )$ ; confidence 0.675

56. d12012015.png ; $\operatorname {dom}_{G^{\prime}} \circ d _ { A } = d _ { 0 } \circ \operatorname {dom}_{G}$ ; confidence 0.675

57. v13011047.png ; $2 \pi l / \theta$ ; confidence 0.675

58. l120120174.png ; $K _ { S } [ \overline { \sigma } ]$ ; confidence 0.675

59. c130070199.png ; $\operatorname { ord } _ { T } ( r / s ) = \lambda - \mu,$ ; confidence 0.675

60. g04302050.png ; $S : M _ { k } \rightarrow W$ ; confidence 0.675

61. m130140133.png ; $\operatorname { det } \| 1 / b _ { j } ^ { l } \| \neq 0$ ; confidence 0.675

62. o13005024.png ; $\varphi _ { - } \in \mathfrak{E}$ ; confidence 0.675

63. a12006062.png ; $u \in C ( [ 0 , T ] ; Y ) \cap C ^ { 1 } ( [ 0 , T ] ; X )$ ; confidence 0.675

64. d12003058.png ; $f \in R$ ; confidence 0.675

65. v120020185.png ; $S ^ { n } = \partial \overline { D } \square ^ { n + 1 }$ ; confidence 0.675

66. c120170175.png ; $2 k_{ j} - 1$ ; confidence 0.675

67. i13009044.png ; $E _ { 1 } ( k ) \rightarrow \prod _ { \mathfrak{p} | p } U _ { 1 , \mathfrak{p} }$ ; confidence 0.675

68. s08636084.png ; $P_{l}$ ; confidence 0.675

69. c12007048.png ; $\mathcal{C} ( C , C ^ { \prime } )$ ; confidence 0.675

70. s12018050.png ; $S ^ { \perp }$ ; confidence 0.675

71. a130240116.png ; $( 1 , t _ { i } , t _ { i } ^ { 2 } )$ ; confidence 0.675

72. w12016019.png ; $| D ( C ) |$ ; confidence 0.674

73. b1108004.png ; $\xi _{i}$ ; confidence 0.674

74. b12052083.png ; $O ( N n )$ ; confidence 0.674

75. a12020037.png ; $\delta _ { T } = \operatorname { sup } _ { x \in X } \operatorname { dim } \operatorname { lin } \{ x , T x , T ^ { 2 } x , \ldots \} = N$ ; confidence 0.674

76. m12019024.png ; $S ( x , y , t ) = \sqrt { \frac { 2 \pi } { D } } \operatorname { log } \left( \frac { x + y + t + 1 + \sqrt { D } } { x + y + t + 1 - \sqrt { D } } \right),$ ; confidence 0.674

77. n0669608.png ; $\phi ( t ) = ( 1 - 2 i t ) ^ { - n / 2 } \operatorname { exp } \left\{ \frac { \lambda i t } { 1 - 2 i t } \right\};$ ; confidence 0.674

78. n06752080.png ; $\mathcal{E} _ { A , K }$ ; confidence 0.674

79. b1302107.png ; $R _ { w }$ ; confidence 0.674

80. b01501025.png ; $M ^ { n }$ ; confidence 0.674

81. p13009051.png ; $x \mapsto \int _ { \partial \Omega } f d \mu _ { x } ^ { \Omega }.$ ; confidence 0.674

82. b13002031.png ; $\operatorname {JC}$ ; confidence 0.674

83. a13013096.png ; $P _ { 1 }$ ; confidence 0.674

84. a130240515.png ; $\mathbf{Z} _ { 0 } = \mathbf{Z} _ { 12 } - \mathbf{Z} _ { 13 } \mathbf{R},$ ; confidence 0.674

85. b13010015.png ; $k _ { z } = K _ { z } / \| K _ { z } \|$ ; confidence 0.674

86. i05137010.png ; $\pi / 2$ ; confidence 0.674

87. b1201203.png ; $B _ { r } ( 0 )$ ; confidence 0.674

88. f04115060.png ; $x \cdot \xi$ ; confidence 0.674

89. f13019021.png ; $\frac { d C _ { j } } { d x } ( x _ { i } ) = \left\{ \begin{array} { l l } { 0 } & { \text { for } i = j, } \\ { \frac { 1 } { 2 } ( - 1 ) ^ { i + j } \operatorname { cot } \frac { x _ { i } - x _ { j } } { 2 } } & { \text { for } i \neq j, } \end{array} \right.$ ; confidence 0.674

90. a12004027.png ; $C _ { 0 }$ ; confidence 0.674

91. d11022056.png ; $\sum _ { i = 0 } ^ { m } ( p _ { m } - i y ^ { ( i ) } ) ^ { ( i ) } = 0$ ; confidence 0.674

92. m12010088.png ; $y _ { 1 } , \dots , y _ { s }$ ; confidence 0.674

93. h12002055.png ; $\{ z ^ { k } \} _ { k \geq 0 }$ ; confidence 0.674

94. m12010098.png ; $w _ { 1 } , \dots , w _ { s }$ ; confidence 0.673

95. g13001080.png ; $c = \operatorname { log } _ { \omega } \gamma$ ; confidence 0.673

96. b12012015.png ; $\tau _ { t , v } : T _ { p } M \rightarrow T _ { \gamma ( t ) } M$ ; confidence 0.673

97. b12004033.png ; $0 \leq f _ { n } \uparrow f \in L ^ { 0 } ( \mu )$ ; confidence 0.673

98. a1201108.png ; $\varphi ( a , b , 2 ) = a ^ { b }$ ; confidence 0.673

99. g0433905.png ; $\delta f ( x _ { 0 } , h ) = \frac { d } { d t } f ( x _ { 0 } + t h ) | _ { t = 0 } =$ ; confidence 0.673

100. a130040594.png ; $\operatorname {mng}_{\mathcal{S}_P}$ ; confidence 0.673

101. m12019028.png ; $L _ { p } ( \mathbf{R} _ { + } ; x ^ { ( 1 - \nu ) p - 1 } )$ ; confidence 0.673

102. m130260204.png ; $e y = 0$ ; confidence 0.673

103. h13007055.png ; $R _ { n-1 }$ ; confidence 0.673

104. w120060105.png ; $\operatorname { dim }( F \mathbf{R} ^ { m } ) = m \operatorname { dim } ( F \mathbf{R} )$ ; confidence 0.673

105. m1300302.png ; $P ( z , f ( z ) , f ( z ^ { d } ) ) = 0$ ; confidence 0.673

106. k12010046.png ; $\mathcal{A} _ { m }$ ; confidence 0.672

107. s1306606.png ; $I _ { n } ( f ) = \sum _ { k = 1 } ^ { n } \lambda _ { n k } f ( \xi _ { n k } ).$ ; confidence 0.672

108. f12010060.png ; $q = e ^ { 2 \pi i z }$ ; confidence 0.672

109. c02489026.png ; $p ^ { n }$ ; confidence 0.672

110. a130240500.png ; $\mathbf{Z}_{i}$ ; confidence 0.672

111. p13009014.png ; $x \in B ( x _ { 0 } , r ) ,\, \xi \in \partial B ( x _ { 0 } , r ),$ ; confidence 0.672

112. m13026079.png ; $M ( A ) = C _ { b } ( \Omega )$ ; confidence 0.672

113. s12015036.png ; $g \in G _ { x }$ ; confidence 0.672

114. i130090227.png ; $Y ^ { \chi } = \{ y \in Y : \delta \cdot y = \chi ( \delta ) y \, \text { for } \delta \in \Delta \}.$ ; confidence 0.672

115. a120280171.png ; $( \pi , \{ U _ { t } \} _ { t \in \mathbf{R} } )$ ; confidence 0.672

116. b01540069.png ; $0 \leq x \leq 1$ ; confidence 0.672

117. w12003086.png ; $\| x ^ { * } + x ^ { \perp } \| = \| x ^ { * } \| + \| x ^ { \perp } \|$ ; confidence 0.672

118. k055840363.png ; $T = i ( \square _ { - A^{*} } ^ { B } )$ ; confidence 0.672

119. f04216010.png ; $h ^ { - 1 }$ ; confidence 0.671

120. d13013074.png ; $\psi _ { - }$ ; confidence 0.671

121. z13011030.png ; $G _ { n } ( 1 ) = \mu _ { n }$ ; confidence 0.671

122. d130080134.png ; $c \in \mathcal{D}$ ; confidence 0.671

123. s13054040.png ; $\operatorname { diag } ( a , a ^ { - 1 } , 1,1 , \ldots )$ ; confidence 0.671

124. h1300209.png ; $l = 1 , \dots , q$ ; confidence 0.671

125. t12001081.png ; $U ( 1 ) _ { \tau } \subset \operatorname { SU } ( 2 )$ ; confidence 0.671

126. f13001030.png ; $R _ { i } = \mathbf{F} _ { q } [ x ] / ( f _ { i } )$ ; confidence 0.671

127. t12013028.png ; $\oint _ { z = \infty } \tau _ { n } ( x - [ z ^ { - 1 } ] , y ) \tau _ { m + 1 } ( x ^ { \prime } + [ z ^ { - 1 } ] , y ^ { \prime } ) \times$ ; confidence 0.671

128. b1201608.png ; $V:\Delta ^ { n - 1 } \rightarrow \Delta ^ { n - 1 }$ ; confidence 0.671

129. p130100144.png ; $K \subset \mathbf{C} ^ { 2 }$ ; confidence 0.671

130. a12026022.png ; $m ^ { c }\hat{ A}$ ; confidence 0.671

131. b12052049.png ; $x _ { n } = x ^ { * }$ ; confidence 0.671

132. o0681709.png ; $F _ { n } ( \cdot )$ ; confidence 0.671

133. a130040479.png ; $\mathcal{C} _ { \Gamma }$ ; confidence 0.670

134. b13009030.png ; $M u _ { t } + u _ { x } + u u _ { x } = 0.$ ; confidence 0.670

135. w13017028.png ; $x _ { t } ^ { ( i ) }$ ; confidence 0.670

136. e13004033.png ; $\overset{\rightharpoonup} { x } \cdot \overset{\rightharpoonup} { v } > 0,$ ; confidence 0.670

137. c026010545.png ; $( x _ { t } )$ ; confidence 0.670

138. i12008034.png ; $\left\{ \begin{array}{l}{ m = - \left( \frac { \partial F } { \partial H } \right) _ { T }, }\\{ \chi = \left( \frac { \partial m } { \partial H } \right) _ { T }, }\\{ S = - \left( \frac { \partial F } { \partial T } \right) _ { H }, }\end{array} \right.$ ; confidence 0.670

139. d12026025.png ; $S _ { [ n t] } $ ; confidence 0.670

140. g130040112.png ; $\mathcal{H} ^ { m } ( R ) < \infty$ ; confidence 0.670

141. b12052077.png ; $B _ { n } ^ { - 1 } = \prod _ { j = 0 } ^ { n - 1 } ( I - w _ { j } v _ { j } ^ { T } ) B _ { 0 } ^ { - 1 }.$ ; confidence 0.670

142. b12040032.png ; $\mathbf{f} \in F$ ; confidence 0.670

143. g12001014.png ; $\{ G _ { b } ^ { \alpha } f : b \in \mathbf{R} \}$ ; confidence 0.670

144. b12040042.png ; $g ( g ^ { \prime } \times ^ { \varrho } \mathbf{f} ) = g g ^ { \prime } \times ^ { \varrho } \mathbf{f}$ ; confidence 0.670

145. m1201308.png ; $d N / d t \equiv 0$ ; confidence 0.670

146. f12024039.png ; $\operatorname{sup} h ( t ) < \infty$ ; confidence 0.670

147. d03302027.png ; $J _ { 1 }$ ; confidence 0.670

148. v13011072.png ; $T = \frac { l } { V - U }.$ ; confidence 0.670

149. p13010066.png ; $\pi _ { k } ( X )$ ; confidence 0.669

150. e12024075.png ; $A = \mathbf{Z} / p ^ { m } ( 1 )$ ; confidence 0.669

151. t120200155.png ; $k \in S$ ; confidence 0.669

152. w12016018.png ; $D ( C ) = \operatorname { lim } _ { h \rightarrow 0 } W ( C ^ { h } ).$ ; confidence 0.669

153. a130240373.png ; $\mathbf{Z} _ { 1 }$ ; confidence 0.669

154. l12015028.png ; $( A , [ \cdot , \cdot ] , d )$ ; confidence 0.669

155. d1200202.png ; $( \text{P} )$ ; confidence 0.669

156. f04049039.png ; $( a _ { 2 } , \sigma _ { 2 } ^ { 2 } )$ ; confidence 0.669

157. i13005070.png ; $r ( - k ) = \overline { r ( k ) }$ ; confidence 0.669

158. f13010096.png ; $L _ { C } ^ { \infty } ( \hat { G } )$ ; confidence 0.669

159. h046010105.png ; $\tau \in \operatorname {Wh} \pi _ { 1 } M _ { 0 }$ ; confidence 0.669

160. l1200901.png ; $( A , [ \cdot , \cdot ] _ { A } , q _ { A } )$ ; confidence 0.668

161. m130140127.png ; $p = 1 , \dots , n$ ; confidence 0.668

162. a12008019.png ; $\left\{ \begin{array} { l } { \frac { d ^ { 2 } u } { d t ^ { 2 } } + A u = f ( t ) , \qquad t \in [ 0 , T ], } \\ { u ( 0 ) = u _ { 0 } , \frac { d u } { d t } ( 0 ) = u _ { 1 }, } \end{array} \right.$ ; confidence 0.668

163. j13007073.png ; $\angle \operatorname { lim } _ { z \rightarrow \omega } F ( z ) = \omega , \text { and } \angle F ^ { \prime } ( \omega ) < 1,$ ; confidence 0.668

164. d12023055.png ; $\{ Z , J \}$ ; confidence 0.668

165. w130080178.png ; $F B \rightarrow \widetilde { F B }$ ; confidence 0.668

166. h046010104.png ; $\operatorname {dim} M_{0} \geq 5$ ; confidence 0.668

167. t12008048.png ; $( x , y ) \in \mathcal{O} _ { S } \times \mathcal{O} _ { S }$ ; confidence 0.668

168. i13001017.png ; $A = [ a _ {i j } ]$ ; confidence 0.668

169. a130240279.png ; $S = ( q F _ { \alpha ; q , n - r } ) ^ { 1 / 2 }$ ; confidence 0.668

170. b13019049.png ; $1 \ll | a / q | \ll 1$ ; confidence 0.668

171. b12022070.png ; $\int H ( M ( u _ { f } , \xi ) , \xi ) d \xi \leq \int H ( f ( \xi ) , \xi ) d \xi.$ ; confidence 0.668

172. i11011024.png ; $m _ { i j } = 1$ ; confidence 0.667

173. b13006092.png ; $\leq \| V \| \cdot \| ( \mu I - A ) ^ { - 1 } \| \cdot \| V ^ { - 1 } \|,$ ; confidence 0.667

174. c120180398.png ; $\operatorname { det } \tilde{g} ^ { - 1 }$ ; confidence 0.667

175. m13013017.png ; $m _ { i j } = 2$ ; confidence 0.667

176. n06752052.png ; $1 \leq j \leq r$ ; confidence 0.667

177. c12019041.png ; $\mathcal{C} _ { 1 }$ ; confidence 0.667

178. n06696017.png ; $F _ { n } ( x ; \lambda )$ ; confidence 0.667

179. j130030103.png ; $J B W ^ { x }$ ; confidence 0.667

180. d13006018.png ; $\operatorname { Bel}$ ; confidence 0.667

181. c13016015.png ; $P = \cup _ { k = 1 } ^ { \infty } \operatorname { DTIME } [ n ^ { k } ] = \operatorname { DTIME } [ n ^ { O ( 1 ) } ]$ ; confidence 0.667

182. b1202408.png ; $S = \overline { \mathbf{C} } = D _ { + } \cup \mathcal{T} \cup D _ { - }$ ; confidence 0.667

183. s120230158.png ; $i,j = 1 , \dots , s$ ; confidence 0.667

184. g13001054.png ; $\operatorname { Tr } _ { E / F } ( \omega ) = a$ ; confidence 0.667

185. k05584060.png ; $\mathcal{H} / Ker G$ ; confidence 0.667

186. a120160120.png ; $j ^ { \prime }$ ; confidence 0.667

187. i12006090.png ; $\operatorname { dim } ( G ) = \operatorname { Idim } ( P _ { G } )$ ; confidence 0.666

188. i12008042.png ; $J > 0$ ; confidence 0.666

189. z12001042.png ; $\overline { U } _ { 1 } = \left\{ x ^ { ( i ) } : 0 \leq i < p ^ { m } - 1 \right\}$ ; confidence 0.666

190. b1201004.png ; $x _ { i } \equiv ( q _ { i } , p _ { i } ) \in \mathbf{R} ^ { \nu } \times \mathbf{R} ^ { \nu }$ ; confidence 0.666

191. q12008091.png ; $\mathsf{E} [ W _ { p + 1} ] / \mathsf{E} [ W _ { p } ]$ ; confidence 0.666

192. u13002030.png ; $| f ( x ) | \leq A e ^ { - \pi a x ^ { 2 } }$ ; confidence 0.666

193. c12007047.png ; $Z \mathcal{C} ( C , C^{\prime} )$ ; confidence 0.666

194. g13001057.png ; $B ^ { * } = ( \gamma _ { 0 } , \dots , \gamma _ { n - 1 } )$ ; confidence 0.666

195. l120170222.png ; $K = K _ { 0 } \subset K _ { 1 } \subset \ldots$ ; confidence 0.666

196. s09067010.png ; $\mathcal{C} ( C , D )$ ; confidence 0.666

197. z13010063.png ; $\mathcal{P} ( x )$ ; confidence 0.666

198. b12027057.png ; $\{ b _ { n } \}$ ; confidence 0.666

199. n12003038.png ; $\mathcal{F} / R$ ; confidence 0.665

200. d03410010.png ; $L _ { \Phi }$ ; confidence 0.665

201. t12014012.png ; $j \in \mathbf{Z}$ ; confidence 0.665

202. t120200197.png ; $1 = | z _ { 1 } | \geq \ldots \geq | z _ { h _ { 1 } } | \geq \delta _ { 1 } >$ ; confidence 0.665

203. b13012093.png ; $f \in \mathcal{A}$ ; confidence 0.665

204. m12027038.png ; $\Gamma ( z _ { 1 } ) = z _ { 1 } ^ { M } + b _ { 1 } z _ { 1 } ^ { M - 1 } + \ldots + b _ { M - 1 } z _ { 1 } + b _ { M }$ ; confidence 0.665

205. m12011069.png ; $T : \Delta _ { n } \rightarrow \Omega _ { n + 1 } ( S ^ { 1 } ),$ ; confidence 0.665

206. f12021069.png ; $= \frac { ( n _ { 1 } + l ) ! } { l ! } ( \operatorname { log } z ) ^ { l } z ^ { \lambda _ { 2 } } + \ldots,$ ; confidence 0.665

207. b01737026.png ; $L ^ { - 1 }$ ; confidence 0.665

208. a12007048.png ; $A ( 0 ) u _ { 0 } + f ( 0 ) \in D _ { A ( 0 ) } ( \alpha , \infty )$ ; confidence 0.665

209. k13006018.png ; $a _ { k } + 1$ ; confidence 0.665

210. a130040621.png ; $\operatorname {Mod}_{\mathcal{S} _ { P }} \Gamma$ ; confidence 0.665

211. g12004060.png ; $\operatorname {WF} _ { s } u$ ; confidence 0.665

212. t130130106.png ; $T _ { i } \in \operatorname { add } T$ ; confidence 0.665

213. a11067030.png ; $\{ u _ { n } \}$ ; confidence 0.665

214. e12021038.png ; $\operatorname { ind } _ { P } ( \operatorname { log } | z | ) = 1$ ; confidence 0.665

215. d120230128.png ; $\operatorname { rank } ( S - F _ { 3 } S F _ { 3 } ^ { * } ) \leq \operatorname { rank } ( R - F R F ^ { * } ),$ ; confidence 0.665

216. d1301101.png ; $H ^ { 2 } = ( \mathbf{p} _ { x } ^ { 2 } + \mathbf{p} _ { y } ^ { 2 } + \mathbf{p} _ { z } ^ { 2 } ) c ^ { 2 } + m _ { 0 } ^ { 2 } c ^ { 4 }.$ ; confidence 0.664

217. f12015036.png ; $\| T \| < \delta$ ; confidence 0.664

218. b13025021.png ; $( T )$ ; confidence 0.664

219. t120070103.png ; $1 _ { - 1 } = \operatorname { id}$ ; confidence 0.664

220. m12013062.png ; $N ^ { 1 }$ ; confidence 0.664

221. m12010059.png ; $M \# M ^ { \prime }$ ; confidence 0.664

222. b1201209.png ; $\operatorname { inj} M$ ; confidence 0.664

223. s12018043.png ; $\{ e _ { i } : i = 1,2 , \ldots \}$ ; confidence 0.664

224. s1303409.png ; $S _ { 2 , \infty} ( M )$ ; confidence 0.664

225. b01737058.png ; $k \in \mathbf{R}$ ; confidence 0.664

226. f12021054.png ; $u _ { i l } = z ^ { \lambda _ { i } } \sum _ { j = 0 } ^ { l } \sum _ { k = 0 } ^ { \infty } b _ { j k } ( \operatorname { log } z ) ^ { j } z ^ { k }.$ ; confidence 0.664

227. w12016016.png ; $C ^ { h } : t \rightarrow C ( t + h ) - C ( t ) / h$ ; confidence 0.664

228. l13010041.png ; $\tilde { f } ( \xi ) = \int _ { \mathbf{R} ^ { n } } f ( x ) e ^ { i \xi x } d x$ ; confidence 0.664

229. f120110145.png ; $\overline { \mathbf{R} ^ { \pm }}$ ; confidence 0.664

230. d03383015.png ; $x \succ y$ ; confidence 0.664

231. z1200108.png ; $\{ f _ { \alpha } : \alpha \in \operatorname {GF} ( m ) \}$ ; confidence 0.663

232. s13053086.png ; $a _ { i } \geq 1$ ; confidence 0.663

233. f13001023.png ; $f _ { 2 } = \operatorname { gcd } ( x ^ { q ^ { 2 } } - x , f / f _ { 1 } )$ ; confidence 0.663

234. n1300304.png ; $\tau u _ { xx } = \rho u _ { t t }$ ; confidence 0.663

235. c12027015.png ; $\omega = \operatorname { inf } _ { p \in \Omega } \frac { \operatorname { Vol} ( \Omega _ { p } ) } { \alpha ( n - 1 ) },$ ; confidence 0.663

236. f120210107.png ; $= c _ { 0 } z ^ { \lambda } \pi ( \lambda ) +$ ; confidence 0.663

237. b13027068.png ; $\mathrm{II} _ { \infty }$ ; confidence 0.663

238. b12032017.png ; $\| x \| = \| u \|$ ; confidence 0.663

239. p130100170.png ; $\mu _ { z }$ ; confidence 0.663

240. a130040543.png ; $h ( \xi ) \in C ( \{ h ( \theta _ { 0 } ) , \ldots , h ( \theta _ { n - 1} ) \} )$ ; confidence 0.663

241. z12001011.png ; $\operatorname {GF} ( m )$ ; confidence 0.663

242. a12013029.png ; $( \theta _ { n - 1} , X _ { n - 1} )$ ; confidence 0.663

243. f12011063.png ; $\chi _ { \sigma } = \prod _ { j = 1 } ^ { n } 1 / ( e ^ { \sigma _ { j } z _ { j } } + 1 )$ ; confidence 0.663

244. s1203407.png ; $\operatorname {SH} ^ { * } ( M , \omega , L _ { + } , L _ { - } )$ ; confidence 0.662

245. a12011039.png ; $\omega ^ { \omega }$ ; confidence 0.662

246. t13010034.png ; $T \otimes_{ B} -$ ; confidence 0.662

247. b11066049.png ; $T : \mathcal{D} ( \mathbf{R} ^ { n } ) \rightarrow \mathcal{D} ^ { \prime } ( \mathbf{R} ^ { n } )$ ; confidence 0.662

248. a01152025.png ; $x \in \mathbf{V}$ ; confidence 0.662

249. j13002032.png ; $i = 1 , \ldots , \left( \begin{array} { l } { n } \\ { 2 } \end{array} \right)$ ; confidence 0.662

250. f130290174.png ; $\mathbf{R} ( L )$ ; confidence 0.662

251. s13064032.png ; $a ( e ^ { i \theta } ) - z$ ; confidence 0.662

252. b12040055.png ; $S^{-}$ ; confidence 0.662

253. c12007055.png ; $\text{Ab} ^ { \text{ZC} } \approx \text{Ab} ^ { \text{C} }$ ; confidence 0.662

254. n066630108.png ; $M _ { i } ^ { * } = c _ { i } \sum _ { j = 1 } ^ { n } M _ { j },$ ; confidence 0.662

255. b13023048.png ; $\operatorname { St } _ { G } ( n )$ ; confidence 0.662

256. o12005076.png ; $\Lambda _ { \varphi , w }$ ; confidence 0.662

257. c1200507.png ; $S = \{ r e ^ { i \theta } : 1 - h \leq r < 1 , | \theta - \theta _ { 0 } | \leq h \}.$ ; confidence 0.662

258. r13008067.png ; $\sum _ { i , j + 1 } ^ { n } K ( p _ { i } , p _ { j } ) \xi _ { j } \overline { \xi _ { i } } = \int _ { T } | \sum _ { j = 1 } ^ { n } \xi _ { j } h ( t , p _ { j } ) | ^ { 2 } d m ( t ) > 0$ ; confidence 0.662

259. s12034074.png ; $\tilde{P}$ ; confidence 0.662

260. a11004079.png ; $\mathbf{C} ^ { 2 }$ ; confidence 0.662

261. j13004012.png ; $v = t$ ; confidence 0.662

262. a12018020.png ; $| \lambda | < 1$ ; confidence 0.662

263. w13008085.png ; $\Lambda \xi \sim w ^ {\mp ( 1 / N ) }$ ; confidence 0.662

264. o13006059.png ; $\operatorname { det } ( \xi _ { 1 } \sigma _ { 1 } + \xi _ { 2 } \sigma _ { 2 } ) \not \equiv 0$ ; confidence 0.662

265. n12003031.png ; $x : B \rightarrow C$ ; confidence 0.661

266. b01672047.png ; $\hat { f }$ ; confidence 0.661

267. e13003036.png ; $H _ { ! } ^ { \bullet } ( \Gamma \backslash X , \tilde { \mathcal{M} } )$ ; confidence 0.661

268. c1202503.png ; $\tilde { \kappa } = \kappa | \nabla L | = L _ { y } ^ { 2 } L _ { x x } - 2 L _ { x } L _ { y } L _ { x y } + L _ { x } ^ { 2 } L _ { y y }.$ ; confidence 0.661

269. c12018087.png ; $C ( g ) \in \otimes ^ { 3 } \mathcal{E}$ ; confidence 0.661

270. e12016030.png ; $Y = \partial / \partial \theta$ ; confidence 0.661

271. i130090230.png ; $\Lambda = \mathbf{Z} _ { p } [ \chi ] [ [ T ] ]$ ; confidence 0.661

272. a012200125.png ; $D \subset \mathbf{C} ^ { x }$ ; confidence 0.661

273. t120010138.png ; $\text{p}$ ; confidence 0.661

274. b12021075.png ; $\mathfrak { F } _ { \lambda }$ ; confidence 0.661

275. t13014048.png ; $[ \mathbf{X} ] \mapsto \chi _ { Q } ( [ \mathbf{X} ] ) = \operatorname { dim } _ { K } \operatorname { End } _ { Q } ( \mathbf{X} ) - \operatorname { dim } _ { K } \operatorname { Ext } _ { Q } ^ { 1 } ( \mathbf{X} , \mathbf{X} )$ ; confidence 0.661

276. k055840110.png ; $\mathcal{L} _ { + }$ ; confidence 0.661

277. w130080104.png ; $\frac { \partial F } { \partial \alpha _ { j } } = \oint _ { B _ { j } } d S$ ; confidence 0.661

278. e12012028.png ; $L ( \theta | Y _ { \text { aug } } )$ ; confidence 0.661

279. s12032094.png ; $A ^ { p | q} $ ; confidence 0.661

280. c13004019.png ; $\operatorname { Re } s > 1$ ; confidence 0.661

281. i130090217.png ; $\operatorname {Gal}( L ( k ^ { \prime } ) / k _ { \infty } ^ { \prime } ) \cong \text { varprojlim } A _ { n } ( k ^ { \prime } )$ ; confidence 0.661

282. c120180486.png ; $x = ( x ^ { 1 } , \dots , x ^ { n } )$ ; confidence 0.660

283. b01568010.png ; $n \geq n _ { 0 }$ ; confidence 0.660

284. s1200507.png ; $S _ { n + 1 } ( z ) = \frac { 1 } { z } \frac { S _ { n } ( z ) - S _ { n } ( 0 ) } { 1 - \overline{S} _ { n } ( 0 ) S _ { n } ( z ) } , n \geq 0.$ ; confidence 0.660

285. t13010062.png ; $H e$ ; confidence 0.660

286. d12024088.png ; $U ( \mathfrak { sl } ( n ) )$ ; confidence 0.660

287. d12016016.png ; $f _ { 2 n } = f _ { 2 n - 1 } - g _ { n }$ ; confidence 0.660

288. d1201109.png ; $f ( \sum _ { j \in I } x _ { j } )$ ; confidence 0.660

289. j13004050.png ; $P _ { m } ( v ) \neq 0$ ; confidence 0.660

290. c120010141.png ; $\mu \mapsto \tilde{\mu}$ ; confidence 0.660

291. a12027028.png ; $\chi = \text { trace o } \rho$ ; confidence 0.660

292. a01033017.png ; $r ^ { \prime }$ ; confidence 0.660

293. t13010017.png ; $B = \operatorname { End } _ { H } ( T )$ ; confidence 0.660

294. a1302805.png ; $b _ { 0 } , b _ { 1 } , \dots$ ; confidence 0.660

295. q12008053.png ; $\mathsf{E} [ T _ { p } ] _ { \text{PR} } = \infty$ ; confidence 0.660

296. u13002023.png ; $K e ^ { - c x ^ { 2 } }$ ; confidence 0.660

297. v12002065.png ; $\operatorname { dim } Q$ ; confidence 0.660

298. s08602027.png ; $\overline { D^{-} } = D ^ { - } \cup \Gamma$ ; confidence 0.660

299. s12026052.png ; $\partial _ { s + } \phi ( s ) = \operatorname { lim } _ { \epsilon \downarrow 0 } \partial _ { s + \epsilon } \phi ( s )$ ; confidence 0.660

300. i1200209.png ; $\times \left[ \frac { \operatorname { sin } \frac { \pi \mu } { 2 } } { \operatorname { cosh } \frac { \pi \tau } { 2 } } \operatorname { Re } J _ { i \tau } ( x ) - \frac { \operatorname { cos } \frac { \pi \mu } { 2 } } { \operatorname { sinh } \frac { \pi \tau } { 2 } } \operatorname { Im } J _ { i \tau } ( x ) \right], \: f ( x ) = \frac { 2 ^ { - \mu } } { \pi ^ { 2 } x } \times$ ; confidence 0.660

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/48. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/48&oldid=47696