User:Maximilian Janisch/latexlist/latex/7
List
1.
; $S = \frac { K } { 3 }$ ; confidence 0.850
2.
; $F ( M ^ { k } ) \subset \nabla \square ^ { n }$ ; confidence 0.382
3.
; $- \infty < a < + \infty$ ; confidence 0.959
4.
; $3 a$ ; confidence 0.497
5.
; $\overline { \rho } _ { L }$ ; confidence 0.896
6.
; $p ^ { t } ( . )$ ; confidence 0.817
7.
; $c ( I ) = \frac { 1 } { 2 }$ ; confidence 0.667
8.
; $\Theta$ ; confidence 0.952
9.
; $\sum _ { k = 1 } ^ { \infty } b _ { k } \operatorname { sin } k x$ ; confidence 0.946
10.
; $\int f _ { 1 } ( x ) d x \quad \text { and } \quad \int f _ { 2 } ( x ) d x$ ; confidence 0.921
11.
; $\alpha ( \lambda ) = \alpha _ { - } ( \lambda ) \alpha _ { + } ( \lambda )$ ; confidence 0.598
12.
; $0 < \alpha < a$ ; confidence 0.971
13.
; $h ( \lambda )$ ; confidence 1.000
14.
; $| \lambda | < 1 / M ( b - \alpha )$ ; confidence 0.952
15.
; $\hat { \phi } ( x ) = \lambda \sum _ { i = 1 } ^ { n } C _ { i } \alpha _ { i } ( x ) + f ( x )$ ; confidence 0.810
16.
; $\{ \alpha _ { i } ( x ) \}$ ; confidence 0.971
17.
; $| t - \tau |$ ; confidence 0.984
18.
; $\Gamma = \partial D _ { 1 } \times \square \ldots \times \partial D _ { n }$ ; confidence 0.954
19.
; $\Gamma ( z ) = \frac { 1 } { e ^ { 2 i \pi z } - 1 } \int _ { L _ { 1 } } \zeta ^ { z - 1 } e ^ { - \zeta } d \zeta$ ; confidence 0.895
20.
; $\frac { \partial } { \partial z } = \frac { 1 } { 2 } ( \frac { \partial } { \partial x } + i \frac { \partial } { \partial y } )$ ; confidence 0.997
21.
; $\partial D \times D$ ; confidence 0.998
22.
; $g \in E$ ; confidence 0.988
23.
; $T f _ { n } \rightarrow 0$ ; confidence 0.976
24.
; $\psi = \sum \psi _ { i } \partial / \partial x _ { i }$ ; confidence 0.981
25.
; $T _ { W } ^ { 2 k + 1 } ( X )$ ; confidence 0.984
26.
; $\mathfrak { M } \in S _ { 1 }$ ; confidence 0.842
27.
; $Y = C$ ; confidence 0.871
28.
; $\{ f _ { \alpha } : \alpha \in \mathfrak { A } \}$ ; confidence 0.968
29.
; $m \times ( n + 1 )$ ; confidence 1.000
30.
; $\frac { ( x - x _ { k } - 1 ) ( x - x _ { k + 1 } ) } { ( x _ { k } - x _ { k - 1 } ) ( x _ { k } - x _ { k + 1 } ) } f ( x _ { k } ) + \frac { ( x - x _ { k - 1 } ) ( x - x _ { k } ) } { ( x _ { k } + 1 - x _ { k - 1 } ) ( x _ { k + 1 } - x _ { k } ) } f ( x _ { k + 1 } )$ ; confidence 0.069
31.
; $\{ \psi _ { i } ( x ) \} _ { i = 0 } ^ { n }$ ; confidence 0.981
32.
; $\omega _ { n - 1 } ( z ) = ( z - b _ { 0 } ) \ldots ( z - b _ { n } - 1 )$ ; confidence 0.462
33.
; $\Delta ^ { i }$ ; confidence 0.491
34.
; $B = Y \backslash 0$ ; confidence 0.999
35.
; $x < \varrho y$ ; confidence 0.723
36.
; $T \subset R ^ { 1 }$ ; confidence 0.989
37.
; $\forall y \exists z ( \gamma ( y ) + 1 = \alpha ( g * \overline { \beta } ( z ) ) )$ ; confidence 0.288
38.
; $\forall x ( P ( x ) \vee \neg P ( x ) ) \wedge \neg \neg \neg x P ( x ) \supset \exists x P ( x )$ ; confidence 0.397
39.
; $x \leq z \leq y$ ; confidence 0.995
40.
; $Z \in G$ ; confidence 0.401
41.
; $\operatorname { inh } ^ { - 1 } z = - i \operatorname { arcsin } i z$ ; confidence 0.766
42.
; $| r _ { + } ( k ) | \leq 1 - c k ^ { 2 } ( 1 + k ^ { 2 } ) ^ { - 1 }$ ; confidence 0.554
43.
; $s > - \infty$ ; confidence 0.985
44.
; $< 2 a$ ; confidence 0.500
45.
; $y \geq x \geq 0$ ; confidence 0.999
46.
; $q ( x ) \in L ^ { 2 } \operatorname { loc } ( R ^ { 3 } )$ ; confidence 0.953
47.
; $y = Arc$ ; confidence 0.482
48.
; $\operatorname { cos } ^ { - 1 } x$ ; confidence 1.000
49.
; $F [ \phi ( w ) ]$ ; confidence 0.983
50.
; $b = f ( a ) = b _ { 0 }$ ; confidence 0.455
51.
; $P ^ { N } ( k )$ ; confidence 0.999
52.
; $L ^ { \prime }$ ; confidence 0.256
53.
; $O _ { X } ( 1 ) = O ( 1 )$ ; confidence 0.996
54.
; $f ( x ^ { * } x ) \leq f ( 1 ) r ( x ^ { * } x )$ ; confidence 0.984
55.
; $\omega ^ { \beta }$ ; confidence 0.626
56.
; $0 \in R ^ { 3 }$ ; confidence 0.983
57.
; $H = 0$ ; confidence 0.999
58.
; $m s$ ; confidence 0.683
59.
; $\gamma = 7 / 4$ ; confidence 0.659
60.
; $p : G \rightarrow G$ ; confidence 0.995
61.
; $X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$ ; confidence 0.831
62.
; $x = \{ x ^ { \alpha } ( u ^ { s } ) \}$ ; confidence 0.775
63.
; $E ^ { 2 k + 1 }$ ; confidence 0.996
64.
; $( = 2 / \pi )$ ; confidence 0.994
65.
; $F _ { t } : M ^ { n } \rightarrow M ^ { n }$ ; confidence 0.989
66.
; $Y \times t$ ; confidence 0.546
67.
; $L ^ { \prime } ( T _ { x } M )$ ; confidence 0.252
68.
; $\kappa _ { k } = a _ { n n } ^ { ( k ) }$ ; confidence 0.556
69.
; $\beta _ { k } q _ { k + 1 } = A q _ { k } - \beta _ { k - 1 } q _ { k - 1 } - \alpha _ { k } q _ { k k }$ ; confidence 0.371
70.
; $F _ { 0 }$ ; confidence 0.994
71.
; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$ ; confidence 0.434
72.
; $p < 12000000$ ; confidence 1.000
73.
; $\lambda _ { p } ( K / k ) = \lambda ( X )$ ; confidence 0.997
74.
; $( X ^ { \omega } \chi ^ { - 1 } ) = \pi ^ { \mu _ { \chi } ^ { * } } g _ { \chi } ^ { * } ( T )$ ; confidence 0.875
75.
; $\overline { Q } _ { p }$ ; confidence 0.689
76.
; $\mu _ { m }$ ; confidence 0.969
77.
; $\theta _ { 3 } ( v \pm \frac { 1 } { 2 } \tau ) = e ^ { - i \pi \tau / 4 } \cdot e ^ { - i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.312
78.
; $dn ^ { 2 } u + k ^ { 2 } sn ^ { 2 } u = 1$ ; confidence 0.565
79.
; $\theta _ { 2 } ( v \pm \tau ) = e ^ { - i \pi \tau } \cdot e ^ { - 2 i \pi v } \cdot \theta _ { 2 } ( v )$ ; confidence 0.234
80.
; $e _ { 1 } = ( 2 - k ^ { 2 } ) / 3$ ; confidence 0.995
81.
; $H _ { 2 } = \prod _ { m = 1 } ^ { \infty } ( 1 + e ^ { ( 2 m - 1 ) i \pi \tau } )$ ; confidence 0.836
82.
; $w _ { 1 } = w _ { 1 } ( z _ { 1 } )$ ; confidence 0.916
83.
; $x = B x + g$ ; confidence 0.998
84.
; $\operatorname { log } F \leq 100$ ; confidence 0.843
85.
; $f _ { 0 } ( \Delta )$ ; confidence 0.998
86.
; $f _ { 0 } ( z _ { j } ) = \left\{ \begin{array} { l l } { \alpha ^ { ( j ) } z _ { j } + \text { non-positive powers of } z _ { j } } & { \text { if } j \leq r } \\ { z _ { j } + \sum _ { s = x _ { j } } ^ { \infty } a _ { s } ^ { ( j ) } z _ { j } ^ { - s } } & { \text { if } j > r } \end{array} \right.$ ; confidence 0.051
87.
; $k _ { \vartheta } ( z ) = \frac { 1 - | z | ^ { 2 } } { | z - e ^ { i \vartheta | ^ { 2 } } }$ ; confidence 0.753
88.
; $B M O$ ; confidence 0.973
89.
; $K ^ { * }$ ; confidence 0.718
90.
; $\operatorname { cr } ( K )$ ; confidence 0.995
91.
; $s ( L ) \geq ( E - e ) / 2$ ; confidence 0.952
92.
; $M ^ { ( 2 ) }$ ; confidence 0.998
93.
; $( n _ { + } - n _ { - } ) - ( s ( D _ { L } ) - 1 ) \leq e \leq E \leq ( n _ { + } - n _ { - } ) + ( s ( D _ { L } ) - 1 )$ ; confidence 0.972
94.
; $J = \left| \begin{array} { c c c c } { J _ { n _ { 1 } } ( \lambda _ { 1 } ) } & { \square } & { \square } & { \square } \\ { \square } & { \ldots } & { \square } & { 0 } \\ { 0 } & { \square } & { \ldots } & { \square } \\ { \square } & { \square } & { \square } & { J _ { n _ { S } } ( \lambda _ { s } ) } \end{array} \right|$ ; confidence 0.072
95.
; $L = \angle \operatorname { lim } _ { z \rightarrow \omega } f ( z )$ ; confidence 0.923
96.
; $\phi _ { \omega } ( F ( z ) ) \leq \phi _ { \omega } ( z )$ ; confidence 0.994
97.
; $t = [ \xi _ { E } ]$ ; confidence 0.983
98.
; $T ( X )$ ; confidence 0.996
99.
; $x _ { 0 } ^ { 4 } + x _ { 1 } ^ { 4 } + x _ { 2 } ^ { 4 } + x _ { 3 } ^ { 4 } = 0$ ; confidence 0.998
100.
; $h = K \eta \leq 1 / 2$ ; confidence 0.997
101.
; $\frac { x ^ { \rho + 1 } f ( x ) } { \int _ { x } ^ { x } t ^ { \sigma } f ( t ) d t } \rightarrow \sigma + \rho + 1 \quad ( x \rightarrow \infty )$ ; confidence 0.320
102.
; $f ( \vec { D } ( A ) ) = ( - A ^ { 3 } ) ^ { - \operatorname { Tait } ( \vec { D } ) } \langle D \rangle$ ; confidence 0.497
103.
; $A | D _ { + } \rangle - A ^ { - 1 } \langle D _ { - } \} = ( A ^ { 2 } - A ^ { - 2 } ) \langle D _ { 0 } \}$ ; confidence 0.230
104.
; $T ( s )$ ; confidence 1.000
105.
; $\overline { 9 } _ { 42 }$ ; confidence 0.683
106.
; $h ^ { 0 } ( K _ { X } \otimes L ^ { * } )$ ; confidence 0.989
107.
; $B = \sum _ { j = 1 } ^ { t } b _ { j } B _ { j }$ ; confidence 0.961
108.
; $m \geq m _ { 0 }$ ; confidence 0.997
109.
; $z ^ { 2 } y ^ { \prime \prime } + z y ^ { \prime } - ( i z ^ { 2 } + \nu ^ { 2 } ) y = 0$ ; confidence 0.967
110.
; $- w _ { 0 } ( \chi )$ ; confidence 0.944
111.
; $W _ { C }$ ; confidence 0.473
112.
; $K _ { p } ( f ) ( p _ { i } ) = f ( p _ { i } )$ ; confidence 0.995
113.
; $K _ { \mu }$ ; confidence 0.997
114.
; $K _ { 0 } ^ { 4 k + 2 }$ ; confidence 0.990
115.
; $\Delta u = - f ( x )$ ; confidence 0.986
116.
; $u | _ { \Sigma } = 0$ ; confidence 0.837
117.
; $R \phi / 6$ ; confidence 0.994
118.
; $\mu = m c / \hbar$ ; confidence 0.999
119.
; $\| g _ { \alpha \beta } \|$ ; confidence 0.862
120.
; $\partial / \partial x ^ { \alpha } \rightarrow ( \partial / \partial x ^ { \alpha } ) - i e A _ { \alpha } / \hbar$ ; confidence 0.973
121.
; $\Omega ( \Gamma )$ ; confidence 1.000
122.
; $\Gamma 20$ ; confidence 0.310
123.
; $D _ { 1 } / \Gamma$ ; confidence 0.999
124.
; $\frac { 1 } { 2 \pi } \{ \text { hyperbolic area of } \Omega \backslash \Gamma \} \leq 2 ( N - 1 )$ ; confidence 0.926
125.
; $\hat { M } _ { 0 }$ ; confidence 0.537
126.
; $Q _ { 1 } : A \rightarrow T ^ { \prime } A T$ ; confidence 0.990
127.
; $| m K _ { V ^ { \prime } } | ^ { J }$ ; confidence 0.246
128.
; $f ( z ) = z + \ldots$ ; confidence 0.768
129.
; $\frac { \partial f } { \partial s } = - A _ { S } f$ ; confidence 0.702
130.
; $I _ { \Gamma } ( x )$ ; confidence 0.999
131.
; $A _ { t } ^ { * }$ ; confidence 0.985
132.
; $= \frac { 2 } { \pi ^ { 2 } x _ { 0 } } \int _ { 0 } ^ { \infty } K _ { i \tau } ( x _ { 0 } ) \tau \operatorname { sinh } ( \pi \tau ) F ( \tau ) d \tau$ ; confidence 0.890
133.
; $( \alpha _ { i } ) _ { i \in I }$ ; confidence 0.480
134.
; $( \partial ^ { 2 } / \partial x \partial t ) u = \operatorname { sin } u$ ; confidence 0.562
135.
; $\square ^ { 1 } S _ { 2 } ( i )$ ; confidence 0.950
136.
; $E ( \Delta ) K \subset D ( A )$ ; confidence 0.947
137.
; $c ( A ) \subset R \cup \{ \infty \}$ ; confidence 0.588
138.
; $C = C ^ { * }$ ; confidence 0.990
139.
; $W _ { \alpha } ( P ) \subseteq ( D _ { \alpha } ) ^ { n }$ ; confidence 0.991
140.
; $D _ { \alpha }$ ; confidence 0.374
141.
; $W _ { \alpha } ( B \supset C ) = T \leftrightarrows$ ; confidence 0.637
142.
; $\sum _ { j = 1 } ^ { n } b _ { j } r j \in Z$ ; confidence 0.479
143.
; $\eta ( \epsilon ) \rightarrow 0$ ; confidence 0.993
144.
; $\frac { d \xi } { d t } = \epsilon X _ { 0 } ( \xi ) + \epsilon ^ { 2 } P _ { 2 } ( \xi ) + \ldots + \epsilon ^ { m } P _ { m } ( \xi )$ ; confidence 0.966
145.
; $\xi = \xi _ { 0 } ( \phi )$ ; confidence 0.999
146.
; $\mu _ { n } ( P \| Q ) =$ ; confidence 0.972
147.
; $P = Q$ ; confidence 0.998
148.
; $E \neq \emptyset$ ; confidence 0.475
149.
; $E = \emptyset$ ; confidence 0.977
150.
; $F _ { M } : G \rightarrow C ^ { * }$ ; confidence 0.933
151.
; $g = \sum g _ { \alpha \overline { \beta } } d z ^ { \alpha } \otimes d z \square ^ { \beta }$ ; confidence 0.694
152.
; $\nu _ { 0 } \in C ^ { n }$ ; confidence 0.245
153.
; $p : X \rightarrow S$ ; confidence 0.998
154.
; $R ^ { k } p \times ( F )$ ; confidence 0.519
155.
; $x \preceq y$ ; confidence 0.956
156.
; $M ( E ) = \vec { X }$ ; confidence 0.493
157.
; $c \rightarrow N$ ; confidence 0.335
158.
; $\overline { B } \rightarrow \overline { B }$ ; confidence 0.985
159.
; $a \rightarrow a b d ^ { 6 }$ ; confidence 0.569
160.
; $n ^ { O ( n ) } M ^ { O ( 1 ) }$ ; confidence 0.921
161.
; $\{ \phi _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.817
162.
; $1 \leq p < + \infty$ ; confidence 0.999
163.
; $3 N + k + m$ ; confidence 0.919
164.
; $\ddot { x } \square _ { \nu } = d \dot { x } \square _ { \nu } / d t$ ; confidence 0.944
165.
; $\mu$ ; confidence 0.335
166.
; $x g$ ; confidence 0.734
167.
; $T + V = h$ ; confidence 0.994
168.
; $v ( P ) - v ( D )$ ; confidence 0.999
169.
; $x ^ { ( 0 ) } = 1$ ; confidence 0.976
170.
; $M N$ ; confidence 0.867
171.
; $+ ( \lambda x y \cdot y ) : ( \sigma \rightarrow ( \tau \rightarrow \tau ) )$ ; confidence 0.262
172.
; $( M N ) \in \Lambda$ ; confidence 0.998
173.
; $\equiv \lambda x y \cdot x$ ; confidence 0.709
174.
; $( \lambda x M ) \in \Lambda$ ; confidence 0.756
175.
; $k ^ { 2 } ( \tau ) = \lambda$ ; confidence 0.999
176.
; $D = 2 \gamma k T / M$ ; confidence 0.990
177.
; $T _ { F }$ ; confidence 0.455
178.
; $T _ { E } : U \rightarrow U$ ; confidence 0.704
179.
; $v \in C ( \overline { G } )$ ; confidence 0.795
180.
; $\Delta ( \alpha _ { 1 } \ldots i _ { p } d x ^ { i _ { 1 } } \wedge \ldots \wedge d x ^ { i p } ) =$ ; confidence 0.331
181.
; $| t | ^ { - 1 }$ ; confidence 1.000
182.
; $E = \frac { m } { 2 } ( \dot { x } \square _ { 1 } ^ { 2 } + \dot { x } \square _ { 2 } ^ { 2 } + \dot { x } \square _ { 3 } ^ { 2 } ) + \frac { \kappa } { r }$ ; confidence 0.586
183.
; $\sqrt { 2 }$ ; confidence 0.155
184.
; $m < n ^ { ( 1 / 3 ) - \delta }$ ; confidence 0.883
185.
; $U _ { 0 } = 1$ ; confidence 0.997
186.
; $\alpha _ { 1 } + n h _ { 1 }$ ; confidence 0.738
187.
; $E ( \mu _ { n } / n )$ ; confidence 0.725
188.
; $\operatorname { lim } _ { n \rightarrow \infty } \operatorname { sup } \frac { S _ { n } } { c _ { n } } = 1 \quad ( \alpha . s . )$ ; confidence 0.299
189.
; $31$ ; confidence 0.915
190.
; $\mu \approx 18.431$ ; confidence 0.997
191.
; $4.60$ ; confidence 0.967
192.
; $E Y _ { i } = ( \alpha + \beta \overline { t } ) + \beta ( t _ { i } - \overline { t } )$ ; confidence 0.681
193.
; $\alpha _ { 2 } ( t ) = t$ ; confidence 0.461
194.
; $f ( x ) = \operatorname { lim } _ { N \rightarrow \infty } \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { N } \operatorname { cosh } ( \pi \tau ) \operatorname { Im } K _ { 1 / 2 + i \tau } ( x ) F ( \tau ) d \tau$ ; confidence 0.580
195.
; $\lambda ( I ) = \lambda ^ { * } ( A \cap I ) + \lambda ^ { * } ( I \backslash A )$ ; confidence 0.776
196.
; $H \phi$ ; confidence 0.878
197.
; $\int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle ^ { 2 } } { \lambda } _ { d } \lambda < E _ { 0 }$ ; confidence 0.248
198.
; $\phi \in H$ ; confidence 0.981
199.
; $B \subset X ^ { * }$ ; confidence 0.699
200.
; $v = v ( t )$ ; confidence 0.987
201.
; $s = \int _ { a } ^ { b } \sqrt { 1 + [ f ^ { \prime } ( x ) ] ^ { 2 } } d x$ ; confidence 0.961
202.
; $\{ i _ { k } \}$ ; confidence 0.773
203.
; $\zeta = 0$ ; confidence 0.999
204.
; $- \operatorname { log } | \zeta |$ ; confidence 0.998
205.
; $0 < r < \operatorname { tanh } \pi / 4$ ; confidence 0.998
206.
; $\operatorname { grad } \phi ( \zeta ) \neq 0$ ; confidence 0.967
207.
; $x \# y = x y + y x - \frac { 2 } { n + 1 } ( \operatorname { Tr } x y ) l$ ; confidence 0.625
208.
; $( x y ) x = y ( y x )$ ; confidence 1.000
209.
; $\mathfrak { A } ^ { - }$ ; confidence 0.906
210.
; $S ^ { i j } = \Omega ^ { i j } + T ^ { i j }$ ; confidence 0.980
211.
; $x$ ; confidence 0.899
212.
; $P _ { 8 }$ ; confidence 0.799
213.
; $g ^ { \prime } / ( 1 - u ) g ^ { \prime } = \overline { g }$ ; confidence 0.215
214.
; $\mathfrak { g } = \mathfrak { a } + \mathfrak { n }$ ; confidence 0.634
215.
; $0 \leq p \leq n / 2$ ; confidence 0.998
216.
; $A _ { I l }$ ; confidence 0.608
217.
; $L ( H )$ ; confidence 0.995
218.
; $Q _ { A }$ ; confidence 0.136
219.
; $S \cap R ( G ) = ( e )$ ; confidence 0.872
220.
; $x ( 1 )$ ; confidence 1.000
221.
; $Z \times T$ ; confidence 0.994
222.
; $C ^ { n } / \Gamma _ { 1 }$ ; confidence 0.708
223.
; $G \subset N ( F )$ ; confidence 0.979
224.
; $\pi _ { 1 } ( G ) \cong \Gamma ( G ) / \Gamma _ { 0 }$ ; confidence 0.992
225.
; $l _ { k } ( A )$ ; confidence 0.348
226.
; $\epsilon$ ; confidence 0.882
227.
; $\tilde { y } ( x ) = \operatorname { exp } ( - \epsilon ) f ( x \operatorname { exp } ( - \epsilon ) )$ ; confidence 0.405
228.
; $\operatorname { lm } A _ { * } = \mathfrak { g }$ ; confidence 0.711
229.
; $R ^ { n } \times R ^ { n }$ ; confidence 0.554
230.
; $\left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { forn } = 1 } \\ { \gamma > 0 } & { \text { forn } = 2 } \\ { \gamma \geq 0 } & { \text { forn } \geq 3 } \end{array} \right.$ ; confidence 0.191
231.
; $\approx ( 2 \pi ) ^ { - n } \int _ { R ^ { n } \times R ^ { n } } [ p ^ { 2 } + V ( x ) ] _ { - } ^ { \gamma } d p d x =$ ; confidence 0.680
232.
; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } ( f _ { 1 } ( x ) / f _ { 2 } ( x ) )$ ; confidence 0.857
233.
; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } f ( x ) = \alpha$ ; confidence 0.845
234.
; $\tau = \{ t _ { i } \} _ { i = 0 } ^ { i = n }$ ; confidence 0.875
235.
; $- \Delta u + c u$ ; confidence 0.993
236.
; $Z y \rightarrow \infty$ ; confidence 0.270
237.
; $y = \operatorname { sin } ( 1 / x )$ ; confidence 1.000
238.
; $f _ { h } \in F _ { k }$ ; confidence 0.549
239.
; $p i n$ ; confidence 0.132
240.
; $+ \sum _ { i = 1 } ^ { s } \| k _ { i k } [ u ] _ { k } - \{ l _ { i } u \} _ { i k } \| _ { \Phi _ { i k } } + \| p _ { i k } \phi _ { i } - \{ \phi _ { i } \} _ { i k } \| _ { \Phi _ { i k } }$ ; confidence 0.263
241.
; $L _ { h } u _ { k } = f _ { k }$ ; confidence 0.508
242.
; $\{ \phi _ { i } \} _ { i k }$ ; confidence 0.712
243.
; $l _ { 2 } u = \phi _ { 2 } ( t )$ ; confidence 0.851
244.
; $\frac { 1 } { 4 n } \operatorname { max } \{ \alpha _ { i } : 0 \leq i \leq t \} \leq \Delta _ { 2 } \leq \frac { 1 } { 4 n } ( \sum _ { i = 0 } ^ { t } \alpha _ { i } + 2 )$ ; confidence 0.363
245.
; $\nabla _ { Y } ( f X ) = ( Y f ) X + f \nabla _ { Y } X$ ; confidence 0.681
246.
; $T _ { x _ { 1 } } ( M ) \rightarrow T _ { x _ { 0 } } ( M )$ ; confidence 0.821
247.
; $A ^ { ( 0 ) }$ ; confidence 0.506
248.
; $\dot { u } = A _ { n } u$ ; confidence 0.195
249.
; $\operatorname { ln } t$ ; confidence 0.999
250.
; $T _ { \Delta }$ ; confidence 0.636
251.
; $\lambda \geq \gamma$ ; confidence 0.474
252.
; $\Gamma _ { 0 } ( . )$ ; confidence 0.995
253.
; $H ^ { k }$ ; confidence 0.998
254.
; $v \in ( 1 - t ) V$ ; confidence 0.837
255.
; $C _ { 0 } ( R )$ ; confidence 0.976
256.
; $A -$ ; confidence 0.967
257.
; $x ( t ) \equiv 0$ ; confidence 0.999
258.
; $x ^ { ( n ) } + \alpha _ { 1 } ( t ) x ^ { ( n - 1 ) } + \ldots + \alpha _ { n } ( t ) x = 0$ ; confidence 0.867
259.
; $X ( t ) = \operatorname { exp } ( \int _ { t _ { 0 } } ^ { t } A ( \tau ) d \tau )$ ; confidence 0.977
260.
; $Y ( t ) = X ( t ) C$ ; confidence 0.998
261.
; $W ( t ) \neq 0$ ; confidence 0.995
262.
; $x ( 0 ) \in R ^ { n }$ ; confidence 0.473
263.
; $\dot { y } = - A ^ { T } ( t ) y$ ; confidence 0.993
264.
; $Q _ { 3 } ( b )$ ; confidence 0.962
265.
; $x = F ( t ) y$ ; confidence 0.992
266.
; $\rho ^ { ( j ) }$ ; confidence 0.828
267.
; $\alpha ^ { ( 0 ) }$ ; confidence 0.892
268.
; $| \epsilon | < \epsilon$ ; confidence 0.461
269.
; $\frac { d z } { d t } = - A ( t ) ^ { * } Z$ ; confidence 0.495
270.
; $L ( 0 ) = 0$ ; confidence 1.000
271.
; $\frac { d w _ { N } } { d t } = \frac { \partial w _ { N } } { \partial t } + \sum _ { i = 1 } ^ { N } ( \frac { \partial w _ { N } } { \partial r _ { i } } \frac { d r _ { i } } { d t } + \frac { \partial w _ { N } } { \partial p _ { i } } \frac { d p _ { i } } { d t } ) = 0$ ; confidence 0.716
272.
; $f \in H _ { p } ^ { \alpha }$ ; confidence 0.996
273.
; $G ( K _ { p ^ { \prime } } )$ ; confidence 0.801
274.
; $( K _ { p } ) _ { i n s }$ ; confidence 0.851
275.
; $Z _ { \text { tot } S } = Z$ ; confidence 0.066
276.
; $\operatorname { dim } Z \cap \overline { S _ { k + q + 1 } } ( F | _ { X \backslash Z } ) \leq k$ ; confidence 0.399
277.
; $\alpha = E X _ { 1 }$ ; confidence 0.670
278.
; $d ( A )$ ; confidence 0.998
279.
; $\in \Theta$ ; confidence 0.953
280.
; $m = n = 1$ ; confidence 0.998
281.
; $\left. \begin{array} { c c c } { R } & { \stackrel { \pi _ { 2 } \mu } { \rightarrow } } & { B } \\ { \pi _ { 1 } \mu \downarrow } & { \square } & { \downarrow \beta } \\ { A } & { \vec { \alpha } } & { C } \end{array} \right.$ ; confidence 0.590
282.
; $R = \{ \alpha \in K : \operatorname { mod } _ { K } ( \alpha ) \leq 1 \}$ ; confidence 0.342
283.
; $h _ { U } = \phi _ { U } ^ { - 1 }$ ; confidence 0.912
284.
; $w \in T V$ ; confidence 0.524
285.
; $\int \frac { d x } { x } = \operatorname { ln } | x | + C$ ; confidence 0.986
286.
; $\pi < \operatorname { arg } z \leq \pi$ ; confidence 0.972
287.
; $\operatorname { res } _ { \mathscr { d } } \frac { f ^ { \prime } ( z ) } { f ( z ) }$ ; confidence 0.129
288.
; $Q \alpha = Q \beta \gamma$ ; confidence 0.989
289.
; $\operatorname { inv } ( x )$ ; confidence 0.875
290.
; $\Delta ^ { r + 1 } v _ { j } = \Delta ^ { r } v _ { j + 1 } - \Delta ^ { r } v _ { j }$ ; confidence 0.659
291.
; $b \in Q$ ; confidence 0.934
292.
; $Q _ { i - 1 } / Q _ { i }$ ; confidence 0.640
293.
; $( S ^ { 1 } )$ ; confidence 0.472
294.
; $z = e ^ { i \theta }$ ; confidence 0.999
295.
; $\alpha = R \operatorname { ln } \operatorname { tan } ( \frac { \pi } { 4 } + \frac { u } { 2 R } )$ ; confidence 0.905
296.
; $f ^ { \prime } ( x ) = 0$ ; confidence 1.000
297.
; $\| \alpha _ { j } ^ { i } \|$ ; confidence 0.148
298.
; $x = - \sum _ { k = 0 } ^ { \infty } ( A ^ { * } ) ^ { k } C ( A ) ^ { k }$ ; confidence 0.953
299.
; $\lambda _ { j } + \overline { \lambda } _ { k } = 0$ ; confidence 0.991
300.
; $V _ { 0 } \subset E$ ; confidence 0.979
Maximilian Janisch/latexlist/latex/7. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/7&oldid=43837