Namespaces
Variants
Actions

Frozen-in integral

From Encyclopedia of Mathematics
Revision as of 17:09, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

The integral of the induction equation of a magnetic field for the limiting case of an ideally-conducting medium. The physical meaning of the frozen-in integral is that by moving the liquid, the force lines of the magnetic field are moved together with the liquid particles.

For the motion of an ideally-conducting medium the magnetic field strength is described by the equation:

where is the density and is the rate of motion of the medium. A change in the line element of a force line of the magnetic field is described by the equation

The vectors and are collinear:

The following equation, which goes by the name of frozen-in integral, is valid:

where the index "0" refers to the values of the parameters at the initial moment of time.

It follows from the frozen-in integral that the magnetic flux of a field across any surface, encircled by a contour of liquid particles, is independent of time.

References

[1] T.G. Cowling, "Magneto-hydrodynamics" , Interscience (1957)
[2] L.D. Landau, E.M. Lifshitz, "Electrodynamics of continous media" , Pergamon (1960) (Translated from Russian)
[3] A.G. Kulikovskii, G.A. Lyubimov, "Magnetic hydrodynamics" , Moscow (1962) (In Russian)
How to Cite This Entry:
Frozen-in integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Frozen-in_integral&oldid=46996
This article was adapted from an original article by A.P. Favorskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article