Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/6

From Encyclopedia of Mathematics
< User:Maximilian Janisch‎ | latexlist‎ | latex
Revision as of 11:45, 1 September 2019 by Maximilian Janisch (talk | contribs) (AUTOMATIC EDIT of page 6 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.)
Jump to: navigation, search

List

1. a110420109.png ; $x , y \in A$ ; confidence 0.906

2. a01406028.png ; $20$ ; confidence 0.906

3. d03002094.png ; $f ^ { * } N = O _ { X } \otimes _ { f } - 1 _ { O _ { Y } } f ^ { - 1 } N$ ; confidence 0.906

4. d12023063.png ; $R = \sum _ { i = 0 } ^ { n - 1 } Z ^ { i } G J G ^ { * } Z ^ { * i } =$ ; confidence 0.906

5. f04127050.png ; $x \in D ( A )$ ; confidence 0.906

6. g04333080.png ; $\omega = 1 / c ^ { 2 }$ ; confidence 0.906

7. l058360172.png ; $\mathfrak { A } ^ { - }$ ; confidence 0.906

8. p07565068.png ; $X \cap U = \{ x \in U : \phi ( x ) > 0 \}$ ; confidence 0.906

9. r08113085.png ; $c t ^ { \prime } = x ^ { \prime } \operatorname { sinh } \psi + c t \operatorname { cosh } \psi$ ; confidence 0.906

10. w12008025.png ; $W ( f \times g ) = W ( f ) . W ( g )$ ; confidence 0.906

11. t12001097.png ; $SO ( 4 n + 3 )$ ; confidence 0.906

12. a130240177.png ; $\alpha$ ; confidence 0.905

13. l0609706.png ; $\alpha = R \operatorname { ln } \operatorname { tan } ( \frac { \pi } { 4 } + \frac { u } { 2 R } )$ ; confidence 0.905

14. n06634043.png ; $\Sigma _ { n - 1 } ( x )$ ; confidence 0.905

15. p07251047.png ; $d y _ { 0 } - \sum _ { j = 1 } ^ { p } z _ { j } d y _ { j } = 0$ ; confidence 0.905

16. p07309030.png ; $V \cap L$ ; confidence 0.905

17. r081470221.png ; $\oplus R ( S _ { n } )$ ; confidence 0.905

18. u09529022.png ; $w = \operatorname { sin }$ ; confidence 0.905

19. a01325046.png ; $0 \notin f ( \partial D )$ ; confidence 0.904

20. e12012065.png ; $\propto \| \Sigma \| ^ { - 1 / 2 } [ \nu + ( y - \mu ) ^ { T } \Sigma ^ { - 1 } ( y - \mu ) ] ^ { - ( \nu + p ) / 2 }$ ; confidence 0.904

21. g0432908.png ; $\alpha _ { k } = \frac { \Gamma ( \gamma + k + 1 ) } { \Gamma ( \gamma + 1 ) } \sqrt { \frac { \Gamma ( \alpha _ { 1 } + 1 ) \Gamma ( \alpha _ { 2 } + 1 ) } { \Gamma ( \alpha _ { 1 } + k + 1 ) \Gamma ( \alpha _ { 2 } + k + 1 ) } }$ ; confidence 0.904

22. s09076059.png ; $p ( \alpha )$ ; confidence 0.904

23. t0946003.png ; $\alpha \geq A _ { 0 }$ ; confidence 0.904

24. c02204033.png ; $h ^ { * } ( pt )$ ; confidence 0.903

25. e035250143.png ; $\Delta \Delta w _ { 0 } = 0$ ; confidence 0.903

26. i05073087.png ; $\chi _ { \pi } ( g ) = \sum _ { \{ \delta : \delta y \in H \delta \} } \chi _ { \rho } ( \delta g \delta ^ { - 1 } )$ ; confidence 0.903

27. o07004017.png ; $\operatorname { lim } \alpha / \beta = 0$ ; confidence 0.903

28. v13007046.png ; $q e ^ { ( - i \theta ) }$ ; confidence 0.903

29. s11033016.png ; $- 5 \rightarrow - 14 \rightarrow - 7 \rightarrow - 20 \rightarrow - 10 \rightarrow - 5$ ; confidence 0.902

30. a130240301.png ; $\hat { \eta } \Omega$ ; confidence 0.902

31. t120010104.png ; $\operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) , \quad \operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) \times Z _ { 2 }$ ; confidence 0.901

32. a01152028.png ; $G _ { X } = \{ g \in G : g x = x \}$ ; confidence 0.901

33. c020740168.png ; $F ( 1 _ { A } ) = 1 _ { F A }$ ; confidence 0.901

34. n06794014.png ; $N > 5$ ; confidence 0.901

35. b11013012.png ; $M _ { d } ^ { * } = M _ { d }$ ; confidence 0.900

36. b015350300.png ; $\delta _ { i k } = 0$ ; confidence 0.900

37. b01685023.png ; $E = \sum _ { i = 1 } ^ { M } \epsilon _ { i } N _ { i }$ ; confidence 0.900

38. e12006018.png ; $T p ( A _ { y } ) = A$ ; confidence 0.900

39. a01020027.png ; $3$ ; confidence 0.899

40. a0119906.png ; $\pi _ { k } ( x )$ ; confidence 0.899

41. d03353048.png ; $\pi ( y ) - \operatorname { li } y > - M y \operatorname { log } ^ { - m } y$ ; confidence 0.899

42. e03536067.png ; $\langle P ^ { ( 2 ) } \rangle$ ; confidence 0.899

43. l058360168.png ; $x$ ; confidence 0.899

44. w12007015.png ; $q$ ; confidence 0.899

45. c12004049.png ; $f \in H _ { c } ( D )$ ; confidence 0.898

46. h04628059.png ; $x ^ { ( 1 ) } = x ^ { ( 1 ) } ( t )$ ; confidence 0.898

47. r0824307.png ; $I ( A ) = \operatorname { Ker } ( \epsilon )$ ; confidence 0.898

48. w12014036.png ; $S \square T$ ; confidence 0.898

49. a110420160.png ; $K _ { 0 } ( B ) = Z + \theta Z$ ; confidence 0.898

50. c02055049.png ; $1$ ; confidence 0.897

51. f120080135.png ; $\Lambda _ { G } = 1$ ; confidence 0.897

52. o13006047.png ; $\frac { 1 } { i } ( A _ { k } - A _ { k } ^ { * } ) = \Phi ^ { * } \sigma _ { k } \Phi$ ; confidence 0.897

53. i05113068.png ; $\overline { \rho } _ { L }$ ; confidence 0.896

54. s086940114.png ; $\operatorname { det } S \neq 0$ ; confidence 0.896

55. a13013035.png ; $Q _ { 0 } = P _ { 0 }$ ; confidence 0.896

56. a1300106.png ; $B$ ; confidence 0.895

57. b12016030.png ; $x _ { i } ^ { \prime \prime } = x _ { i } ^ { \prime }$ ; confidence 0.895

58. g043810179.png ; $\alpha f \in D ^ { \prime } ( O )$ ; confidence 0.895

59. h047380204.png ; $\sum _ { \nu \in A } \| x _ { \nu } \| ^ { 2 } < \infty$ ; confidence 0.895

60. i05162045.png ; $\Gamma ( z ) = \frac { 1 } { e ^ { 2 i \pi z } - 1 } \int _ { L _ { 1 } } \zeta ^ { z - 1 } e ^ { - \zeta } d \zeta$ ; confidence 0.895

61. s0858103.png ; $\phi : U \rightarrow \sum _ { i \in I } U _ { l }$ ; confidence 0.895

62. w120110192.png ; $X \in \Phi$ ; confidence 0.895

63. a130240106.png ; $t$ ; confidence 0.895

64. a12022022.png ; $Y$ ; confidence 0.894

65. a11016019.png ; $x _ { k + 1 } = M ^ { - 1 } ( N x _ { k } + b )$ ; confidence 0.894

66. a01431027.png ; $\exists x A$ ; confidence 0.894

67. c11048046.png ; $D ^ { \perp }$ ; confidence 0.893

68. e110070191.png ; $f ^ { \prime } ( 1 ) = \prod _ { n > 0 } ( \frac { 1 - q ^ { 2 n } } { 1 + q ^ { 2 n } } ) ^ { 2 }$ ; confidence 0.893

69. c022780356.png ; $\Omega$ ; confidence 0.892

70. c02490030.png ; $q = p ^ { r }$ ; confidence 0.892

71. e12023061.png ; $L \mapsto E ( L )$ ; confidence 0.892

72. h0484406.png ; $w = z ^ { - \gamma / 2 } ( z - 1 ) ^ { ( \gamma - \alpha - \beta - 1 ) / 2 } u$ ; confidence 0.892

73. l05949032.png ; $\alpha ^ { ( 0 ) }$ ; confidence 0.892

74. m064250151.png ; $\tau \cup A C \cup B C$ ; confidence 0.892

75. s0861605.png ; $J _ { m + n + 1 } ( x ) =$ ; confidence 0.892

76. a13024051.png ; $3$ ; confidence 0.891

77. b01729042.png ; $\partial M _ { A } \subset X \subset M _ { A }$ ; confidence 0.891

78. c024780261.png ; $( x ^ { 2 } / a ^ { 2 } ) + ( y ^ { 2 } / b ^ { 2 } ) = 1$ ; confidence 0.891

79. f04058050.png ; $\frac { | \sigma _ { i } | } { ( \operatorname { diam } \sigma _ { i } ) ^ { n } } \geq \eta$ ; confidence 0.891

80. k12009012.png ; $= \frac { 2 } { \pi ^ { 2 } x _ { 0 } } \int _ { 0 } ^ { \infty } K _ { i \tau } ( x _ { 0 } ) \tau \operatorname { sinh } ( \pi \tau ) F ( \tau ) d \tau$ ; confidence 0.890

81. a110420126.png ; $K _ { 0 } ( \tau ) ( [ p ] _ { 0 } - [ q ] _ { 0 } ) = \tau ( p ) - \tau ( q )$ ; confidence 0.889

82. a011600128.png ; $f _ { 1 } = \ldots = f _ { m }$ ; confidence 0.889

83. s08521071.png ; $\square ^ { 2 } F _ { 4 } ( q ) ^ { \prime }$ ; confidence 0.889

84. a13013047.png ; $i$ ; confidence 0.889

85. c02724015.png ; $x ^ { 3 } + y ^ { 3 } - 3 a x y = 0$ ; confidence 0.887

86. m06314012.png ; $- \frac { \partial D } { \partial t } + \operatorname { rot } H = J$ ; confidence 0.887

87. p07237060.png ; $\overline { \Omega } _ { k } \subset \Omega _ { k + 1 }$ ; confidence 0.887

88. q076820220.png ; $E \theta ( t ) \theta ( t + u ) = \int _ { 0 } F ( t + u - v ) ( 1 - G ( t - v ) ) d m ( v )$ ; confidence 0.887

89. v09687032.png ; $\tau _ { j } < 0$ ; confidence 0.887

90. w12011079.png ; $A ^ { * } \sigma A = \sigma$ ; confidence 0.887

91. b01747034.png ; $( i i + 1 )$ ; confidence 0.886

92. m12011054.png ; $\pi _ { 1 } ( M ) \neq Z _ { 2 }$ ; confidence 0.886

93. p075350108.png ; $P _ { n } ( R )$ ; confidence 0.886

94. v0966506.png ; $n \geq 12$ ; confidence 0.886

95. t12001030.png ; $5$ ; confidence 0.885

96. b01539036.png ; $\int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta ) = E [ L ( \theta , d ) | x ]$ ; confidence 0.885

97. f11015067.png ; $t \subset v$ ; confidence 0.885

98. w09791036.png ; $L _ { - } ( \lambda ) C ( \lambda ) / B ( \lambda )$ ; confidence 0.885

99. a130240239.png ; $MS _ { e }$ ; confidence 0.884

100. c11017044.png ; $C \rho _ { p } C ^ { \prime }$ ; confidence 0.884

101. c12019044.png ; $T ( M )$ ; confidence 0.884

102. a130240334.png ; $\Gamma = B X$ ; confidence 0.884

103. l05761045.png ; $m < n ^ { ( 1 / 3 ) - \delta }$ ; confidence 0.883

104. m130180141.png ; $H _ { n - 2 }$ ; confidence 0.883

105. c022780207.png ; $e ^ { x _ { i } } - 1$ ; confidence 0.882

106. c02691013.png ; $\Gamma ( C ) = V$ ; confidence 0.882

107. i050650262.png ; $K ( T M ^ { g } ) \otimes C \rightarrow C$ ; confidence 0.882

108. l11014038.png ; $\epsilon$ ; confidence 0.882

109. s120040132.png ; $\lambda ^ { s _ { \mu } } = \sum _ { \nu } c _ { \lambda \mu } ^ { \nu } s _ { \nu }$ ; confidence 0.882

110. a120280141.png ; $S _ { E } = \{ \omega \in \hat { G } : E + \omega \subseteq E \}$ ; confidence 0.881

111. h0484203.png ; $F _ { + } ( x + i 0 ) - F _ { - } ( x - i 0 )$ ; confidence 0.881

112. r08160033.png ; $y _ { 2 } = ( x _ { 1 } + x _ { 3 } ) ( x _ { 2 } + x _ { 4 } )$ ; confidence 0.881

113. y09907014.png ; $t _ { \lambda } ^ { \prime }$ ; confidence 0.881

114. b01539044.png ; $i , j = 1,2$ ; confidence 0.881

115. d032600176.png ; $w _ { N } ( \alpha ) \geq n$ ; confidence 0.879

116. c02517037.png ; $\omega ^ { k } = d x ^ { k }$ ; confidence 0.878

117. c0264605.png ; $\alpha _ { i } < b _ { i }$ ; confidence 0.878

118. l12006098.png ; $H \phi$ ; confidence 0.878

119. t09399044.png ; $Q _ { 1 } \cup \square \ldots \cup Q _ { m }$ ; confidence 0.878

120. c02697049.png ; $| w | < 1 / 16$ ; confidence 0.877

121. f04221056.png ; $e _ { \lambda } ^ { 1 } \in X$ ; confidence 0.877

122. m06443090.png ; $B O$ ; confidence 0.877

123. n067520250.png ; $d j \neq 0$ ; confidence 0.877

124. g0436207.png ; $R [ F ( t ) ] = ( 1 - t ^ { 2 } ) F ^ { \prime \prime } - ( 2 \rho - 1 ) t F ^ { \prime \prime }$ ; confidence 0.876

125. a12012069.png ; $p ^ { * } y \leq \lambda ^ { * } p ^ { * } x$ ; confidence 0.875

126. a011600189.png ; $( K / k )$ ; confidence 0.875

127. e03525091.png ; $z _ { k } \in L$ ; confidence 0.875

128. i130090231.png ; $( X ^ { \omega } \chi ^ { - 1 } ) = \pi ^ { \mu _ { \chi } ^ { * } } g _ { \chi } ^ { * } ( T )$ ; confidence 0.875

129. l058820374.png ; $\tau = \{ t _ { i } \} _ { i = 0 } ^ { i = n }$ ; confidence 0.875

130. l0607706.png ; $\operatorname { inv } ( x )$ ; confidence 0.875

131. t09390073.png ; $g _ { n } ( \Omega )$ ; confidence 0.875

132. a13013039.png ; $Q = \sum _ { j = 0 } ^ { \infty } Q _ { j } z ^ { - j } , Q _ { j } = \left( \begin{array} { c c } { h _ { j } } & { e _ { j } } \\ { f _ { j } } & { - h _ { j } } \end{array} \right)$ ; confidence 0.875

133. m06444056.png ; $c = 0$ ; confidence 0.874

134. s08583016.png ; $| w | = \rho < 1$ ; confidence 0.874

135. a130240408.png ; $y _ { i j k }$ ; confidence 0.873

136. a01300057.png ; $L _ { p } ( E )$ ; confidence 0.872

137. l058590134.png ; $S \cap R ( G ) = ( e )$ ; confidence 0.872

138. t1200107.png ; $m = 2 i + 1$ ; confidence 0.871

139. b11033038.png ; $P ^ { \prime }$ ; confidence 0.871

140. i051930181.png ; $Y = C$ ; confidence 0.871

141. b11069080.png ; $M _ { A g }$ ; confidence 0.870

142. d13018035.png ; $\| \hat { f } \| = \| f \| _ { 1 }$ ; confidence 0.870

143. m06557014.png ; $L _ { \cap } \Gamma = 0$ ; confidence 0.870

144. s08735095.png ; $I _ { n } ( \theta ) = n I ( \theta )$ ; confidence 0.870

145. t12001011.png ; $\xi = I ( \partial _ { r } )$ ; confidence 0.869

146. b11057061.png ; $H _ { m }$ ; confidence 0.869

147. c02604071.png ; $A _ { n } x _ { n } = y _ { n }$ ; confidence 0.869

148. w09816057.png ; $Y \times X$ ; confidence 0.869

149. a13013076.png ; $P ^ { ( l ) }$ ; confidence 0.869

150. a130240209.png ; $S$ ; confidence 0.868

151. m12016065.png ; $\Omega _ { p _ { 1 } n _ { 1 } } ( t ^ { \prime } t ^ { \prime } )$ ; confidence 0.868

152. p073700205.png ; $l _ { n } = \# \{ s \in S : d ( s ) = n \}$ ; confidence 0.868

153. i050650145.png ; $\phi * : H ^ { * } ( B / S ) = H ^ { * } ( T M ) \rightarrow H ^ { * } ( M )$ ; confidence 0.867

154. l05700011.png ; $M N$ ; confidence 0.867

155. l05935013.png ; $x ^ { ( n ) } + \alpha _ { 1 } ( t ) x ^ { ( n - 1 ) } + \ldots + \alpha _ { n } ( t ) x = 0$ ; confidence 0.867

156. d1301309.png ; $z = r \operatorname { cos } \theta$ ; confidence 0.866

157. d11023041.png ; $K = \overline { K } \cap L _ { m } ( G )$ ; confidence 0.866

158. e03677067.png ; $\phi ^ { - 1 } ( b ) \cong P ^ { \prime } ( C )$ ; confidence 0.866

159. e03696065.png ; $y _ { j } \delta \theta$ ; confidence 0.866

160. p07535088.png ; $P _ { s } ^ { l } ( k )$ ; confidence 0.866

161. s1202309.png ; $O ( r )$ ; confidence 0.866

162. a11042095.png ; $C ^ { * }$ ; confidence 0.866

163. m063920116.png ; $\int \int K d S$ ; confidence 0.865

164. b11038070.png ; $\Theta f$ ; confidence 0.864

165. f0412506.png ; $\infty \rightarrow \alpha / c$ ; confidence 0.864

166. m06359074.png ; $F \mapsto F ( P )$ ; confidence 0.864

167. s130510139.png ; $L \subset Z ^ { 0 }$ ; confidence 0.864

168. s08732031.png ; $\Pi ^ { * } \in C$ ; confidence 0.864

169. t09377039.png ; $g = R ^ { \alpha } f$ ; confidence 0.864

170. a130240240.png ; $\sigma ^ { 2 }$ ; confidence 0.864

171. a12022013.png ; $T : X \rightarrow Y$ ; confidence 0.863

172. a12005085.png ; $0 \leq t _ { 1 } \leq \ldots \leq t _ { k } \leq T$ ; confidence 0.863

173. c02278058.png ; $O ( X ) = \oplus _ { n = - \infty } ^ { + \infty } O ^ { n } ( X )$ ; confidence 0.863

174. s085590370.png ; $x _ { 0 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.863

175. a01325015.png ; $\operatorname { arg } f$ ; confidence 0.862

176. k05548036.png ; $\| g _ { \alpha \beta } \|$ ; confidence 0.862

177. p07221037.png ; $F ^ { k }$ ; confidence 0.862

178. t09333059.png ; $r _ { 2 } \in R$ ; confidence 0.862

179. r08143081.png ; $e X$ ; confidence 0.861

180. c02698053.png ; $E _ { 8 }$ ; confidence 0.860

181. n06652019.png ; $\epsilon < \epsilon ^ { \prime } < \ldots$ ; confidence 0.860

182. w097670169.png ; $\operatorname { gr } ( A _ { 1 } ( K ) )$ ; confidence 0.860

183. a110040106.png ; $L ] = \lambda$ ; confidence 0.859

184. b01780053.png ; $n = p$ ; confidence 0.858

185. c02547063.png ; $\alpha = d t + \sum p _ { i } d q _ { i }$ ; confidence 0.858

186. e13002010.png ; $\varphi$ ; confidence 0.858

187. m063920117.png ; $\int \int K d S \leq 2 \pi ( \chi - k )$ ; confidence 0.858

188. r08257030.png ; $j 2 ^ { - k - l }$ ; confidence 0.858

189. a130240354.png ; $E ( Z _ { 2 } )$ ; confidence 0.857

190. e03691052.png ; $z = \operatorname { ln } \alpha = \operatorname { ln } | \alpha | + i \operatorname { Arg } \alpha$ ; confidence 0.857

191. l058820245.png ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } ( f _ { 1 } ( x ) / f _ { 2 } ( x ) )$ ; confidence 0.857

192. a1301304.png ; $8$ ; confidence 0.857

193. c02162087.png ; $\kappa ( \eta ^ { q } ) \in H ^ { 2 q } ( B )$ ; confidence 0.856

194. e03698026.png ; $\alpha : G \rightarrow \operatorname { Aut } A$ ; confidence 0.856

195. a11004020.png ; $a$ ; confidence 0.856

196. b01617013.png ; $F _ { n } ( z )$ ; confidence 0.855

197. f04131029.png ; $\Lambda = \frac { \partial } { \partial x } + i \frac { \partial } { \partial y }$ ; confidence 0.855

198. b13006060.png ; $b _ { i }$ ; confidence 0.854

199. d033460124.png ; $| F _ { 0 } ^ { \prime } ( \zeta _ { 0 } ) | \leq | F ^ { \prime } ( \zeta _ { 0 } ) | \leq | F _ { \pi / 2 } ^ { \prime } ( \zeta _ { 0 } ) |$ ; confidence 0.854

200. s08696076.png ; $V < 0$ ; confidence 0.854

201. b01539056.png ; $\delta ^ { * } ( x ) = \left\{ \begin{array} { l l } { d _ { 1 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \leq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \\ { d _ { 2 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \geq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \end{array} \right.$ ; confidence 0.853

202. d03398025.png ; $\sum _ { m = 1 } ^ { \infty } u _ { m n n }$ ; confidence 0.852

203. e03511022.png ; $\Sigma - 1$ ; confidence 0.852

204. t092600123.png ; $B = I _ { p }$ ; confidence 0.852

205. a130240302.png ; $\hat { \eta } \omega$ ; confidence 0.852

206. c023250173.png ; $\beta _ { 0 }$ ; confidence 0.851

207. h11005031.png ; $w _ { 2 } = f ( r _ { 1 } ) \ldots f ( r _ { n } )$ ; confidence 0.851

208. l05911087.png ; $l _ { 2 } u = \phi _ { 2 } ( t )$ ; confidence 0.851

209. l120120133.png ; $( K _ { p } ) _ { i n s }$ ; confidence 0.851

210. c13025017.png ; $Y _ { j } = i$ ; confidence 0.850

211. i05095033.png ; $S = \frac { K } { 3 }$ ; confidence 0.850

212. c02278052.png ; $N \gg n$ ; confidence 0.849

213. c0248905.png ; $\alpha ( x ) - b ( x ) = f ( x ) g ( x ) + p h ( x )$ ; confidence 0.849

214. f040230100.png ; $x _ { n } = n$ ; confidence 0.849

215. m06458025.png ; $k _ { 1 } + \ldots + k _ { n } = k$ ; confidence 0.849

216. g044470103.png ; $\psi \circ \phi = \phi ^ { \prime } \circ \psi$ ; confidence 0.848

217. n06689067.png ; $v = 1.1 m / sec$ ; confidence 0.848

218. a110680179.png ; $\phi _ { x y } a \leq b$ ; confidence 0.847

219. d13008069.png ; $H = C ^ { n }$ ; confidence 0.847

220. a130130103.png ; $K P$ ; confidence 0.846

221. a11058047.png ; $= v : q$ ; confidence 0.846

222. e12007012.png ; $\Gamma _ { q }$ ; confidence 0.846

223. f120080162.png ; $L _ { q } ( X )$ ; confidence 0.846

224. a120160130.png ; $W E = R . F . I$ ; confidence 0.845

225. e03607020.png ; $\tau _ { n } ^ { ( B ) }$ ; confidence 0.845

226. l058820138.png ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } f ( x ) = \alpha$ ; confidence 0.845

227. m0647206.png ; $f _ { E } ^ { \prime } ( \zeta )$ ; confidence 0.845

228. o07022036.png ; $E$ ; confidence 0.845

229. p07469030.png ; $\pi G ( x ) = b$ ; confidence 0.845

230. r0822307.png ; $| x _ { i } | \leq 1$ ; confidence 0.845

231. c120210117.png ; $\Lambda _ { n } ( \theta ) - h ^ { \prime } \Delta _ { n } ( \theta ) \rightarrow - \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h$ ; confidence 0.843

232. j12001037.png ; $\operatorname { log } F \leq 100$ ; confidence 0.843

233. p07535017.png ; $q IL$ ; confidence 0.843

234. i050230312.png ; $- \infty < r < \infty$ ; confidence 0.842

235. i05188051.png ; $\mathfrak { M } \in S _ { 1 }$ ; confidence 0.842

236. a11042077.png ; $K _ { 0 } ( \varphi ) = K _ { 0 } ( \psi )$ ; confidence 0.842

237. a1202209.png ; $x | < e$ ; confidence 0.841

238. r08229026.png ; $y _ { n } \leq x _ { n } \leq z _ { n }$ ; confidence 0.841

239. d03195033.png ; $L u = \operatorname { div } ( p ( x ) \operatorname { grad } u ) + q ( x ) u$ ; confidence 0.840

240. e03708073.png ; $x _ { i } ^ { 2 } = 0$ ; confidence 0.840

241. f12011010.png ; $| \varphi ( z ) | ^ { 2 } e ^ { \delta | z | }$ ; confidence 0.840

242. g12007022.png ; $m \equiv 4$ ; confidence 0.840

243. r07726020.png ; $\zeta _ { 2 n } = \sqrt { - 2 \operatorname { ln } \xi _ { 2 n } } \operatorname { sin } 2 \pi \xi _ { 2 n - 1 }$ ; confidence 0.840

244. c020740328.png ; $e \in E$ ; confidence 0.839

245. m06249026.png ; $\Lambda \in N ^ { t }$ ; confidence 0.838

246. a12022031.png ; $0 \leq S \leq T$ ; confidence 0.838

247. a1300102.png ; $C$ ; confidence 0.838

248. k0554502.png ; $u | _ { \Sigma } = 0$ ; confidence 0.837

249. l05925090.png ; $v \in ( 1 - t ) V$ ; confidence 0.837

250. s085620184.png ; $f _ { t } = h _ { t } \circ f _ { 0 } \circ k _ { t }$ ; confidence 0.837

251. s09045062.png ; $\zeta ^ { \phi } \in C ^ { d }$ ; confidence 0.837

252. d03261012.png ; $y = y _ { 0 } - a n$ ; confidence 0.836

253. j05405060.png ; $H _ { 2 } = \prod _ { m = 1 } ^ { \infty } ( 1 + e ^ { ( 2 m - 1 ) i \pi \tau } )$ ; confidence 0.836

254. b11010099.png ; $\| T \| T ^ { - 1 } \| \geq c n$ ; confidence 0.835

255. c02544025.png ; $D ^ { + } = \cup _ { k = 1 } ^ { m } D _ { k }$ ; confidence 0.835

256. c11041081.png ; $\{ X _ { t } : t \in T \}$ ; confidence 0.835

257. a011650252.png ; $\forall x _ { k }$ ; confidence 0.834

258. e11007046.png ; $C x ^ { - 1 }$ ; confidence 0.834

259. f0412503.png ; $z \rightarrow w = L ( z ) = \frac { a z + b } { c z + d }$ ; confidence 0.834

260. a130240429.png ; $\Theta$ ; confidence 0.834

261. a01406076.png ; $\mathfrak { A } _ { s _ { 1 } }$ ; confidence 0.833

262. b01535027.png ; $\alpha _ { i } \in \Omega$ ; confidence 0.833

263. d031830269.png ; $\operatorname { ord } ( \theta ) = \sum e$ ; confidence 0.833

264. m06259032.png ; $B = 0$ ; confidence 0.833

265. b0155806.png ; $p _ { i } = \nu ( \alpha _ { i } )$ ; confidence 0.832

266. w09703012.png ; $\overline { \sum _ { g } n ( g ) g } = \sum w ( g ) n ( g ) g ^ { - 1 }$ ; confidence 0.832

267. a13013041.png ; $\sum _ { i = 0 } ^ { \infty } X _ { i } z ^ { - i }$ ; confidence 0.831

268. d03225022.png ; $\partial M$ ; confidence 0.831

269. i13008028.png ; $X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$ ; confidence 0.831

270. s13064057.png ; $L ^ { 1 } ( R ) \cap L ^ { \infty } ( R )$ ; confidence 0.831

271. c023140243.png ; $u \mapsto \rho ( u ) - \operatorname { Tr } ( \text { ad } u ) \in \operatorname { End } _ { K } ( M )$ ; confidence 0.830

272. s090770137.png ; $\lambda _ { 1 } < \lambda _ { 2 } < \ldots$ ; confidence 0.830

273. b01572032.png ; $+ \frac { \alpha } { u } [ \alpha ( \frac { \partial u } { \partial x } ) ^ { 2 } + 2 b \frac { \partial u } { \partial x } \frac { \partial u } { \partial y } + c ( \frac { \partial u } { \partial y } ) ^ { 2 } ] +$ ; confidence 0.828

274. d03168056.png ; $q _ { 2 } \neq q _ { 1 }$ ; confidence 0.828

275. l059490217.png ; $\rho ^ { ( j ) }$ ; confidence 0.828

276. s08300044.png ; $D _ { n } X _ { 1 }$ ; confidence 0.828

277. y11001011.png ; $g ^ { \prime } = \phi ^ { 4 / ( n - 2 ) } g$ ; confidence 0.828

278. c11005010.png ; $CW ( 9.63 )$ ; confidence 0.827

279. p0754802.png ; $( p \supset ( q \supset r ) ) \supset ( ( p \supset q ) \supset ( p \supset r ) )$ ; confidence 0.827

280. p0758301.png ; $a \vee b$ ; confidence 0.827

281. s087360105.png ; $\operatorname { lim } _ { n \rightarrow \infty } P \{ \frac { \alpha - \alpha } { \sigma _ { n } ( \alpha ) } < x \} = \frac { 1 } { \sqrt { 2 \pi } } \int _ { - \infty } ^ { x } e ^ { - t ^ { 2 } / 2 } d t \equiv \Phi ( x )$ ; confidence 0.827

282. c13009010.png ; $x _ { j } = \operatorname { cos } ( \pi j / N )$ ; confidence 0.826

283. o07034097.png ; $y = K _ { n } ( x )$ ; confidence 0.826

284. s085590585.png ; $\| x \| = \rho$ ; confidence 0.826

285. h04793027.png ; $x = [ u ]$ ; confidence 0.825

286. a01012050.png ; $z | > 1$ ; confidence 0.823

287. e0357202.png ; $\operatorname { lim } _ { k \rightarrow \infty } | \alpha _ { k } | ^ { 1 / k } = 0$ ; confidence 0.823

288. p075560134.png ; $( P . Q ) ! = ( P \times Q ) ! = ( P ! \times Q ! ) !$ ; confidence 0.823

289. a13013056.png ; $A _ { 1 } ^ { ( 1 ) }$ ; confidence 0.822

290. b01667071.png ; $n _ { 1 } = 9$ ; confidence 0.822

291. m06309023.png ; $r _ { 0 } ^ { * } + \sum _ { j = 1 } ^ { q } \beta _ { j } r _ { j } ^ { * } = \sigma ^ { 2 }$ ; confidence 0.822

292. m11013041.png ; $\beta + \gamma \simeq \alpha . S ( t )$ ; confidence 0.822

293. s13004069.png ; $X ^ { * } = \Gamma \backslash D ^ { * }$ ; confidence 0.822

294. g04358023.png ; $f _ { \zeta } ( \lambda )$ ; confidence 0.821

295. l0591406.png ; $T _ { x _ { 1 } } ( M ) \rightarrow T _ { x _ { 0 } } ( M )$ ; confidence 0.821

296. r08205056.png ; $\partial \overline { R } _ { \nu }$ ; confidence 0.821

297. b01511035.png ; $U ( y ) = \int _ { \Gamma } f ( x ) d \beta _ { Y } ( x )$ ; confidence 0.820

298. b0169909.png ; $\Omega _ { M } ( \rho ) \in V _ { M } ^ { V ^ { n } }$ ; confidence 0.820

299. c02162091.png ; $c _ { q } ( \xi ) = \kappa ( \eta ^ { q } )$ ; confidence 0.820

300. d130060103.png ; $Z \in X$ ; confidence 0.820

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/6. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/6&oldid=43856