Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/NoNroff/40

From Encyclopedia of Mathematics
Jump to: navigation, search

List

1. s1200503.png ; $D = \{ z : | z | < 1 \}$ ; confidence 0.812

2. b110220152.png ; $ { i } = 1$ ; confidence 1.000

3. m130230117.png ; $\alpha : X _ { .. } \rightarrow X ^ { \prime }$ ; confidence 1.000

4. d12003030.png ; ${\cal M} _ { 0 } = {\cal M} _ { 1 } \supset \ldots \supset {\cal M}_ { 5 }$ ; confidence 1.000

5. c02583019.png ; $K \supset H$ ; confidence 0.812

6. w12003019.png ; $\operatorname{dens} (X )$ ; confidence 1.000

7. i13005097.png ; $\{ r_+ ( k ) : \forall k > 0 \}$ ; confidence 1.000

8. m13022063.png ; $T _ { g ^ { i } }$ ; confidence 0.812

9. a01058018.png ; $a > 0$ ; confidence 0.812

10. c11042014.png ; $2 ^ { S }$ ; confidence 1.000

11. c13025070.png ; $\operatorname{l}$ ; confidence 1.000

12. c13014048.png ; $\forall ( x , y ) \in R _ { k }$ ; confidence 0.812

13. a12008074.png ; $u \in L ^ { 2 } ( [ 0 , T ] ; H ^ { 2 } ( \Omega ) ) \cap H ^ { 2 } ( [ 0 , T ] ; L ^ { 2 } ( \Omega ) )$ ; confidence 0.811

14. b120420121.png ; $\square _ { H } \cal M$ ; confidence 1.000

15. h1100109.png ; $| L | = 1$ ; confidence 0.811

16. t13014089.png ; $Q _ { 0 } = \{ 1 , \ldots , n \}$ ; confidence 0.811

17. m1202106.png ; $\lambda A : = \{ \lambda a : a \in A \}$ ; confidence 1.000

18. j12002054.png ; $X ^ { * } = \operatorname { sup } _ { t \geq 0 } | X _ { t } |$ ; confidence 0.811

19. m13023036.png ; $v _ { 1 } , v _ { 2 } \in \overline { N E } ( X / S )$ ; confidence 0.811

20. b12027086.png ; $\operatorname { gcd } \{ j : p_j > 0 \} = 1$ ; confidence 1.000

21. t12001035.png ; $\operatorname{SU} ( 2 )$ ; confidence 1.000

22. q12007060.png ; ${\cal R }_ { q ^ { 2 } }$ ; confidence 1.000

23. k12008086.png ; $\langle \rho ^ { \prime } ( \xi ) , \xi - p \rangle ^ { \alpha } = \prod _ { j = 0 } ^ { m } \langle \rho ^ { \prime } ( \xi ) , \xi - p _ { j } \rangle ^ { \alpha_j } $ ; confidence 1.000

24. l12004031.png ; $u _ { i } ^ { n + 1 }$ ; confidence 0.811

25. k05508010.png ; $\overline { \square } = \square$ ; confidence 0.811

26. q12008083.png ; $\operatorname{E} [ W ]$ ; confidence 0.811

27. a13032054.png ; $\beta = \operatorname{P} _ { q } ( S _ { N } = - J )$ ; confidence 1.000

28. z13012018.png ; $Z _ { n } ( x ; \sigma )$ ; confidence 0.810

29. n13002021.png ; $X = Y = Z = \bf R$ ; confidence 1.000

30. a1201209.png ; $B = ( b _ { i j } )$ ; confidence 0.810

31. c13016051.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { t ( n ) } { s ( n ) } = 0,$ ; confidence 1.000

32. e13003056.png ; $\operatorname { Eis } ( \omega ) = \sum _ { \gamma \in \Gamma / \Gamma _ { P } } \gamma \,\omega,$ ; confidence 1.000

33. i13004034.png ; $\operatorname{BV}$ ; confidence 1.000

34. d11022052.png ; $z ^ { \prime } + q + z ^ { 2 } / p = 0$ ; confidence 0.810

35. f13016022.png ; ${\cal C} ( X )$ ; confidence 1.000

36. l057000118.png ; $M [ x : = N ]$ ; confidence 0.810

37. p13014014.png ; $| \alpha x _ { 0 } - p | < \rho$ ; confidence 0.810

38. t130050178.png ; $R _ { B }$ ; confidence 0.810

39. l0596105.png ; $\frac { \partial w _ { N } } { \partial t } = \{ H , w _ { N } \} _ { \text{cl.} } \equiv \sum _ { i = 1 } ^ { N } ( \frac { \partial H } { \partial {\bf r} _ { i } } \frac { \partial w _ { N } } { \partial {\bf p} _ { i } } - \frac { \partial w _ { N } } { \partial {\bf r} _ { i } } \frac { \partial H } { \partial {\bf p} _ { i } } ),$ ; confidence 1.000

40. d03302028.png ; $J_2$ ; confidence 1.000

41. w12011059.png ; ${\cal A} ( u , v ) ( \xi , x ) = \int u ( z - \frac { x } { 2 } ) \bar{v} ( z + \frac { x } { 2 } ) e ^ { - 2 i \pi z . \xi } d z.$ ; confidence 0.810

42. s130620112.png ; $m_+ ( \lambda )$ ; confidence 1.000

43. g120040177.png ; $e ^ { - 1 / \varepsilon ^ { \sigma } }$ ; confidence 0.810

44. t12005067.png ; $\Sigma ^ { i } ( g ) = \emptyset$ ; confidence 0.810

45. g044340181.png ; $E ^ { \prime }$ ; confidence 0.810

46. n13007022.png ; $\emptyset \in \cal D$ ; confidence 1.000

47. a1300202.png ; $T : X \rightarrow X$ ; confidence 1.000

48. l120170119.png ; $K ^ { \prime 2 } \searrow K ^ { 2 }$ ; confidence 0.809

49. a120280154.png ; $M ^ { V } ( E + \omega )$ ; confidence 0.809

50. h12012038.png ; $d_Y ^ { \prime }$ ; confidence 1.000

51. w12005022.png ; $r \in \bf N$ ; confidence 1.000

52. f12004025.png ; $- \infty,$ ; confidence 1.000

53. a13024061.png ; $k = 1 , \ldots , K$ ; confidence 0.809

54. b1300303.png ; $V ^ { \pm } \times V ^ { \mp } \times V ^ { \pm } \rightarrow V ^ { \pm }$ ; confidence 1.000

55. a11001069.png ; $b$ ; confidence 0.809

56. s12024044.png ; $X \in \bf K$ ; confidence 1.000

57. c12004062.png ; $f ( z ) = \operatorname { lim } _ { m \rightarrow \infty } \int _ { \Gamma } f ( \zeta ) [ \operatorname{CF} ( \zeta - z , w ) +$ ; confidence 1.000 NOTE: it looks like the end of the formula is missing

58. t12015021.png ; ${\cal L} ( A )$ ; confidence 1.000

59. s12034078.png ; $u | _ { \partial D ^ { 2 } } = x$ ; confidence 0.809

60. e12024018.png ; $L | L ^ { \prime }$ ; confidence 0.809

61. b12051068.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { \| x _ { n + 1} - x ^ { * } \| } { \| x _ { n } - x ^ { * } \| } = 0.$ ; confidence 1.000

62. s120340178.png ; $H _ { i } ( t , m ) = H ( \varphi _ { i } ( s , t ) , m )$ ; confidence 1.000

63. c02286045.png ; $\beta_2$ ; confidence 1.000

64. a11028062.png ; $\cal N P$ ; confidence 1.000

65. a130040463.png ; $\operatorname{Fi} _ {\cal D } \bf A$ ; confidence 1.000

66. n13002035.png ; $x = \alpha$ ; confidence 0.808

67. a12017045.png ; $\mu ( a , x ) = \mu _ { 0 } ( a )$ ; confidence 1.000

68. b11022037.png ; $\Lambda ( M , s ) = \varepsilon ( M , s ) \Lambda ( M , i + 1 - s )$ ; confidence 0.808

69. f12021099.png ; $p _ { j } ( \lambda )$ ; confidence 0.808

70. x12001098.png ; $\operatorname { lnn } ( F ) = \langle 1 \rangle$ ; confidence 1.000

71. l05918058.png ; $x \in \partial D$ ; confidence 0.808

72. l120100147.png ; $B _ { p }$ ; confidence 1.000

73. a12008061.png ; $\left( \begin{array} { c c } { 0 } & { - 1 } \\ { {\cal A} ( t ) } & { 0 } \end{array} \right), $ ; confidence 1.000

74. i13001043.png ; $\chi \lambda$ ; confidence 0.808

75. l12010024.png ; $= L _ { \gamma , n } ^ { c } \int _ { {\bf R} ^ { n } } V _ { - } ( x ) ^ { \gamma + n / 2 } d x,$ ; confidence 1.000

76. a01012066.png ; $\{ \mu _ { n } \}$ ; confidence 0.808

77. b12030080.png ; $g \in L ^ { 2 } ( {\bf R} ^ { N } )$ ; confidence 1.000

78. t13005032.png ; $D _ { A } : = \sum _ { i = 1 } ^ { n } A _ { i } \otimes E _ { i }$ ; confidence 0.808

79. d12020032.png ; $\lambda _ { m }$ ; confidence 0.808

80. c12026067.png ; $C > 1$ ; confidence 0.808

81. j05427015.png ; $u , v \in V$ ; confidence 0.808

82. d120020132.png ; $g ( \overline { u } _ { 1 } ) \leq v ^ { * } \leq \overline { q }$ ; confidence 0.808

83. t120200152.png ; $m = \operatorname { max } ( m _ { 1 } , m _ { 2 } )$ ; confidence 0.808

84. p12017020.png ; $\hat { H } = H \oplus H$ ; confidence 0.808

85. l12013032.png ; $f _ { j } ( \bar{x} ) \in \tilde{\bf Z} ^ { n }$ ; confidence 1.000

86. k05584067.png ; $L _ { 2 , r }$ ; confidence 0.807

87. a13022062.png ; $0 \rightarrow \square _ { R } \operatorname { Mod } ( ? , A ) \rightarrow \square _ { R } \operatorname { Mod } ( ? , B ) \rightarrow$ ; confidence 0.807

88. a120070103.png ; ${\bf R} ^ { n }$ ; confidence 1.000

89. s12022021.png ; $0 \leq \lambda _ { 0 } \leq \lambda _ { 1 } \leq \ldots$ ; confidence 0.807

90. d03033020.png ; $E _ { c } ^ { * } ( M )$ ; confidence 0.807

91. c12016045.png ; $R _ { 11 }$ ; confidence 0.807

92. m13025046.png ; $\varphi \in D ( {\bf R} ^ { n } ) \}$ ; confidence 1.000

93. m13014038.png ; $| x | + r_j < R$ ; confidence 1.000

94. a13024027.png ; $\bf Y = X B + E$ ; confidence 1.000

95. p12014051.png ; $E ( a _ { 0 } , c _ { 1 } + a _ { 0 } ^ { 2 } m )$ ; confidence 0.807

96. h12002041.png ; $\sum _ { j \geq 0 } \alpha _ { j } z ^ { j } \in \operatorname{VMO}$ ; confidence 1.000

97. c120180118.png ; $\cal E * = \operatorname { Hom } _ { R } ( E , R )$ ; confidence 1.000

98. b12005041.png ; $\Pi ( \phi ) \equiv \phi | _ { E } * \subset E ^ { * * }$ ; confidence 0.806

99. l12006083.png ; $( \lambda | g )$ ; confidence 0.806

100. d13011039.png ; $\in C_i$ ; confidence 1.000

101. v11007011.png ; $V _ { i } = \{ x : \forall j \neq i , d ( x , p _ { i } ) \leq d ( x , p _ { j } ) \},$ ; confidence 1.000

102. m13011036.png ; $\partial \phi / \partial t$ ; confidence 1.000

103. k05507012.png ; $A ^ { 1 }$ ; confidence 0.806

104. b01734019.png ; $T _ { m }$ ; confidence 0.806

105. d03043024.png ; $i > n$ ; confidence 0.806

106. b12017037.png ; $I _ { \alpha } ( x ) = c _ { \alpha } | x | ^ { \alpha - n }$ ; confidence 1.000

107. a130040385.png ; $\Omega \cup {\cal F} = \cup _ { F \in \{\cal F} } \Omega F$ ; confidence 1.000

108. d120230130.png ; $\{ R_{ij} \}$ ; confidence 1.000

109. b1300308.png ; $V ^ { \pm }$ ; confidence 0.806

110. i1200809.png ; $- H M$ ; confidence 0.806

111. g12004084.png ; $p _ { m } ( x , \xi ) = \sum _ { | \alpha | = m } p _ { \alpha } ( x ) \xi ^ { \alpha }$ ; confidence 0.806

112. v13011030.png ; $w ( m , l )$ ; confidence 0.806

113. l12003016.png ; ${\cal A} _ { 2 }$ ; confidence 1.000

114. m12016049.png ; $\operatorname { cov } ( X ) = c \Sigma \otimes \Phi$ ; confidence 0.806

115. t13010011.png ; $\operatorname{add} T$ ; confidence 1.000

116. d1200208.png ; $A _ { 1 } x \leq b _ { 1 }$ ; confidence 0.806

117. g130040176.png ; $\mu ( B ) = \| \mu \| \{ x : ( x , T _ { x } ) \in B \}$ ; confidence 0.806

118. c02280038.png ; $q \geq 3$ ; confidence 0.806

119. d12030051.png ; $= \operatorname{E} _ { \mu _ { X } } [ \psi ( t ) | X ( t ) = x ] p _ { X } ( 0 , x _ { 0 } ; t , x )$ ; confidence 1.000

120. z12001062.png ; ${\cal L} _ { 0 } = \langle e _ { i } : i \geq 0 \rangle$ ; confidence 1.000

121. c12007049.png ; $\[cal C} \rightarrow Z {\cal C}$ ; confidence 1.000

122. f120110138.png ; $\operatorname { Im } \zeta \in \Delta _ { k }$ ; confidence 0.805

123. z13003067.png ; $f ( 2 \pi t ) = \frac { 1 } { \sqrt { 2 \pi } } \int _ { 0 } ^ { 1 } e ^ { - 2 \pi i x t } ( Z \hat { f } ) ( x , t ) d x, $ ; confidence 1.000

124. v09690031.png ; $P ^ { \prime } H$ ; confidence 0.805

125. c12002049.png ; $\theta \in S ^ { 2 }$ ; confidence 0.805

126. l12019035.png ; $x _ { k + 1 } = A x _ { k }$ ; confidence 0.805

127. o11001042.png ; $e\notin S ( x )$ ; confidence 0.805

128. v13008025.png ; $\operatorname{Cl} ( f , \zeta )$ ; confidence 1.000

129. f04074029.png ; ${\bf R} ^ { q }$ ; confidence 1.000

130. g13006073.png ; $\vec { P _ { i } P _ { j } }$ ; confidence 0.805

131. a130040311.png ; $\alpha , b , c , d \in A$ ; confidence 0.805

132. a12008065.png ; $v _ { 0 } = i A ( t ) ^ { 1 / 2 } u$ ; confidence 0.805

133. f1202008.png ; $\left( \begin{array} { c c c c } { 0 } & { 1 } & { \square } & { \square } \\ { \square } & { \ddots } & { \ddots } & { \square } \\ { \square } & { \square } & { 0 } & { 1 } \\ { - a _ { 0 } } & { \cdots } & { \cdots } & { - a _ { n - 1 } } \end{array} \right).$ ; confidence 1.000

134. s12024031.png ; $h * ( . ) = \operatorname{E} * ( . )$ ; confidence 1.000

135. k13006052.png ; $\Delta ( {\cal F} ) | \geq \partial _ { k } ( m ).$ ; confidence 1.000

136. n13003032.png ; $\langle A f , g \rangle = \langle f , A g \rangle$ ; confidence 0.805

137. j1300106.png ; $Q _ { \emptyset } ( v , z ) = 1$ ; confidence 0.805

138. c11016062.png ; $a , b \in A$ ; confidence 0.805

139. d130080108.png ; $F \in \operatorname{Hol} ( {\cal D} )$ ; confidence 1.000

140. s13004020.png ; $\operatorname { Im } z > 1$ ; confidence 0.805

141. h12002082.png ; $\operatorname{rank} H _ { \phi } = \operatorname { deg } {\cal P} - \phi$ ; confidence 1.000

142. i12010053.png ; $a _ { 2 } + 2 a_ { 1 } = 0$ ; confidence 1.000

143. c02165056.png ; $t \in {\bf R} ^ { 1 }$ ; confidence 1.000

144. d12014014.png ; $\sum _ { n = 0 } ^ { \infty } D _ { n } ( x , a ) z ^ { n } = \frac { 2 - x z } { 1 - x z + a z ^ { 2 } }.$ ; confidence 1.000

145. b12012013.png ; $v \in T _ { p } M$ ; confidence 0.805

146. v130050122.png ; $Y ( u , x ) v = \sum _ { n \in Z } ( u _ { n } v ) x ^ { - n - 1 }$ ; confidence 0.805

147. a13008065.png ; $g ( x ; m , s ) = \left\{ \begin{array} { l l } { \frac { 1 } { 2 s } \operatorname { exp } ( \frac { x - m } { s } ) } & { \text { for } x \leq m } \\ { \frac { 1 } { 2 s } \operatorname { exp } ( \frac { m - x } { s } ) } & { \text { for } x \geq m } \end{array} \right.$ ; confidence 0.804

148. c120180161.png ; $g ^ { - 1 }$ ; confidence 0.804

149. v13011043.png ; $x _ { m , j } = \alpha _ { j } e ^ { i m \theta } , y _ { m , j } = \beta _ { j } e ^ { i m \theta }$ ; confidence 0.804

150. s12033045.png ; $P G _ { d -1} ( d , q )$ ; confidence 1.000

151. b12015053.png ; $d _ { 1 } ^ { * }$ ; confidence 0.804

152. p11017040.png ; $\{ ., . \}$ ; confidence 1.000

153. e12026064.png ; $t ( \omega )$ ; confidence 0.804

154. a12005049.png ; $\leq B \sum _ { i = 1 } ^ { k } ( t - s ) ^ { \alpha _ { i } } | \lambda | ^ { \beta _ { i } - 1 } , \lambda \in S _ { \theta _ { 0 } } \backslash \{ 0 \} , \quad 0 \leq s \leq t \leq T.$ ; confidence 1.000

155. p1201704.png ; $\delta _ { A , B } : B ( H ) \rightarrow B ( H )$ ; confidence 0.804

156. t13014099.png ; $\operatorname{R}$ ; confidence 1.000

157. b13009028.png ; $\Omega \times [ 0 , T$ ; confidence 0.804 NOTE: the parentesis should probably be closed

158. c1200808.png ; $\varphi ( A ) = \sum _ { i = 0 } ^ { n } a _ { i } A ^ { i } = 0$ ; confidence 0.804

159. z13002036.png ; $\tau _ { \rho }$ ; confidence 0.804

160. c02327013.png ; $p , q \in S$ ; confidence 0.804

161. o130060159.png ; $\Delta \otimes \Delta \cong K _ { X }$ ; confidence 0.804

162. q13004024.png ; $K _ { I } ( f )$ ; confidence 0.804

163. a130060131.png ; ${\cal F} ^ { \# } ( n )$ ; confidence 1.000

164. a13013016.png ; $\frak g$ ; confidence 1.000

165. d0302808.png ; $\tau _ { n } ( t ) = \frac { 1 } { 2 \pi } \frac { 2 ^ { 2 n } ( n ! ) ^ { 2 } } { ( 2 n ) ! } \operatorname { cos } ^ { 2 n } \frac { t } { 2 }$ ; confidence 0.804

166. w120090273.png ; ${\cal E}^l$ ; confidence 1.000

167. e13003024.png ; $\tilde { \cal M } _ { C }$ ; confidence 1.000

168. a1302907.png ; $P_Y \rightarrow Y$ ; confidence 1.000

169. l1202004.png ; $A _ { i } \cap ( - A _ { i } ) \neq \emptyset$ ; confidence 0.804

170. w1200509.png ; $1 + a _ { 1 } ^ { 2 } + \ldots + a _ { k } ^ { 2 }$ ; confidence 0.804

171. s13064029.png ; $\operatorname{Ran}( a )$ ; confidence 1.000

172. a13007036.png ; $3 ^ { 3 } .5 .7,3 ^ { 2 } .5 ^ { 2 } .7,3 ^ { 2 } .5 .7 ^ { 2 }$ ; confidence 0.804

173. e12001035.png ; $f = m \circ e$ ; confidence 0.804

174. a13027023.png ; $T _ { n } ( x _ { n } ) = Q _ { n } f.$ ; confidence 1.000

175. c12019047.png ; $K ( T M )$ ; confidence 0.804

176. b12021079.png ; ${\bf C} ( \mu )$ ; confidence 1.000

177. p13007049.png ; $M u = 0$ ; confidence 0.804

178. b12009093.png ; $( f ( z ^ { n } ) )^ { m / n }$ ; confidence 0.804

179. l13001069.png ; $\|S_{NB}\| /\operatorname { ln } ^ { 2 } N$ ; confidence 1.000

180. c12007073.png ; ${\calA} = Ab$ ; confidence 1.000

181. c12018076.png ; $g = \lambda \mu ( d \rho \otimes d \sigma + d \sigma \otimes d \rho ) / 2$ ; confidence 0.803

182. t12021050.png ; $a ( G )$ ; confidence 0.803

183. m12016053.png ; $\operatorname{rank} ( \Sigma ) = p _ { 1 }$ ; confidence 1.000

184. r13010093.png ; ${\bf E} _ { 6 }$ ; confidence 1.000

185. c130070228.png ; $C _ { 2 }$ ; confidence 0.803

186. e12006050.png ; $C \Gamma : Y \rightarrow V Y \otimes \wedge ^ { 2 } T ^ { * } M$ ; confidence 0.803

187. m06425028.png ; $Q \neq 0$ ; confidence 1.000

188. c12007097.png ; $\operatorname { lim }_\lambda$ ; confidence 1.000

189. e13003027.png ; $\frak p$ ; confidence 1.000 NOTE: it is very hard to read the original image

190. b1201604.png ; $p _ { i k , j } \geq 0$ ; confidence 0.803

191. w120090343.png ; $h = h _ { \beta } \in \frak h$ ; confidence 1.000

192. e12020020.png ; $1.5$ ; confidence 0.803

193. b12027066.png ; $a ( . )$ ; confidence 1.000

194. b13012038.png ; $( f ^ { * } d \mu ) _ { N } ( x )$ ; confidence 0.803

195. b11066062.png ; $| K ( x , y ^ { \prime } ) - K ( x , y ) | \leq C | y ^ { \prime } - y | ^ { \gamma } | x - y | ^ { - n - \gamma }.$ ; confidence 1.000

196. b12030024.png ; $e ^ { i \eta . y}$ ; confidence 1.000

197. m130180160.png ; $| \mu ( 0,1 ) |$ ; confidence 0.802

198. s13054049.png ; $\alpha , b \in F ^ { * }$ ; confidence 0.802

199. f12021014.png ; $\epsilon > r$ ; confidence 0.802

200. s120040104.png ; $\operatorname{ch} : R \rightarrow \Lambda$ ; confidence 1.000

201. s13064021.png ; $a \in L ^ { 1 } ( {\bf T} )$ ; confidence 1.000

202. w12019048.png ; $( \Omega f ) _ { W } = f$ ; confidence 0.802

203. w13009087.png ; $B ( t , \omega ) = \omega ( t )$ ; confidence 0.802

204. b12021040.png ; $X \in U ( a )$ ; confidence 0.802

205. w12019049.png ; $\Omega A _ { W } = A$ ; confidence 0.802

206. s12033061.png ; ${\cal D} = ( G , \{ D g : g \in G \} , \in )$ ; confidence 1.000

207. n06696021.png ; $F _ { n } ( x ; \lambda ) = \sum _ { m = 0 } ^ { \infty } \sum _ { k = m + n / 2 } ^ { \infty } \frac { ( \lambda / 2 ) ^ { m } ( x / 2 ) ^ { k } } { m ! k ! } e ^ { - ( \lambda + x ) / 2 }.$ ; confidence 0.801

208. z13012024.png ; $Z _ { n } ( x ; \sigma ) = ( 1 + \sigma ) ^ { n } T _ { n } ( \frac { x - \sigma } { 1 + \sigma } )$ ; confidence 0.801

209. o13006083.png ; $l = 1,2$ ; confidence 0.801

210. v130050101.png ; $D^{( i )}$ ; confidence 1.000

211. b12037084.png ; $\{ 0,1 , \vee , \wedge \}$ ; confidence 0.801

212. e12015051.png ; $\dot { x } \square ^ { i }$ ; confidence 1.000

213. g1200103.png ; $\hat { f } ( \omega ) = \int _ { - \infty } ^ { \infty } e ^ { - i \omega t } f ( t ) d t$ ; confidence 0.801

214. c02646018.png ; $[ a ]$ ; confidence 0.801

215. l120120208.png ; $G ( K _ { p ^ { \prime } } )$ ; confidence 0.801

216. e035000126.png ; $K ( . , . )$ ; confidence 0.801

217. b13012060.png ; ${\cal P M} ^ { * }$ ; confidence 1.000

218. v11005020.png ; $\operatorname{VMO}(\bf R )$ ; confidence 1.000

219. i13005081.png ; $a ( z ) : = \prod _ { j = 1 } ^ { J } \frac { z - i k _ { j } } { z + i k _ { j } } \operatorname { exp } \{ - \frac { 1 } { 2 \pi i } \int _ { - \infty } ^ { \infty } \frac { \operatorname { ln } ( 1 - | r _ { + } ( k ) | ^ { 2 } ) } { k - z } d k \}.$ ; confidence 1.000

220. c13026017.png ; ${\cal D} ^ { \prime }$ ; confidence 1.000

221. s1305104.png ; ${\bf Z} ^ { 0 }$ ; confidence 1.000

222. c12008044.png ; $A = \left[ \begin{array} { l } { A _ { 1 } } \\ { A _ { 2 } } \end{array} \right] \in C ^ { ( m n + p ) \times m }$ ; confidence 0.801

223. s13002050.png ; $\overline { U M } = U M$ ; confidence 0.801

224. r130070110.png ; $L : {\cal H} \rightarrow H$ ; confidence 1.000

225. d120280124.png ; $F ( f ) = F _ { g } ( f ) = \int _ { \partial D _ { m } } f g,$ ; confidence 1.000

226. c12031034.png ; $f : [ 0,1 ] ^ { d } \rightarrow \bf R$ ; confidence 1.000

227. t12007071.png ; $a_n ( g )$ ; confidence 1.000

228. m1200107.png ; $u \in T x , v \in T y$ ; confidence 0.800

229. t12002019.png ; ${\cal T} ^ { + }$ ; confidence 1.000

230. a12010068.png ; $u - \Delta u = f$ ; confidence 0.800

231. l110020131.png ; $M ^ { \perp } \Bigcap N ^ { \perp } = ( M \Bigcup N ) ^ { \perp }$ ; confidence 1.000

232. b01501014.png ; $\xi ^ { * \prime } : X \rightarrow B _ { n }$ ; confidence 0.800

233. b12056012.png ; $\operatorname { Ric } \geq - ( n - 1 ) \delta ^ { 2 } , \quad \delta \geq 0$ ; confidence 0.800

234. d13006061.png ; $X = \{ X _ { 1 } , \dots , X _ { n } \}$ ; confidence 0.800

235. m12015064.png ; $\times | I _ { p } + \Sigma ^ { - 1 } ( X - M ) \Omega ^ { - 1 } ( X - M ) ^ { \prime } | ^ { - ( n + m + p - 1 ) / 2 } , X \in {\bf R} ^ { p \times n } , M \in {\bf R} ^ { p \times n } , \Sigma > 0 , \Omega > 0.$ ; confidence 1.000

236. c024780251.png ; $a \neq b$ ; confidence 0.800

237. g12005016.png ; $\operatorname { Re } \mu _ { j } ( k , R ) < \operatorname { Re } \mu _ { 0 } ( k , R )$ ; confidence 0.800

238. p12015030.png ; $Z_n$ ; confidence 1.000

239. l13006065.png ; $\lfloor x \rfloor$ ; confidence 1.000

240. a1302508.png ; $\{ x y \{ z u v \} \} = \{ x y z \} u v \} + \{ z \{ x y u \} v \} + \{ z u \{ x y v \} \}$ ; confidence 0.800

241. a014060130.png ; $w_i$ ; confidence 1.000

242. a11032013.png ; $T \approx f _ { y } ( t _ { m } , u _ { m } )$ ; confidence 0.800

243. b11092021.png ; $y \in E$ ; confidence 0.800

244. f110160195.png ; $\sim_l$ ; confidence 1.000

245. t12013017.png ; $[ \alpha ] = ( \alpha , \alpha ^ { 2 } / 2 , \alpha ^ { 2 } / 3 , \ldots )$ ; confidence 0.800

246. n13002033.png ; $f : X \times Y \rightarrow \bf R$ ; confidence 1.000

247. e12007061.png ; $F ( z ) = ( 1 / k ! ) \int _ { i } ^ { z } f ( \tau ) ( z - \tau ) ^ { k } d \tau$ ; confidence 0.799

248. b12022042.png ; $\xi \in \Xi$ ; confidence 1.000

249. f13001036.png ; $\operatorname { gcd } ( a ^ { ( q ^ { i } - 1 ) / 2 } - 1 , f _ { i } )$ ; confidence 1.000

250. l06005055.png ; $x ^ { 1 } = \operatorname { sinh } u ^ { 1 } \operatorname { cosh } u ^ { 2 } \ldots \operatorname { cosh } u ^ { n }$ ; confidence 0.799

251. p07548027.png ; $( \alpha \supset ^ { * } b ) \in D$ ; confidence 0.799

252. m12027017.png ; $= \sum _ { \alpha \in Z _ { f } } \varphi ( \alpha )$ ; confidence 0.799

253. t120010114.png ; $\operatorname { dim } ( {\cal S} ) = 7$ ; confidence 1.000

254. l058360142.png ; $P _ { 8 }$ ; confidence 0.799

255. j13002054.png ; $n/100$ ; confidence 1.000

256. a130040799.png ; ${\bf D} \in \operatorname{K}$ ; confidence 1.000

257. c1202604.png ; $\{ ( x _ { j } , t _ { n } ) : x _ { j } = j h , t _ { n } = n k , 0 \leq j \leq J , 0 \leq n \leq N \},$ ; confidence 0.799

258. m1202408.png ; $u [ 1 ] = u - 2 ( \operatorname { log } \varphi ) _ { x y } = - u + \frac { \varphi _ { x } \varphi_y } { \varphi ^ { 2 } };$ ; confidence 1.000

259. f13009040.png ; $U _ { n } ^ { ( k ) }$ ; confidence 0.799

260. b1204908.png ; $m _ { i } : \Sigma \rightarrow X$ ; confidence 0.799

261. a01172010.png ; $X _ { 0 }$ ; confidence 0.798

262. s13058014.png ; $I = [ \xi _ { l } ^ { 0 } ] ^ { 2 } + [ \xi _ { r } ^ { 0 } ] ^ { 2 }$ ; confidence 0.798

263. f12021022.png ; $\pi ( \lambda ) = \sum _ { n = 0 } ^ { N } ( \lambda + n ) ( \lambda + n - 1 ) \ldots ( \lambda + 1 ) a ^ { n _0} =$ ; confidence 1.000

264. c120170146.png ; $M ( 1 )$ ; confidence 0.798

265. s1305807.png ; $\bf r \times l$ ; confidence 1.000

266. q13005094.png ; $\operatorname{QS} ( T ) \subset M$ ; confidence 1.000

267. w13009057.png ; $\varphi = \sum _ { n = 0 } ^ { \infty } \theta _ { n } ( f _ { n } ),$ ; confidence 1.000

268. l12005013.png ; $f \in L _ { 1 } ( R _ { + } ; e ^ { - x } / \sqrt { x } )$ ; confidence 0.798

269. f13019016.png ; $c _ { N } = c _ { - N } = 1 , c _ { j } = 2 \text{ otherwise}$ ; confidence 1.000

270. n067520493.png ; $S , Y , Z \rightarrow U , V , W$ ; confidence 0.798

271. t12013051.png ; $\tau _ { n } ( x , y + [ z ] )$ ; confidence 1.000

272. t12001039.png ; $\Phi ^ { \alpha } ( Y ) = \nabla _ { Y } \xi ^ { \alpha }$ ; confidence 0.798

273. g13003022.png ; $w \mapsto ( w ^ { * } \varphi _ { \lambda } ) _ { \lambda \in \Lambda }$ ; confidence 0.798

274. h12002051.png ; $H _ { \phi } = H _ { \phi + \psi }$ ; confidence 0.798

275. l13001082.png ; $S _ { B }$ ; confidence 0.798

276. b130290153.png ; $M _ { p }$ ; confidence 0.798

277. c120170174.png ; $\operatorname { deg } r _ { j } = 2 k _ { j }$ ; confidence 0.798

278. h12005041.png ; $C _ { D }$ ; confidence 0.798

279. f110160148.png ; $1 \leq m \leq l$ ; confidence 0.798

280. w130080185.png ; $( v _ { i } , u _ { i } )$ ; confidence 0.797

281. a130040298.png ; $\bf A \in Q$ ; confidence 1.000

282. c13009033.png ; $d ( P _ { N } u ) / d x = \sum _ { n = 0 } ^ { N } b _ { n } T _ { N } ( x )$ ; confidence 0.797

283. w0975909.png ; $\operatorname{WC} ( A , k ) = 0$ ; confidence 1.000

284. w120110152.png ; $.d Y _ { 1 } \ldots d Y _ { 2 k }$ ; confidence 1.000

285. t13014039.png ; $\tilde{\bf E} _ { 6 }$ ; confidence 1.000

286. q12001069.png ; $\tau ^ { 2 } = \operatorname{id}$ ; confidence 1.000

287. h1200302.png ; $E ( \varphi ) = \frac { 1 } { 2 } \int _ { M } | d \varphi | ^ { 2 } v _ { g }$ ; confidence 0.797

288. t120200236.png ; $\operatorname{min}_j | z _ { j } | = \operatorname { min } _ { j } | w _ { j } | = 1$ ; confidence 1.000

289. l12010022.png ; $\sum _ { j \geq 1 } | e | ^ { \gamma } \approx$ ; confidence 0.797

290. e12015045.png ; $( \bar{x} )$ ; confidence 1.000

291. f110160111.png ; $( \phi _ { 1 } \& \ldots \& \phi _ { n } )$ ; confidence 0.797

292. b13020048.png ; $\alpha _ { i i } \neq 0$ ; confidence 1.000

293. c020660157.png ; $a b = 1$ ; confidence 0.797

294. k05507064.png ; $\tilde { \gamma } = \gamma _ { \tilde{\omega} }$ ; confidence 1.000

295. b120420155.png ; $\bf Z (\cal C )$ ; confidence 1.000

296. w120110237.png ; $r _ { N } ( \alpha , b ) \in S ( m _ { 1 } m _ { 2 } H ^ { N } , G )$ ; confidence 0.797

297. a1201607.png ; $S _ { i } ( t | \{ u _ { i } ( t ) \} , \{ C _ { i j } ( t ) \} )$ ; confidence 0.797

298. b01501024.png ; $\{ \xi_r\}$ ; confidence 1.000

299. l12006066.png ; $h ^ { I I } ( z ) ^ { - 1 }$ ; confidence 0.797

300. b12050044.png ; $a _ { X } : = \operatorname { inf } \{ s : \operatorname{l} ( s , 0 ) > x \}$ ; confidence 1.000

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/40. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/40&oldid=45570