User:Maximilian Janisch/latexlist/latex/NoNroff/4
List
1. ; $+ \sigma ^ { 2 } ( t ) f _ { \chi x } ^ { \prime \prime } ( t , X _ { t } ) / 2 ] d t + \sigma ( t ) f _ { X } ^ { \prime } ( t , X _ { t } ) d W _ { t }$ ; confidence 0.139
2. ; $\langle D _ { + } \} + \langle D _ { - } \rangle = ( A + A ^ { - 1 } ) ( \langle D _ { 0 } \rangle + \langle D _ { \infty } \rangle )$ ; confidence 0.534
3. ; $\Lambda _ { D _ { + } } ( a , x ) + \Lambda _ { D _ { - } } ( a , x ) = x ( \Lambda _ { D _ { 0 } } ( a , x ) + \Lambda _ { D _ { \infty } } ( a , x ) )$ ; confidence 0.657
4. ; $\mathfrak { c } _ { 1 } / \mathfrak { a } _ { 1 } \geq \ldots \geq \mathfrak { c } _ { \mathfrak { N } } / a _ { \mathfrak { X } }$ ; confidence 0.121
5. ; $L = \frac { \partial } { \partial x } + i \frac { \partial } { \partial y } - 2 i ( x + i y ) \frac { \partial } { \partial t }$ ; confidence 0.997
6. ; $v _ { MAP } = \operatorname { arg } \operatorname { max } _ { v _ { j } \in V } P ( a _ { 1 } , \ldots , a _ { n } | v _ { j } ) P ( v _ { j } )$ ; confidence 0.073
7. ; $S ( x , y , t ) = \sqrt { \frac { 2 \pi } { D } } \operatorname { log } ( \frac { x + y + t + 1 + \sqrt { D } } { x + y + t + 1 - \sqrt { D } } )$ ; confidence 0.674
8. ; $= [ ( - 1 ) ^ { p - m - n } \prod _ { j = 1 } ^ { p } ( x \frac { d } { d x } - \alpha ; + 1 ) \prod _ { j = 1 } ^ { q } ( x \frac { d } { d x } - b _ { j } ) ]$ ; confidence 0.244
9. ; $\frac { \partial u ( t , x ) } { \partial t } + \frac { 1 } { 2 } \| d _ { x } u ( t , x ) \| ^ { 2 } = 0 , \quad ( t , x ) \in ( 0 , T ) \times H$ ; confidence 0.632
10. ; $I _ { 1 } ( k ) = \frac { f _ { 1 } ^ { \prime } ( 0 , k ) } { f _ { 1 } ( k ) } = \frac { f _ { 2 } ^ { \prime } ( 0 , k ) } { f _ { 2 } ( k ) } = h _ { 2 } ( k )$ ; confidence 0.584
11. ; $\sum _ { p \in E , S } \rho _ { p } E [ W _ { p } ] + \sum _ { p \in L } \rho _ { p } ( 1 - \frac { \lambda _ { p } R } { 1 - \rho } ) E [ W _ { p } ] =$ ; confidence 0.142
12. ; $E [ W _ { p } ] _ { NP } = \frac { 1 } { 2 ( 1 - \sigma _ { p - 1 } ) ( 1 - \sigma _ { p } ) } \sum _ { k = 1 } ^ { P } \lambda _ { k } b _ { k } ^ { ( 2 ) }$ ; confidence 0.456
13. ; $\ddot { x } - \mu ( 1 - x ^ { 2 } ) \dot { x } + x = 0 , \quad \mu = \text { const } > 0 , \quad \dot { x } ( t ) \equiv \frac { d x } { d t }$ ; confidence 0.636
14. ; $\operatorname { exp } 4 i \pi \sum _ { 1 \leq j < l \leq 2 k } ( - 1 ) ^ { j + l } [ X - Y _ { j } , X - Y _ { l } ] . d Y _ { 1 } \ldots d Y _ { 2 k }$ ; confidence 0.464
15. ; $[ ( x , \xi ) , ( y , \eta ) ] = \langle \xi , y \rangle _ { E } ^ { * } , _ { E } - \langle \eta , x \rangle _ { E } ^ { * } , E ^ { \prime }$ ; confidence 0.301
16. ; $\| ( f _ { 0 } , f _ { 1 } , \ldots ) \| _ { \Gamma ( H ) } = ( \sum _ { n = 0 } ^ { \infty } n ! f _ { n } | _ { H } ^ { 2 } \otimes _ { n } ) ^ { 1 / 2 }$ ; confidence 0.471
17. ; $K ( \Gamma ) \approx L ( \Gamma ) = \{ \kappa _ { j } ( \psi ) \approx \lambda _ { j } ( \psi ) : \psi \in \Gamma , j \in J \}$ ; confidence 0.942
18. ; $= \sum _ { i } \sum _ { j } \sum _ { t } S _ { i } ( t | \{ u _ { i } ( t ) \} , \{ C _ { i j } ( t ) \} ) m _ { i } - \sum _ { i } \sum _ { t } u _ { i } ( t )$ ; confidence 0.608
19. ; $= \sum _ { i = 1 } ^ { k } ( - 1 ) ^ { i + 1 } X X _ { i } \otimes X _ { 1 } \wedge \ldots \wedge R _ { i } \wedge \ldots \wedge X _ { k } +$ ; confidence 0.072
20. ; $g _ { m } ( \eta ) = \int _ { R ^ { N } } g ( y ) e ^ { - i \eta y \overline { \phi } } m ( y ; \eta ) d y , \forall \eta \in Y ^ { \prime }$ ; confidence 0.168
21. ; $I ( M ) = \sum _ { i = 0 } ^ { s - 1 } \left( \begin{array} { c } { s - 1 } \\ { i } \end{array} \right) J _ { A } ( H _ { m } ^ { i } ( M ) )$ ; confidence 0.189
22. ; $\tau _ { j } ^ { n + 1 } = \frac { u _ { j } ^ { n + 1 } - u _ { j } ^ { n } } { k } - \delta ^ { 2 } ( \frac { u _ { j } ^ { n + 1 } + u _ { j } ^ { n } } { 2 } )$ ; confidence 0.913
23. ; $e ^ { \operatorname { ran } } ( Q _ { n } , F _ { d } ) = \operatorname { sup } \{ E ( | l _ { a } ( f ) - Q _ { n } ( f ) | ) : f \in F _ { d } \}$ ; confidence 0.244
24. ; $\tau _ { n } ( t ) = \frac { 1 } { 2 \pi } \frac { 2 ^ { 2 n } ( n ! ) ^ { 2 } } { ( 2 n ) ! } \operatorname { cos } ^ { 2 n } \frac { t } { 2 }$ ; confidence 0.804
25. ; $\operatorname { Bel } _ { X } ^ { | Z | } = \operatorname { Bel } _ { Z | Y } \oplus \operatorname { Bel } _ { X } ^ { \perp Y }$ ; confidence 0.063
26. ; $H ^ { 1 } ( \overline { Y _ { 1 } ( N ) } ; \operatorname { sym } ^ { k - 2 } R ^ { 1 } \overline { f } \cdot z _ { p } ) \otimes Q _ { p }$ ; confidence 0.344
27. ; $P ( \theta , \mu ) ( d x ) = \frac { 1 } { L _ { \mu } ( \theta ) } \operatorname { exp } \langle \theta , x \rangle \mu ( d x )$ ; confidence 0.266
28. ; $\operatorname { lim } _ { r \rightarrow \infty } \int _ { x = r } | \frac { \partial v } { \partial r } - i k v | ^ { 2 } d s = 0$ ; confidence 0.581
29. ; $\lambda _ { \pm } = \operatorname { exp } ( \frac { J } { k _ { B } T } ) \operatorname { cosh } ( \frac { H } { k _ { B } T } ) \pm$ ; confidence 0.975
30. ; $Q _ { D _ { + } } - Q _ { D _ { - } } = \left\{ \begin{array} { l } { Q _ { D _ { 0 } } } \\ { z ^ { 2 } Q _ { D _ { 0 } } } \end{array} \right.$ ; confidence 0.936
31. ; $T = \{ ( t _ { 1 } , \dots , t _ { m } ) : t _ { \operatorname { min } } < t _ { 1 } < \ldots < t _ { m } < t _ { \operatorname { max } } , t$ ; confidence 0.104
32. ; $\phi _ { X } ( T ) = \operatorname { etr } ( i T ^ { \prime } M ) \psi ( \operatorname { tr } ( T ^ { \prime } \Sigma T \Phi ) )$ ; confidence 0.970
33. ; $\Theta = \left( \begin{array} { l l l } { T } & { K } & { J } \\ { \mathfrak { H } } & { \square } & { E } \end{array} \right)$ ; confidence 0.209
34. ; $\tilde { \gamma } - \gamma = i ( \sigma _ { 1 } \Phi \Phi ^ { * } \sigma _ { 2 } - \sigma _ { 2 } \Phi \Phi ^ { * } \sigma _ { 1 } )$ ; confidence 0.876
35. ; $\operatorname { lim } _ { t \rightarrow \infty } \int e ^ { i q ( f ) } d \mu _ { t } ( q ) = \int e ^ { i q ( f ) } d \mu ( q ) = : S ( f )$ ; confidence 0.576
36. ; $| z _ { 1 } - z _ { 2 } | = | z _ { 2 } - z _ { 3 } | \Rightarrow \frac { | h ( z _ { 1 } ) - h ( z _ { 2 } ) | } { | h ( z _ { 2 } ) - h ( z _ { 3 } ) | } \leq M$ ; confidence 0.973
37. ; $\sum _ { i , j = 1 } ^ { n } K ( x _ { i } , x _ { j } ) t _ { j } \overline { t } _ { i } \geq 0 , \forall t \in C ^ { * } , \forall x _ { i } \in E$ ; confidence 0.253
38. ; $\operatorname { max } _ { k = m + 1 , \ldots , m + n } | g ( k ) | \geq ( \frac { n } { 2 e ( m + n ) } ) ^ { n } | b _ { 1 } + \ldots + b _ { n } |$ ; confidence 0.775
39. ; $\delta ^ { * } : H ^ { n } ( \Gamma _ { S ^ { n } } ) \rightarrow H ^ { n + 1 } ( \Gamma _ { D \square ^ { n + 1 } } , \Gamma _ { S ^ { n } } )$ ; confidence 0.232
40. ; $\operatorname { cosh } ^ { 2 } \pi \frac { b } { l } = 2 , \pi \frac { b } { l } \approx .8814 , \frac { b } { l } \approx .2806$ ; confidence 0.604
41. ; $\Phi ( z ) = - \frac { i \Gamma } { 2 \pi } \operatorname { log } [ \prod _ { m = - \infty } ^ { \infty } ( z - ( z _ { 0 } - m l ) ) ] =$ ; confidence 0.578
42. ; $\sim \frac { d \lambda } { \sqrt { \lambda } } + ( \text { holomorphic } ) , \text { as } \lambda \rightarrow \infty$ ; confidence 0.601
43. ; $\psi = \frac { \operatorname { exp } ( \sum t _ { n } \lambda ^ { n } ) \tau ( t j - ( 1 / j \lambda ^ { j } ) ) } { \tau ( t _ { j } ) }$ ; confidence 0.314
44. ; $P \{ \chi _ { n } ^ { 2 } < x \} \rightarrow \Phi ( \sqrt { 2 x } - \sqrt { 2 n - 1 } ) \quad \text { as } n \rightarrow \infty$ ; confidence 0.544
45. ; $h \otimes \dot { k } = ( \theta \otimes \theta ) \otimes ( \varphi \otimes \varphi ) \in S ^ { 2 } E \otimes S ^ { 2 } E$ ; confidence 0.410
46. ; $\times \operatorname { exp } \{ \gamma - u \xi ( u ) + \int _ { 0 } ^ { \xi ( x ) } \frac { e ^ { s } - 1 } { s } d s \} \quad ( u > 1 )$ ; confidence 0.788
47. ; $( v , k , \lambda , n ) = ( \frac { q ^ { d + 1 } - 1 } { q - 1 } , \frac { q ^ { d } - 1 } { q - 1 } , \frac { q ^ { d - 1 } - 1 } { q - 1 } , q ^ { d - 1 } )$ ; confidence 0.823
48. ; $\Sigma ^ { ( t + 1 ) } = \frac { 1 } { n } \sum _ { i } w _ { i } ^ { ( t + 1 ) } ( y _ { i } - \mu ^ { ( t + 1 ) } ) ( y _ { i } - \mu ^ { ( t + 1 ) } ) ^ { T }$ ; confidence 0.835
49. ; $\| \square ^ { t } M _ { \varphi } \| _ { cb } : = \operatorname { sup } \| \square ^ { t } M _ { \varphi } \otimes 1 _ { n } \|$ ; confidence 0.611
50. ; $( \frac { \partial } { \partial \lambda } ) [ u ( z , \lambda ) ( \lambda - \lambda _ { 2 } ) ] = z ^ { \lambda } 2 + \ldots$ ; confidence 0.458
51. ; $\left\{ \begin{array} { l l } { \operatorname { min } } & { c ^ { T } x } \\ { s.t. } & { A x \leq b } \end{array} \right.$ ; confidence 0.169
52. ; $\overline { d } _ { \chi } ^ { G } ( A ) \geq \operatorname { det } ( A ) = \overline { d } _ { \langle 1 ^ { n } } \rangle ( A )$ ; confidence 0.382
53. ; $\frac { D } { D t } = \frac { \partial } { \partial t } + v _ { i } ( . ) , _ { i } = \frac { \partial } { \partial t } + v . \nabla$ ; confidence 0.611
54. ; $| \Sigma | ^ { - n / 2 } | \Phi | ^ { - p / 2 } h ( \operatorname { tr } ( ( X - M ) ^ { \prime } \Sigma ^ { - 1 } ( X - M ) \Phi ^ { - 1 } ) )$ ; confidence 0.925
55. ; $\sum _ { i = 1 } ^ { k } \mu _ { i } \leq \frac { n } { n + 2 } \frac { 4 \pi ^ { 2 } k ^ { 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } } , k = 1,2$ ; confidence 0.892
56. ; $E ( \lambda ) = \operatorname { ker } ( \lambda _ { 1 } \sigma _ { 2 } - \lambda _ { 2 } \sigma _ { 1 } + \tilde { \gamma } )$ ; confidence 0.601
57. ; $\sum _ { p = 1 } ^ { P } \rho _ { p } E [ W _ { p } ] = \frac { \rho } { 2 ( 1 - \rho ) } \sum _ { p = 1 } ^ { P } \lambda _ { p } b _ { p } ^ { ( 2 ) }$ ; confidence 0.956
58. ; $| u ( y ) | \leq \sum _ { j = 1 } ^ { \infty } | u _ { j } , \varphi _ { j } ( y ) | \leq c \Lambda \| _ { V } \| = c \Lambda \| u \| _ { + }$ ; confidence 0.136
59. ; $\int _ { D } B ( x , y ) u ( y ) d y = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } ^ { - 1 } ( u , \varphi _ { j } ) _ { 0 } \varphi _ { j } ( x )$ ; confidence 0.959
60. ; $\int _ { S ^ { \prime } ( R ) } e ^ { i \langle X , \xi \rangle _ { d } } d \mu ( x ) = e ^ { - \| \xi \| _ { 2 } ^ { 2 } / 2 } , \xi \in S ( R )$ ; confidence 0.201
61. ; $\partial _ { s + } \phi ( s ) = \operatorname { lim } _ { \epsilon \downarrow 0 } \partial _ { s + \epsilon } \phi ( s )$ ; confidence 0.660
62. ; $M = \frac { 1 } { 3 ( n + k ) } ( \frac { \delta _ { 1 } - \delta _ { 2 } } { 16 } ) ^ { 2 n + 2 k } \delta _ { 2 } ^ { m + ( n + k ) / 1 + \pi / k ) }$ ; confidence 0.420
63. ; $a _ { n } ^ { * } b = a b + S ( m _ { 1 } m _ { 2 } H , G ) , a _ { * } ^ { * } b = a b + \frac { 1 } { 2 \iota } \{ a , b \} + S ( m _ { 1 } m _ { 2 } H ^ { 2 } , G )$ ; confidence 0.076
64. ; $\frac { \partial \overline { u } } { \partial T } = \overline { u } \frac { \partial \overline { u } } { \partial X }$ ; confidence 0.723
65. ; $\theta _ { n } ( h _ { 1 } \otimes \ldots \otimes h _ { n } ) = \theta _ { n } ( h _ { 1 } \otimes \cdots \otimes \sim h _ { n } )$ ; confidence 0.271
66. ; $( f _ { \alpha } , f _ { \beta } ) \mapsto ( \beta - \alpha + h ( \alpha ) \beta - h ( \beta ) \alpha ) f _ { \alpha + \beta }$ ; confidence 0.910
67. ; $R _ { k + l } ^ { k - l } ( r _ { s } \alpha ) = \frac { l ! } { ( \alpha + 1 ) _ { l } } r ^ { k - l } P _ { l } ^ { ( \alpha , k - l ) } ( 2 r ^ { 2 } - 1 )$ ; confidence 0.078
68. ; $\mathfrak { p } _ { i } ( t ) = \prod _ { m = 1 , m \neq i } ^ { n } \frac { t - t _ { m } } { t _ { i } - t _ { m } } \quad ( i = 1 , \ldots , n )$ ; confidence 0.337
69. ; $\int _ { - \frac { \pi } { 2 } } ^ { \xi } \frac { 1 - a i } { s } d s = \operatorname { ln } ( \frac { \xi } { z } ) ^ { 1 - \alpha i }$ ; confidence 0.062
70. ; $r _ { D } \otimes R : H _ { M } ^ { i + 1 } ( X , Q ( i + 1 - m ) ) _ { Z } \otimes R \rightarrow H _ { D } ^ { i + 1 } ( X _ { / R } , R ( i + 1 - m ) )$ ; confidence 0.184
71. ; $\partial _ { t } f + \alpha ( \xi ) . \nabla _ { x } f = \sum _ { n = 1 } ^ { \infty } \delta ( t - t _ { n } ) ( M _ { f } n - - f ^ { n - } )$ ; confidence 0.437
72. ; $[ ( \alpha _ { 1 } , \dots , \alpha _ { t - 1 } ) : \alpha _ { i } ] / ( \alpha _ { 1 } , \dots , \alpha _ { i - 1 } ) , 1 \leq i \leq d$ ; confidence 0.063
73. ; $\theta ^ { * } = \operatorname { arg } \operatorname { max } _ { \theta \in \Theta } \int f ( \theta , \phi ) d \phi$ ; confidence 0.933
74. ; $= \{ x _ { 1 } , \ldots , x _ { m } | x ^ { l } x ^ { k _ { i } + 1 } = x ^ { l _ { i + 2 } } ; \text { indices } ( \operatorname { mod } m ) \}$ ; confidence 0.055
75. ; $\left( \begin{array} { c c } { L ( \alpha , b ) } & { 0 } \\ { 0 } & { \varepsilon L ( b , \alpha ) } \end{array} \right)$ ; confidence 0.503
76. ; $= \sum _ { i = 0 } ^ { \infty } \sum _ { k = 0 } ^ { \infty } c _ { k } ( \lambda ) z ^ { i } p _ { i } ( \lambda + k ) z ^ { \lambda + k } =$ ; confidence 0.962
77. ; $( \frac { \partial } { \partial \lambda } ) ^ { m _ { j } + l } [ u ( z , \lambda ) ( \lambda - \lambda _ { j } ) ^ { m _ { j } } ] =$ ; confidence 0.941
78. ; $( \frac { \partial } { \partial \lambda } ) ^ { n _ { 1 } + l } [ u ( z , \lambda ) ( \lambda - \lambda _ { 2 } ) ^ { n _ { 1 } } ] =$ ; confidence 0.946
79. ; $\hat { \tau } 1 = \nabla \tau , \hat { \tau } _ { n } = \sum _ { i + j = n } \phi ( \hat { \tau } _ { i } \cup \hat { \tau } _ { j } )$ ; confidence 0.119
80. ; $p ( x ) = \frac { \Gamma ( ( n + 1 ) / 2 ) x ^ { k / 2 - 1 } ( 1 + x / n ) - ( n + 1 ) / 2 } { \Gamma ( ( n - k + 1 ) / 2 ) \Gamma ( k / 2 ) n ^ { k / 2 } }$ ; confidence 0.280
81. ; $A _ { k } \downarrow 0 ( k \rightarrow \infty ) , \sum _ { k = 0 } ^ { \infty } A _ { k } < \infty , | \Delta d _ { k } | < A _ { k }$ ; confidence 0.856
82. ; $\frac { a _ { 0 } } { 2 } + \sum _ { k = 1 } ^ { \infty } ( a _ { k } \operatorname { cos } k x + b _ { k } \operatorname { sin } k x )$ ; confidence 0.880
83. ; $F ^ { \prime } ( 2 x ) - \frac { q ( x ) } { 4 } + \frac { 1 } { 4 } ( \int _ { x } ^ { \infty } q ( t ) d t ^ { 2 } ) \leq c \sigma ^ { 2 } ( x )$ ; confidence 0.469
84. ; $\lambda ( X ) = \sum _ { i = 1 } ^ { S } \operatorname { deg } ( f _ { i } ( T ) ^ { l _ { i } } ) , \mu ( X ) = \sum _ { j = 1 } ^ { t } m _ { j }$ ; confidence 0.332
85. ; $P _ { K _ { + } } ( v , z ) - P _ { K _ { - } } ( v , z ) \equiv \operatorname { lk } ( K _ { 0 } ) \operatorname { mod } ( v ^ { 2 } - 1 , z )$ ; confidence 0.497
86. ; $( a , x ) - \Lambda _ { D _ { - } } ^ { * } ( a , x ) = x ( \Lambda _ { D _ { 0 } } ^ { * } ( a , x ) - \Lambda _ { D _ { \infty } } ^ { * } ( a , x ) )$ ; confidence 0.584
87. ; $\int _ { [ p _ { 0 } \ldots p _ { r } ] } g = \int _ { S _ { r } } g ( v _ { 0 } p _ { 0 } + \ldots + v _ { r } p _ { r } ) d v _ { 1 } \ldots d v _ { r }$ ; confidence 0.162
88. ; $L ^ { \prime } ( E ) = \{ \mu \in \operatorname { ca } ( \Omega , F ) : | \mu | \leq \sum _ { i = 1 } ^ { n } \alpha _ { i } P _ { i }$ ; confidence 0.490
89. ; $E _ { 1 } = E _ { 0 } + \int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle | ^ { 2 } } { E _ { 1 } - \lambda } d \lambda < 0$ ; confidence 0.504
90. ; $\operatorname { lim } _ { k \rightarrow \infty } g _ { k , p } = \frac { f ^ { * } ( z ) } { ( z - r _ { 1 } ) \ldots ( z - r _ { p } ) }$ ; confidence 0.356
91. ; $L = \{ u \in \operatorname { PSH } ( C ^ { n } ) : u - \operatorname { log } ( 1 + | z | ) = O ( 1 ) ( z \rightarrow \infty ) \}$ ; confidence 0.077
92. ; $\operatorname { cap } ( E ) = \operatorname { exp } ( - \operatorname { sup } _ { z \in C ^ { n } } \rho _ { L _ { E } } ( z ) )$ ; confidence 0.634
93. ; $= \operatorname { lim } _ { t \rightarrow \infty } \int \prod _ { k = 1 } ^ { n } A _ { k } ( q ( t _ { k } ) ) d \mu _ { t } ( q ( . ) )$ ; confidence 0.418
94. ; $g ( x ; t ) = \frac { 1 } { ( 2 \pi t ) ^ { N / 2 } } \operatorname { exp } ( - \frac { x _ { 1 } ^ { 2 } + \ldots + x _ { N } ^ { 2 } } { 2 t } )$ ; confidence 0.958
95. ; $\sum _ { l = 0 } \operatorname { dim } H ^ { i } ( X , Z / p ) \geq \sum _ { i = 0 } \operatorname { dim } H ^ { i } ( X ^ { P } , Z / p )$ ; confidence 0.266
96. ; $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right) : = \{ X \subseteq [ n ] : | X | = k \} , k = 0 , \ldots , n$ ; confidence 0.367
97. ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k = 1 , \ldots , 2 n - 1 } \frac { | s _ { k } | } { M _ { 2 } ( k ) } = 1$ ; confidence 0.814
98. ; $\left( \begin{array} { c c c } { 1 } & { \ldots } & { ( m + n ) } \\ { s ( 1 ) } & { \cdots } & { s ( m + n ) } \end{array} \right)$ ; confidence 0.832
99. ; $\omega _ { 1 } = \frac { 1 } { 2 } ( 1 - g ^ { 2 } ) \eta , \omega _ { 2 } = \frac { i } { 2 } ( 1 + g ^ { 2 } ) \eta , \omega _ { 3 } = g \eta$ ; confidence 0.994
100. ; $\operatorname { lim } _ { t \rightarrow S } U ( t , s ) u _ { 0 } = u _ { 0 } \text { for } u _ { 0 } \in \overline { D ( A ( s ) ) }$ ; confidence 0.064
101. ; $\| \frac { \partial } { \partial t } ( \lambda - A ( t ) ) ^ { - 1 } \| \leq \frac { K _ { 1 } } { ( 1 + | \lambda | ) ^ { \rho } }$ ; confidence 0.985
102. ; $\operatorname { limsup } _ { n \rightarrow \infty , n \in U _ { \alpha } } \frac { \sigma ^ { * } ( n ) } { n } = \alpha$ ; confidence 0.939
103. ; $\operatorname { ord } _ { s = m } L ( h ^ { i } ( X ) , s ) = \operatorname { dim } _ { Q } H _ { M } ^ { i + 1 } ( X , Q ( m ) ) _ { Z } ^ { 0 }$ ; confidence 0.272
104. ; $\operatorname { ch } _ { V } : = \sum _ { \lambda \in h ^ { * } } ( \operatorname { dim } V ^ { \lambda } ) e ^ { \lambda }$ ; confidence 0.461
105. ; $V _ { 1 } \otimes \ldots \otimes V _ { n } \rightarrow V _ { \sigma ( 1 ) } \otimes \ldots \otimes V _ { \sigma ( n ) }$ ; confidence 0.500
106. ; $\operatorname { dim } A _ { \mathfrak { p } } = \operatorname { dim } A - \operatorname { dim } A / \mathfrak { p }$ ; confidence 0.586
107. ; $( V _ { g } f ) ( \theta , t ) = ( 2 \pi t ) ^ { - 1 } \int _ { S ^ { 2 } } f ( \sigma ) g ( \frac { 1 - \theta , \sigma } { t } ) d \sigma$ ; confidence 0.841
108. ; $+ \left[ \begin{array} { l l } { A _ { 1 } } & { A _ { 2 } } \\ { A _ { 3 } } & { A _ { 4 } 4 } \end{array} \right] T _ { p - l , q - 1 } =$ ; confidence 0.854
109. ; $C _ { \infty } ( \Gamma \backslash G ( R ) \otimes M _ { C } ) \not A ^ { 2 } ( \Gamma \backslash G ( R ) \otimes M _ { C } )$ ; confidence 0.051
110. ; $\ll \frac { N ^ { 2 } } { H } + \frac { N } { H } \sum _ { 1 \leq k \leq H } | _ { M < n \leq M + N - k } e ^ { 2 \pi i ( f ( n + k ) - f ( n ) ) } |$ ; confidence 0.073
111. ; $c _ { j } ( \lambda ) = - \sum _ { k = 0 } ^ { j - 1 } \frac { c _ { k } ( \lambda ) p _ { j - k } ( \lambda + k ) } { \pi ( \lambda + j ) }$ ; confidence 0.551
112. ; $L = \alpha ^ { [ 2 ] } ( z ) z ^ { 2 } ( \frac { d } { d z } ) ^ { 2 } + \alpha ^ { [ 1 ] } ( z ) z ( \frac { d } { d z } ) + \alpha ^ { [ 0 ] } ( z )$ ; confidence 0.362
113. ; $H ( \theta , \Theta _ { 0 } ) = \operatorname { inf } \{ H ( \theta , \theta _ { 0 } ) : \theta _ { 0 } \in \Theta _ { 0 } \}$ ; confidence 0.965
114. ; $= \operatorname { corr } [ \operatorname { sign } ( X _ { 1 } - X _ { 2 } ) , \operatorname { sign } ( Y _ { 1 } - Y _ { 2 } ) ]$ ; confidence 0.977
115. ; $\| \Delta _ { h _ { i } } ^ { 2 } f _ { x _ { i } } ^ { ( r _ { i } ^ { * } ) } \| _ { L _ { p } ( \Omega _ { 2 k _ { i } } | ) } \leq M _ { i } | h _ { i } |$ ; confidence 0.114
116. ; $= \frac { k } { 4 \pi } \int _ { S ^ { 2 } } f ( \alpha ^ { \prime } , \beta , k ) \overline { f ( \alpha , \beta , k ) } d \beta$ ; confidence 0.411
117. ; $\left\{ \begin{array} { l } { x _ { n } + 1 = T x _ { n } + F u _ { n } } \\ { v _ { n } = G x _ { n } + H u _ { n } } \end{array} \right.$ ; confidence 0.296
118. ; $\sigma _ { T } ( A , X ) = \{ ( a _ { i } ^ { ( 1 ) } , \ldots , \alpha _ { i } ^ { ( n ) } ) : 1 \leq i \leq \operatorname { dim } X \}$ ; confidence 0.117
119. ; $W _ { 1 } ( x , y ) W _ { 1 } ( x ^ { \prime } , y ^ { \prime } ) ^ { - 1 } = W _ { 2 } ( x , y ) W _ { 2 } ( x ^ { \prime } , y ^ { \prime } ) ^ { - 1 }$ ; confidence 0.996
120. ; $\| e ^ { i \zeta A } \| \leq C ^ { \prime } ( 1 + | \zeta | ) ^ { s ^ { \prime } } e ^ { \gamma | \operatorname { lm } \zeta | }$ ; confidence 0.200
121. ; $\psi ) _ { L ^ { 2 } ( R ^ { n } ) } ( \varphi , u ) _ { L ^ { 2 } ( R ^ { n } ) } = ( H ( u , v ) , H ( \psi , \varphi ) ) _ { L ^ { 2 } ( R ^ { 2 n } ) }$ ; confidence 0.428
122. ; $d S _ { S W } = d \hat { \Omega } _ { 1 } = \lambda ( \frac { d w } { W } ) = \lambda \frac { d P } { y } = \lambda \frac { d y } { P }$ ; confidence 0.555
123. ; $\Leftrightarrow [ \frac { \partial } { \partial x } - P , \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) } ] = 0$ ; confidence 0.947
124. ; $\rho ( A ( t ) ) \supset S _ { \theta _ { 0 } } = \{ z \in C : | \operatorname { arg } z | \leq \theta _ { 0 } \} \cup \{ 0 \}$ ; confidence 0.681
125. ; $\Rightarrow ( \mu I - A ) ^ { - 1 } \cdot E x = x \Rightarrow \| ( \mu I - A ) ^ { - 1 } \cdot E \| \cdot \| x \| \geq \| x \|$ ; confidence 0.265
126. ; $w ( z ) = \sum _ { k = 0 } ^ { n } a _ { k } ( z ) \cdot f ^ { ( k ) } ( z ) + \sum _ { k = 0 } ^ { n } b _ { k } ( z ) \overline { g ^ { ( k ) } ( z ) }$ ; confidence 0.273
127. ; $( f ^ { * } d \mu ) _ { N } : = \operatorname { lim } _ { h \rightarrow 0 } \int _ { R } f _ { h } ( \frac { x - u } { N } ) d \mu ( u )$ ; confidence 0.370
128. ; $A = - \sum _ { k , 1 = 1 } ^ { N } \frac { \partial } { \partial y _ { k } } ( a _ { k l } ( y ) \frac { \partial } { \partial y } )$ ; confidence 0.226
129. ; $\rho _ { \operatorname { max } } = \operatorname { sup } \{ \rho = \rho ( B ) : T \text { star shaped w. } r . t . B \}$ ; confidence 0.067
130. ; $B _ { i } ( x _ { m } , u , u _ { m } , u _ { m n } : x _ { m } ^ { \prime } , u ^ { \prime } , u _ { m } ^ { \prime } , u _ { m n } ^ { \prime } ) = 0$ ; confidence 0.231
131. ; $\{ M ( \alpha ) \text { pr } _ { \text { dom } \alpha } - \text { pr codom } \alpha \} \alpha \quad \text { for } n = 0$ ; confidence 0.112
132. ; $a _ { n } = \frac { 2 } { N } \frac { 1 } { \vec { c } _ { n } } \sum _ { j = 0 } ^ { N } u ( x _ { j } ) \frac { T _ { n } ( x _ { j } ) } { c _ { j } }$ ; confidence 0.142
133. ; $\| P _ { n } - P _ { n } ^ { \prime } \| = 2 \operatorname { sup } \{ | P _ { n } ( A ) - P _ { n } ^ { \prime } ( A ) | : A \in A _ { n } \}$ ; confidence 0.858
134. ; $+ \frac { 1 } { 2 \alpha } \int _ { x - w t } ^ { x + c t } \psi ( \xi ) d \xi + \frac { 1 } { 2 } [ \phi ( x + a t ) + \phi ( x - a t ) ]$ ; confidence 0.187
135. ; $x = \sum _ { k \in P } \overline { \lambda } _ { k } x ^ { ( k ) } + \sum _ { k \in R } \overline { \mu } _ { k } \cdot x ^ { ( k ) }$ ; confidence 0.156
136. ; $A \stackrel { f } { \rightarrow } B = A \stackrel { é } { \rightarrow } f [ A ] \stackrel { m } { \rightarrow } B$ ; confidence 0.193
137. ; $\frac { D \dot { x } ^ { 2 } } { d t } = \varepsilon ^ { i } = \frac { 1 } { 2 } g ^ { i } \cdot r \dot { x } \square ^ { r } - g ^ { i }$ ; confidence 0.148
138. ; $p _ { M } ( z ) = \frac { ( z - 1 ) ^ { m + 1 } } { z } \frac { m ! } { 2 \pi i } \int _ { P } \frac { e ^ { w } } { ( e ^ { w } - z ) w ^ { m + 1 } } d w$ ; confidence 0.427
139. ; $+ \frac { \Gamma ( 1 - \alpha - \beta ) } { 2 \Gamma ( 1 - \alpha ) \Gamma ( 1 - \beta ) } ( y - x ) ^ { t - \alpha - \beta }$ ; confidence 0.999
140. ; $\Lambda _ { m } ^ { \alpha , \beta } \sim \operatorname { max } \{ \operatorname { log } m , m ^ { \gamma + 1 / 2 } \}$ ; confidence 0.765
141. ; $\sigma ( B ) \subseteq \cup _ { i , j = 1 \atop i \neq j } ^ { n } K _ { i , j } ( A ) \subseteq \cup _ { i = 1 } ^ { n } G _ { i } ( A )$ ; confidence 0.135
142. ; $( \frac { \partial f ( x _ { 0 } ) } { \partial x _ { 1 } } , \ldots , \frac { \partial f ( x _ { 0 } ) } { \partial x _ { n } } )$ ; confidence 0.541
143. ; $\operatorname { lim } _ { n \rightarrow \infty } \int _ { n } ^ { b } f ( x ) d g _ { n } ( x ) = \int _ { n } ^ { b } f ( x ) d g ( x )$ ; confidence 0.327
144. ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$ ; confidence 0.434
145. ; $\delta _ { p } ( k ) = \operatorname { rank } _ { Z } E _ { 1 } ( k ) - \operatorname { rank } _ { Z _ { p } } E _ { 1 } ( k ) \geq 0$ ; confidence 0.431
146. ; $\frac { P _ { L } ( v , z ) - P _ { T } \operatorname { com } ( L ) ( v , z ) } { z ( ( \frac { v ^ { - 1 } - v } { z } ) ^ { 2 } - 1 ) } \equiv$ ; confidence 0.460
147. ; $\int _ { - \infty } ^ { \infty } [ \frac { - \operatorname { ln } F _ { a c } ^ { \prime } ( x ) } { 1 + x ^ { 2 } } ] d x < \infty$ ; confidence 0.394
148. ; $L _ { 3 } ( E ) = \{ \mu \in \operatorname { ca } ( \Omega , F ) : \mu \perp \sigma \text { for all } \sigma \perp P \}$ ; confidence 0.597
149. ; $\operatorname { Map } ( X \times Z , Y ) \rightarrow \operatorname { Map } ( X , \operatorname { Map } ( Z , Y ) )$ ; confidence 0.873
150. ; $x ^ { t } = \operatorname { sinh } u ^ { t } \operatorname { cosh } u ^ { t + 1 } \ldots \operatorname { cosh } u ^ { n }$ ; confidence 0.918
151. ; $( \lambda _ { 1 } , \rho _ { 1 } ) ( \lambda _ { 2 } , \rho _ { 2 } ) = ( \lambda _ { 1 } \lambda _ { 2 } , \rho _ { 2 } \rho _ { 1 } )$ ; confidence 0.978
152. ; $\phi h = \sum h ( 2 ) \phi ( 2 ) \langle S h _ { ( 1 ) } , \phi _ { ( 1 ) } \rangle \langle h _ { ( 3 ) } , \phi _ { ( 3 ) } \rangle$ ; confidence 0.126
153. ; $= \frac { \rho } { 2 ( 1 - \rho ) } \sum _ { p = 1 } ^ { P } \lambda _ { p } b _ { p } ^ { ( 2 ) } + \rho \frac { \Delta ^ { 2 } } { 2 R } +$ ; confidence 0.881
154. ; $\Phi ( z ) = - \frac { i \Gamma } { 2 \pi } \sum _ { m = - \infty } ^ { \infty } \operatorname { log } ( z - ( z _ { 0 } - m l ) )$ ; confidence 0.930
155. ; $( f , g ) = \operatorname { lim } _ { \eta \rightarrow \rho - 0 } \int _ { | \xi | = \eta } f ( z ) \overline { g ( z ) } d s$ ; confidence 0.330
156. ; $P _ { R } ^ { \dagger f } ( n ) = \frac { 1 } { n } q ^ { n } + O ( \frac { 1 } { n } q ^ { n / 2 } ) \text { as } n \rightarrow \infty$ ; confidence 0.118
157. ; $\rightarrow \infty \operatorname { log } Q ( x ) / \operatorname { log } \operatorname { log } x \geq 5 / 48$ ; confidence 0.924
158. ; $p ( \alpha , t ) = \operatorname { coo } ^ { \lambda ^ { * } ( t - \alpha ) } \Pi ( \alpha ) ( 1 + \Omega ( t - \alpha ) )$ ; confidence 0.337
159. ; $\operatorname { lim } _ { n \rightarrow \infty } ( P Q ) ^ { n } f = P _ { U } \cap _ { V } f ^ { f } \text { for all } f \in H$ ; confidence 0.534
160. ; $\frac { \partial ^ { 2 } w } { \partial z \partial z } + \epsilon \frac { n ( n + 1 ) } { ( 1 + \epsilon z z ) ^ { 2 } } w = 0$ ; confidence 0.999
161. ; $( \alpha _ { 1 } , \dots , \alpha _ { i - 1 } ) : a _ { i } \alpha _ { j } = ( \alpha _ { 1 } , \dots , a _ { i - 1 } ) : \alpha _ { j }$ ; confidence 0.074
162. ; $\varphi ( s ) = \operatorname { det } [ I _ { n } \lambda - A ] = \sum _ { i = 0 } ^ { n } a _ { i } \lambda ^ { i } ( a _ { n } = 1 )$ ; confidence 0.796
163. ; $\operatorname { lim } _ { n \rightarrow \infty } P \{ X ^ { 2 } \leq x | H _ { 0 } \} = P \{ \chi _ { k - 1 } ^ { 2 } \leq x \}$ ; confidence 0.342
164. ; $\xi _ { 1 } ^ { 2 } + \ldots + \xi _ { k - m - 1 } ^ { 2 } + \mu _ { 1 } \xi _ { k - m } ^ { 2 } + \ldots + \mu _ { m } \xi _ { k - 1 } ^ { 2 }$ ; confidence 0.818
165. ; $\int _ { A } f d m = \operatorname { sup } _ { \alpha \in [ 0 , + \infty ] } [ \alpha \wedge m ( A \cap F _ { \alpha } ) ]$ ; confidence 0.251
166. ; $U _ { 1 } = \{ u _ { 1 } \geq 0 : c ^ { T } _ { \overline { X } } ( k ) + u _ { 1 } A _ { 1 } x ^ { ( k ) } \geq 0 \text { for all } k \in R \}$ ; confidence 0.074
167. ; $= t \beta _ { 1 } + \frac { t ^ { 3 } \beta _ { 3 } } { 3 ! } + \ldots + \frac { t ^ { r } \beta _ { r } } { r ! } + \gamma ( t ) t ^ { r }$ ; confidence 0.981
168. ; $d z = d z _ { 1 } \wedge \ldots \wedge d z _ { n } , \quad \langle a , b \rangle = a _ { 1 } b _ { 1 } + \ldots + a _ { n } b _ { n }$ ; confidence 0.372
169. ; $= Q ( \theta | \theta ^ { ( t ) } ) - \int \operatorname { log } f ( \phi | \theta ) f ( \phi | \theta ^ { ( t ) } ) d \phi$ ; confidence 0.979
170. ; $L ( \varepsilon ) = \operatorname { Inn } \operatorname { Der } T ( \varepsilon ) \oplus T ( \varepsilon )$ ; confidence 0.896
171. ; $\frac { \partial u } { \partial \lambda } ( z , \lambda _ { 1 } ) = ( \operatorname { log } z ) z ^ { \lambda _ { 1 } }$ ; confidence 0.583
172. ; $( G _ { b } ^ { \alpha } f ) ( \omega ) = \int _ { - \infty } ^ { \infty } [ e ^ { - i \omega t } f ( t ) ] g _ { \alpha } ( t - b ) d t$ ; confidence 0.974
173. ; $R _ { - } ( x ) : = - \frac { 1 } { 2 \pi } \int _ { - \infty } ^ { \infty } r _ { + } ( - k ) \frac { a ( - k ) } { a ( k ) } e ^ { - i k x } d k$ ; confidence 0.742
174. ; $u ( x , k ) = e ^ { i \delta } \operatorname { sin } ( k x + \delta ) + o ( 1 ) , \quad \text { as } x \rightarrow \infty$ ; confidence 0.494
175. ; $Q _ { D } ( v , z ) = z ^ { \operatorname { com } ( D ) - 1 } v ^ { - \operatorname { Tait } ( D ) } ( v ^ { - 1 } - v ) P _ { D } ( v , z )$ ; confidence 0.280
176. ; $( f , h ) \mapsto \int _ { \partial D } u ( e ^ { i \vartheta } ) h ( e ^ { i \vartheta } ) \frac { d \vartheta } { 2 \pi }$ ; confidence 0.956
177. ; $F ( \tau ) = \frac { 2 \pi \operatorname { sinh } \pi \tau } { \pi ^ { 2 } | I _ { i \alpha } ( \alpha ) | ^ { 2 } } \times$ ; confidence 0.819
178. ; $\sum _ { j \geq 1 } \int _ { R ^ { n } } | \nabla f _ { j } ( x ) | ^ { 2 } d x \geq K _ { n } \int _ { R ^ { n } } \rho ( x ) ^ { 1 + 2 / n } d x$ ; confidence 0.829
179. ; $\left\{ \begin{array} { c } { M ( u ) = \phi \quad \text { on } D , } \\ { u | \partial D = f } \end{array} \right.$ ; confidence 0.053
180. ; $\operatorname { log } | P ( z ) | \leq \int _ { K } \operatorname { log } | P ( \zeta ) | d \mu _ { z } ( \zeta ) , P \in P$ ; confidence 0.994
181. ; $E _ { 2 } ( | x - y | ) = \operatorname { ln } \frac { 1 } { | x - y | } , \quad E _ { n } ( | x - y | ) = \frac { 1 } { | x - y | ^ { n - 2 } }$ ; confidence 0.148
182. ; $L _ { 0 } = - \sum _ { k = 1 } ^ { \infty } c _ { - k } ( - z ) ^ { k } , L _ { \infty } = \sum _ { k = 0 } ^ { \infty } c _ { k } ( - z ) ^ { - k }$ ; confidence 0.987
183. ; $\langle f , g \rangle = \int _ { - \pi } ^ { \pi } f ( e ^ { i \theta } \overline { g ( e ^ { i \theta } ) } d \mu ( \theta )$ ; confidence 0.405
184. ; $( K x ) ( t ) : = \frac { 1 } { 2 \pi } P.V. \int _ { 0 } ^ { 2 \pi } x ( s ) \operatorname { cot } \frac { t - s } { 2 } d s ( a.e. )$ ; confidence 0.566
185. ; $( T _ { f } ) = \operatorname { dim } \operatorname { Ker } T _ { f } - \operatorname { dim } \text { Coker } T _ { f }$ ; confidence 0.576
186. ; $\times \operatorname { min } _ { h _ { 1 } \leq j \leq h _ { 2 } } | \operatorname { Re } ( b _ { 1 } + \ldots + b _ { j } ) |$ ; confidence 0.857
187. ; $\frac { | g _ { 1 } ( k ) | } { M _ { d ^ { \prime } } ( k ) } , \frac { | g _ { 2 } ( k ) | } { M _ { d ^ { \prime } } ( k ) } \quad ( k \in S )$ ; confidence 0.491
188. ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k = 1 , \ldots , n } \frac { | s _ { k } | } { M _ { 1 } ( k ) } = 1$ ; confidence 0.566
189. ; $\| f + VMOA \| _ { * } \leq C \operatorname { limsup } _ { C \in T } \sqrt { \operatorname { area } ( K _ { \zeta } ) }$ ; confidence 0.532
190. ; $F : ( \overline { D } \square ^ { n + 1 } , S ^ { n } ) \rightarrow ( K ( E ^ { n + 1 } ) , K ( E ^ { n + 1 } \backslash \theta ) )$ ; confidence 0.982
191. ; $d s ^ { 2 } = \frac { 1 } { 4 } ( 1 + | g | ^ { 2 } ) ^ { 2 } | \eta | ^ { 2 } = \frac { 1 } { 2 } \sum _ { j = 1 } ^ { 3 } | \omega _ { j } | ^ { 2 }$ ; confidence 0.871
192. ; $T _ { n + \alpha } = \frac { 1 } { 2 \pi i } \oint _ { A _ { \alpha } } p d W , T _ { g + n + \alpha } = \oint _ { B _ { \alpha } } d p$ ; confidence 0.795
193. ; $\sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } f ( x _ { \nu } ) + \sum _ { \nu = 1 } ^ { n } \beta _ { \nu } f ^ { \prime } ( x _ { \nu } )$ ; confidence 0.912
194. ; $K ( \varphi ) \approx L ( \varphi ) = \{ \kappa _ { j } ( \varphi ) \approx \lambda _ { j } ( \varphi ) : j \in J \}$ ; confidence 0.585
195. ; $\pi _ { C } ^ { \# } ( x ) \sim C x ^ { \kappa } ( \operatorname { log } x ) ^ { \nu } \text { as } x \rightarrow \infty$ ; confidence 0.274
196. ; $\{ u \in \cap _ { q \in ( R , \infty ) } W ^ { 2 m , q } ( \Omega ) : B _ { j } ( t , . , D _ { x } ) u \in C ( \overline { \Omega } )$ ; confidence 0.067
197. ; $E _ { \theta } ( N ) = \sum _ { n = 1 } ^ { \infty } n P _ { \theta } ( N = n ) = \sum _ { n = 0 } ^ { \infty } P _ { \theta } ( N > n )$ ; confidence 0.828
198. ; $= \sum _ { n = 0 } ^ { \infty } \int d x _ { s } + 1 \cdots d x _ { s } + n U ^ { ( n ) } t F _ { s } + n ( 0 , x _ { 1 } , \dots , x _ { s } + n )$ ; confidence 0.060
199. ; $\rho f ( 1 , u _ { f } , \frac { 1 } { 2 } | u f | ^ { 2 } + \frac { N } { 2 } T _ { f } ) = \int ( 1 , v , \frac { | v ^ { 2 } } { 2 } ) f ( v ) d v$ ; confidence 0.200
200. ; $k \operatorname { log } a _ { m } \leq i \operatorname { log } a _ { n } \leq ( k + 1 ) \operatorname { log } a _ { m }$ ; confidence 0.455
201. ; $\sigma _ { 0 } = \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j - 1 } \overline { \zeta } ; d \overline { \zeta } [ j ] \wedge d \zeta$ ; confidence 0.413
202. ; $\vec { c } _ { t } ^ { 1 } = c ^ { T } x ^ { ( l ) } + ( A _ { 1 } x ^ { ( l ) } - b _ { 1 } ) ^ { T } \overline { u } _ { 1 } - \overline { q } < 0$ ; confidence 0.098
203. ; $= ( 3 ^ { d } + 1 \frac { 3 ^ { d + 1 } - 1 } { 2 } , 3 ^ { d } \frac { 3 ^ { d + 1 } + 1 } { 2 } , 3 ^ { d } \frac { 3 ^ { d } + 1 } { 2 } , 3 ^ { 2 d } )$ ; confidence 0.188
204. ; $w _ { j } = \frac { \Phi ^ { \prime z _ { j } } } { \langle \operatorname { grad } _ { z } \Phi , z \} } , j = 1 , \ldots , n$ ; confidence 0.129
205. ; $\frac { \partial ^ { 2 } } { \partial \theta _ { . } \partial \theta } Q ( \theta | \theta ^ { * } ) = \theta ^ { * }$ ; confidence 0.186
206. ; $Q ( \theta | \theta ^ { ( t ) } ) = \int \operatorname { log } f ( \theta , \phi ) f ( \phi | \theta ^ { ( t ) } ) d \phi$ ; confidence 0.989
207. ; $\mu ( d x ) = \sum _ { k = 0 } ^ { n } \left( \begin{array} { l } { n } \\ { k } \end{array} \right) \delta _ { k } ( d x )$ ; confidence 0.908
208. ; $G ( \zeta ) e ^ { - \varepsilon | \operatorname { lm } \zeta | - H _ { K } \langle \operatorname { lm } \zeta ) }$ ; confidence 0.613
209. ; $\frac { 1 } { \lambda } \leq \operatorname { max } _ { \varphi } | \operatorname { cos } \alpha ( \varphi ) |$ ; confidence 0.909
210. ; $\operatorname { deg } f _ { j + r , \ldots , \operatorname { deg } } f _ { l } < \operatorname { deg } \Delta = r D$ ; confidence 0.211
211. ; $\lambda ^ { \prime } = ( \lambda _ { 1 } , \dots , \lambda _ { s } - 1 , \lambda _ { s + 1 } , \dots , \lambda _ { t } , 1 )$ ; confidence 0.545
212. ; $= \sum _ { S _ { 1 } = \pm 1 } \ldots \sum _ { S _ { N } = \pm 1 } \prod _ { l = 1 } ^ { N } \langle S _ { i } | P | S _ { + 1 } \rangle$ ; confidence 0.566
213. ; $u ( e ^ { i \vartheta } ) = \operatorname { lim } _ { r \uparrow 1 } \operatorname { Re } f ( r e ^ { i \vartheta } )$ ; confidence 0.990
214. ; $P [ \operatorname { sup } _ { t \geq T } | X _ { t } - X _ { T } | > \lambda ] \leq C _ { e } ^ { - \lambda / e } P [ T < \infty ]$ ; confidence 0.280
215. ; $\mu ^ { * } ( K _ { X } + B ) = K _ { Y } + \sum _ { j = 1 } ^ { t } b _ { j } \mu _ { * } ^ { - 1 } B _ { j } + \sum _ { k = 1 } ^ { s } d _ { k } D _ { k }$ ; confidence 0.901
216. ; $\rho ^ { \prime } ( \xi ) = ( \partial \rho / \partial \xi _ { 1 } , \dots , \partial \rho / \partial \xi _ { n } )$ ; confidence 0.625
217. ; $\Delta _ { k } = \operatorname { sup } \{ | \Delta _ { k } ( s , t ) | : 0 \leq s _ { j } \leq t _ { j } < 1,1 \leq j \leq k \}$ ; confidence 0.867
218. ; $x ^ { 0 } = \operatorname { cosh } u ^ { 1 } \operatorname { cosh } u ^ { 2 } \ldots \operatorname { cosh } u ^ { n }$ ; confidence 0.834
219. ; $x ^ { 1 } = \operatorname { sinh } u ^ { 1 } \operatorname { cosh } u ^ { 2 } \ldots \operatorname { cosh } u ^ { n }$ ; confidence 0.799
220. ; $E : 1 \rightarrow \pi _ { 1 } ( \overline { M } ) \rightarrow \pi _ { 1 } ( M ) \rightarrow Z \rightarrow \{ 1 \}$ ; confidence 0.979
221. ; $0 = ( \delta ( x ) x ) \operatorname { vp } \frac { 1 } { x } \neq \delta ( x ) ( x \vee p \frac { 1 } { x } ) = \delta ( x )$ ; confidence 0.627
222. ; $D _ { K _ { \rho } } = \{ F ( \xi ) : \int _ { - \infty } ^ { + \infty } \xi ^ { 2 } | F ( \xi ) | ^ { 2 } d \rho ( \xi ) < \infty \}$ ; confidence 0.880
223. ; $\| f _ { W } k _ { L _ { \Phi } ( \Omega ) } \| = \sum _ { | \alpha | \leq k } \| D ^ { \alpha } f \| _ { L _ { \Phi } ( \Omega ) }$ ; confidence 0.157
224. ; $\operatorname { lim } _ { n \rightarrow \infty } \{ \operatorname { inf } _ { C } \| R ^ { n } - q \| ^ { 1 / n } \} = 0$ ; confidence 0.351
225. ; $\Sigma ^ { i _ { 1 } , \ldots , i _ { r } } ( f ) = \Sigma ^ { i _ { r } } ( f | _ { \Sigma ^ { i _ { 1 } } , \ldots , i _ { r - 1 } ( f ) } )$ ; confidence 0.359
226. ; $- \Delta \Phi ( x ) + 4 \pi \gamma ^ { - 3 / 2 } \Phi ( x ) ^ { 3 / 2 } = 4 \pi \sum _ { j = 1 } ^ { K } Z _ { j } \delta ( x - R _ { j } )$ ; confidence 0.956
227. ; $q _ { 0 } ( s ) = [ \frac { 1 - s } { 1 + s \alpha } ] ^ { 1 / 2 } , \theta _ { 0 } ( s ) = \operatorname { cos } ^ { - 1 } q _ { 0 } ( s )$ ; confidence 0.833
228. ; $Cd \approx \frac { l } { b } , f \approx \frac { l } { U } , Cd \approx \frac { f U } { d } , Cd \approx \frac { 1 } { St }$ ; confidence 0.623
229. ; $\kappa \partial _ { S } H _ { \gamma } - \kappa \partial _ { \gamma } H _ { S } + \{ H _ { S } , H _ { \gamma } \} _ { 0 } = 0$ ; confidence 0.131
230. ; $\forall x ( ( \neg x = 0 ) \rightarrow \exists y ( y \in x / \backslash z ( z \in x \rightarrow \neg z \in y ) ) )$ ; confidence 0.346
231. ; $\phi - ^ { 1 } ( \frac { \partial } { \partial x } - P _ { 0 z } ) \phi _ { - } = \frac { \partial } { \partial x } - P$ ; confidence 0.173
232. ; $\operatorname { agm } ( 1 , \sqrt { 2 } ) ^ { - 1 } = ( 2 \pi ) ^ { - 3 / 2 } \Gamma ( \frac { 1 } { 4 } ) ^ { 2 } = 0.83462684$ ; confidence 0.975
233. ; $U ^ { ( n ) } t = \sum _ { k = 0 } ^ { n } \frac { ( - 1 ) ^ { k } } { k ! ( n - k ) ! } S ^ { s + n - k } ( - t , x _ { 1 } , \dots , x _ { s } + x - k )$ ; confidence 0.496
234. ; $M ( \underline { u } , \xi ) = ( 1 , \xi _ { 1 } , \ldots , \xi _ { N } , | \xi | ^ { 2 } / 2 ) M _ { 0 } ( \underline { u } , \xi )$ ; confidence 0.464
235. ; $\partial _ { t } f + \alpha ( \xi ) . \nabla _ { x } f = 0 \text { in } ] t _ { n } , t _ { n } + 1 [ \times R ^ { N } \times \Xi$ ; confidence 0.300
236. ; $\int _ { R ^ { N } } | g ( y ) | ^ { 2 } d y = \int _ { Y ^ { \prime } } \sum _ { m = 1 } ^ { \infty } | g _ { m } ( \eta ) | ^ { 2 } d \eta$ ; confidence 0.829
237. ; $W _ { \psi } [ f ] ( a , b ) = \frac { 1 } { \sqrt { a } } \int _ { - \infty } ^ { \infty } f ( x ) \psi ( \frac { x - b } { a } ) d x$ ; confidence 0.766
238. ; $= \beta _ { 0 } + \frac { t ^ { 2 } \beta _ { 2 } } { 2 } + \ldots + \frac { t ^ { r } \beta _ { r } } { r ! } + \gamma ( t ) t ^ { r }$ ; confidence 0.975
239. ; $g \Theta _ { i } = \left( \begin{array} { l l l } { \delta _ { i } } & { 0 } & { \ldots } & { 0 } \end{array} \right)$ ; confidence 0.149
240. ; $\gamma = \left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \in GL _ { 2 } ( Q )$ ; confidence 0.088
241. ; $= \{ x _ { 1 } , \dots , x _ { m } | x _ { i } x ^ { k _ { i } + 1 } = x _ { i + 2 } ; \text { indices } ( \operatorname { mod } m ) \}$ ; confidence 0.208
242. ; $\frac { \partial } { \partial \lambda } u ( z , \lambda _ { i } ) = ( \operatorname { log } z ) z ^ { \lambda } i +$ ; confidence 0.525
243. ; $= \sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } f ( x _ { \nu } ) + \sum _ { \mu = 1 } ^ { n + 1 } \beta _ { \mu } f ( \xi _ { \mu } )$ ; confidence 0.992
244. ; $\sum _ { k = 1 } ^ { m } x _ { k } S _ { k } \leq P ( A _ { 1 } \cup \ldots \cup A _ { n } ) \leq \sum _ { k = 1 } ^ { m } y _ { k } S _ { k }$ ; confidence 0.188
245. ; $\langle s ( \zeta , z ) , \zeta - z \rangle = \sum _ { j = 1 } ^ { n } s _ { j } ( \zeta , z ) ( \zeta _ { j } - z _ { j } ) \neq 0$ ; confidence 0.771
246. ; $\langle A \rangle _ { T } = Z ^ { - 1 } \operatorname { Tr } [ \operatorname { exp } ( - \frac { H } { k _ { B } T } ) A ]$ ; confidence 0.639
247. ; $f ( x ) \operatorname { ln } x \in L ( 0 , \frac { 1 } { 2 } ) , \quad f ( x ) \sqrt { x } \in L ( \frac { 1 } { 2 } , \infty )$ ; confidence 0.975
248. ; $u [ 1 ] = u - 2 ( \operatorname { log } \varphi ) _ { x y } = - u + \frac { \varphi _ { x } \varphi y } { \varphi ^ { 2 } }$ ; confidence 0.799
249. ; $f _ { X _ { i } } ^ { ( r _ { i } ^ { * } ) } = \frac { \partial _ { i } ^ { r _ { i } ^ { * } } f } { \partial x _ { i } ^ { r _ { i } ^ { * } } }$ ; confidence 0.272
250. ; $( \Delta \bigotimes \text { id } ) R = R _ { 13 } R _ { 23 } , ( \text { id } \bigotimes \Delta ) R = R _ { 13 } R _ { 12 }$ ; confidence 0.187
251. ; $P \subset A ( X ) = \{ \varphi \in \operatorname { Aut } ( X ) : x _ { \alpha } \varphi \succeq x _ { \alpha } \}$ ; confidence 0.795
252. ; $\sum _ { \lambda } s _ { \lambda } ( x ) s _ { \lambda ^ { \prime } } ( y ) = \prod _ { i , j = 1 } ^ { l } ( 1 + x _ { i } y _ { j } )$ ; confidence 0.787
253. ; $\infty ( L _ { 1 } ) \oplus \infty ( L _ { 2 } ) = \infty ( L _ { 2 } ) \oplus \infty ( L _ { 1 } ) = \infty ( \emptyset )$ ; confidence 0.227
254. ; $= [ \sigma _ { Te } ( A , H ) \times \sigma _ { T } ( B , H ) ] \cup [ \sigma _ { T } ( A , H ) \times \sigma _ { Te } ( B , H ) ]$ ; confidence 0.625
255. ; $\frac { \partial d \Omega _ { A } } { \partial T _ { B } } = \frac { \partial d \Omega _ { B } } { \partial T _ { A } }$ ; confidence 0.981
256. ; $Z ( \alpha ^ { n } ) = \sum _ { j = 0 } ^ { \infty } \alpha ^ { j } z ^ { - j } = \frac { z } { z - \alpha } \text { for } | z | > 1$ ; confidence 0.862
257. ; $\int _ { 0 } ^ { + \infty } \beta ( \sigma , s ^ { * } ) e ^ { - \int _ { 0 } ^ { \sigma } \mu ( s , S ^ { * } ) d s } d \sigma = 1$ ; confidence 0.834
258. ; $p _ { 0 } ( \xi ) = 1 + \alpha _ { 1 } \xi + \alpha _ { 2 } \xi ^ { 2 } + \ldots ( \operatorname { Re } p _ { 0 } ( \xi ) > 0 )$ ; confidence 0.891
259. ; $\| \alpha \| _ { P M } ^ { * } = \operatorname { sup } _ { n \geq 0 } \frac { 1 } { n + 1 } \sum _ { k = - n } ^ { n } | d _ { k } |$ ; confidence 0.201
260. ; $0 \leq \lambda _ { 1 } ( \eta ) \leq \ldots \leq \lambda _ { m } ( \eta ) \leq \ldots \rightarrow \infty$ ; confidence 0.714
261. ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { \| x _ { n } + 1 - x ^ { * } \| } { \| x _ { n } - x ^ { * } \| } = 0$ ; confidence 0.809
262. ; $b _ { \gamma } ( x ) = \operatorname { lim } _ { t \rightarrow \infty } ( t - d ( x , \gamma ( t ) ) ) , \quad x \in M$ ; confidence 0.913
263. ; $\nabla ( \alpha \Phi ) = d a \otimes \Phi + \alpha \nabla \Phi \in \varnothing \square ^ { \gamma + 1 } E$ ; confidence 0.116
264. ; $L [ \Delta _ { n } ( \theta ) | P _ { n , \theta _ { n } } ] \Rightarrow N ( \Gamma ( \theta ) h , \Gamma ( \theta ) )$ ; confidence 0.844
265. ; $\vec { c } _ { k } ^ { 1 } = c ^ { T } x ^ { ( k ) } + ( A _ { 1 } x ^ { ( k ) } - b _ { 1 } ) ^ { T } \overline { u } _ { 1 } - \overline { q }$ ; confidence 0.534
266. ; $c _ { 1 } \stackrel { \phi _ { 1 } } { \rightarrow } \ldots \stackrel { \phi _ { n - 1 } } { \rightarrow } c _ { n }$ ; confidence 0.332
267. ; $= 2 \operatorname { cos } ( n \alpha ) = 2 T _ { n } ( \operatorname { cos } \alpha ) = 2 T _ { n } ( \frac { x } { 2 } )$ ; confidence 0.943
268. ; $Q ( \theta | \theta ^ { ( t ) } ) = E [ \operatorname { log } L ( \theta | Y _ { aug } ) | Y _ { 0 b s } , \theta ^ { ( t ) } ]$ ; confidence 0.409
269. ; $+ \frac { 1 } { c } ( \frac { \partial } { \partial t } ( P \times B ) + \nabla \cdot ( v \otimes ( P \times B ) ) )$ ; confidence 0.850
270. ; $= e ^ { - i \pi / 4 } \sum _ { A < m \leq A + B } | f ^ { \prime } ( x _ { m } ) | ^ { - 1 / 2 } e ^ { 2 \pi i ( f ( x _ { m } ) - m x _ { m } ) } +$ ; confidence 0.321
271. ; $\times x ^ { ( \nu _ { 1 } / 2 ) - 1 } ( 1 + \frac { \nu _ { 1 } } { \nu _ { 2 } } x ) ^ { ( \nu _ { 1 } + \nu _ { 2 } ) / 2 } , \quad x > 0$ ; confidence 0.677
272. ; $K ( x , t ) = - \frac { 1 } { \pi } \frac { \partial } { \partial n _ { t } } \operatorname { log } | z - t | , z , t \in C$ ; confidence 0.837
273. ; $\operatorname { max } _ { x \in X } | \partial ^ { \alpha } f ( x ) | \leq C ^ { | \alpha | + 1 } ( | \alpha ! | ) ^ { s }$ ; confidence 0.398
274. ; $\frac { \partial u } { \partial t } = \frac { \partial ^ { 3 } } { \partial x ^ { 3 } } ( \frac { 1 } { \sqrt { u } } )$ ; confidence 0.998
275. ; $\sum _ { j = 1 } ^ { n } \frac { \partial r } { \partial \zeta _ { j } } ( \zeta _ { j } ) ( \zeta _ { j } - z _ { j } ) \neq 0$ ; confidence 0.989
276. ; $\left( \begin{array} { c c } { t ( k ) } & { r _ { - } ( k ) } \\ { r _ { + } ( k ) } & { t ( k ) } \end{array} \right) = S ( k )$ ; confidence 0.814
277. ; $q ( x ) \in L _ { 1,1 } : = \{ q : \int _ { - \infty } ^ { \infty } ( 1 + | x | ) | q ( x ) | d x < \infty , q = \overline { q } \}$ ; confidence 0.868
278. ; $Q : = \int _ { 0 } ^ { \infty } q ( t ) d t = - 2 i \operatorname { lim } _ { k \rightarrow \infty } \{ k [ f ( k ) - 1 ] \}$ ; confidence 0.969
279. ; $w ( z ) = \int k _ { \vartheta } ( z ) | \varphi ( e ^ { i \vartheta } ) - h ( z ) | ^ { 2 } \frac { d \vartheta } { 2 \pi }$ ; confidence 0.967
280. ; $\frac { \partial \rho } { \partial t } = \{ H , \rho \} _ { qu } . \equiv \frac { 1 } { i \hbar } [ H \rho - \rho H ]$ ; confidence 0.412
281. ; $a ( x , \alpha , p ) : = \frac { 1 } { ( 2 \pi ) ^ { n } } \int _ { 0 } ^ { \infty } t ^ { n - 1 } e ^ { - i t p } b ( x , t , \alpha ) d t$ ; confidence 0.706
282. ; $\operatorname { Tr } ( X _ { 1 } ) + \ldots + \operatorname { Tr } ( X _ { n } ) = - \operatorname { Tr } ( A _ { 1 } )$ ; confidence 0.975
283. ; $f ( x , t ) = \frac { 2 } { \omega _ { n } } \int _ { R ^ { n - 1 } } \frac { t f ( y , 0 ) } { ( | x - y | ^ { 2 } + t ^ { 2 } ) ^ { n / 2 } } d y$ ; confidence 0.645
284. ; $\operatorname { dim } T _ { \lambda } = 2 ^ { [ ( n - r ( \lambda ) ) / 2 ] } \frac { n ! } { \prod _ { ( i , j ) } b _ { i j } }$ ; confidence 0.281
285. ; $\int _ { U M } f ( u ) d u = \int _ { U ^ { + } \partial M ^ { 0 } } \int _ { U } ^ { l ( v ) } f ( g _ { t } ( v ) ) d t ( v , N _ { x } ) d v d x$ ; confidence 0.156
286. ; $\sum _ { \lambda } s _ { \lambda } ( x ) s _ { \lambda } ( y ) = \prod _ { i , j = 1 } ^ { l } \frac { 1 } { 1 - x _ { i } y _ { j } }$ ; confidence 0.864
287. ; $\int _ { - 1 } ^ { 1 } \frac { \operatorname { ln } \mu _ { 0 } ^ { \prime } ( x ) } { \sqrt { 1 - x ^ { 2 } } } d x > - \infty$ ; confidence 0.993
288. ; $\operatorname { dim } \Lambda ^ { k ^ { * } } = \left( \begin{array} { l } { n } \\ { k } \end{array} \right)$ ; confidence 0.162
289. ; $\int _ { - \infty } ^ { \infty } \int _ { - \infty } ^ { \infty } | f ( x ) \| \hat { f } ( y ) | e ^ { 2 \pi | y | } < \infty$ ; confidence 0.144
290. ; $\operatorname { lim } _ { \beta \rightarrow 0 } \frac { 1 } { | Q | } \int _ { Q } | f - f _ { Q } | d t \rightarrow 0$ ; confidence 0.085
291. ; $A = \frac { 1 } { 2 } \theta ( 2 \pi - \theta ) - \frac { \pi ^ { 2 } } { \operatorname { cosh } ^ { 2 } ( \pi b / l ) } = 0$ ; confidence 0.995
292. ; $- \operatorname { log } \operatorname { sin } ( \frac { \pi } { l } ( z - \frac { l } { 2 } + \frac { i b } { 2 } ) ) ] +$ ; confidence 0.963
293. ; $d \Omega _ { n } = d \hat { \Omega } _ { n } - \sum _ { 1 } g ( \oint _ { A _ { j } } d \hat { \Omega _ { n } } ) d \omega _ { j }$ ; confidence 0.193
294. ; $\theta _ { n } ( h _ { 1 } \otimes \ldots \otimes h _ { n } ) = P _ { n } ( \tilde { h _ { 1 } } \ldots \tilde { h _ { n } } )$ ; confidence 0.078
295. ; $\epsilon _ { 2,0 } ^ { A } ( \alpha , b , c , d ) = \epsilon _ { i , 1 } ^ { A } ( \alpha , b , c , d ) \text { for all } i < m$ ; confidence 0.169
296. ; $\alpha ( m , n ) = \operatorname { min } \{ r \geq 1 : T ( r , 4 \lceil m / n ] ) > \operatorname { log } _ { 2 } n \}$ ; confidence 0.574
297. ; $S _ { t } = c _ { 0 } + c _ { 1 } u _ { t } + c _ { 1 } \lambda u _ { t - 1 } + c _ { 1 } \lambda ^ { 2 } u _ { t - 2 } + \ldots + \mu _ { t }$ ; confidence 0.577
298. ; $f ( z ) = \frac { | \alpha | } { \alpha } \frac { z - \alpha } { 1 - \overline { \alpha } z } , \quad | \alpha | < 1$ ; confidence 0.456
299. ; $\{ x _ { 1 } , x _ { 2 } , u , \frac { \partial u } { \partial x _ { 1 } } , \frac { \partial u } { \partial x _ { 2 } } \}$ ; confidence 0.978
300. ; $\frac { \partial c } { \partial n } = \frac { \partial \Delta c } { \partial n } = 0 \text { on } \partial V$ ; confidence 0.310
Maximilian Janisch/latexlist/latex/NoNroff/4. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/4&oldid=44492