Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/3

From Encyclopedia of Mathematics
< User:Maximilian Janisch‎ | latexlist‎ | latex
Revision as of 11:41, 1 September 2019 by Maximilian Janisch (talk | contribs) (AUTOMATIC EDIT of page 3 out of 11 with 300 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.)
Jump to: navigation, search

List

1. a01419047.png ; $t _ { + } < + \infty$ ; confidence 0.793

2. a13032031.png ; $p < .5$ ; confidence 1.000

3. a13032030.png ; $Y _ { i } = 2 X _ { i } - 1$ ; confidence 0.991

4. a0142305.png ; $\{ A \rangle$ ; confidence 0.294

5. a0143001.png ; $\epsilon - \delta$ ; confidence 0.998

6. a01431097.png ; $| x$ ; confidence 0.207

7. a0143102.png ; $e$ ; confidence 0.314

8. a01431093.png ; $A ( \iota X A ( x ) )$ ; confidence 0.456

9. a01431027.png ; $\exists x A$ ; confidence 0.894

10. b11019019.png ; $x ^ { * } ( x ^ { * } y ) = x \wedge y$ ; confidence 0.991

11. b11019030.png ; $( x ^ { * } y ) ^ { * } z = ( x ^ { * } z ) ^ { * } ( y ^ { * } z )$ ; confidence 0.974

12. b120210148.png ; $\mathfrak { p } \supset b$ ; confidence 0.356

13. b12021067.png ; $( L ( \lambda ) )$ ; confidence 1.000

14. b120210104.png ; $\rho = ( 1 / 2 ) \sum _ { \alpha \in \Delta ^ { + } } \alpha$ ; confidence 0.628

15. b120210102.png ; $\{ \mu _ { i } \} _ { i = 1 } ^ { s - 1 } = \{ w . \lambda \} _ { w \in W ^ { ( k ) } }$ ; confidence 0.489

16. b12021075.png ; $\mathfrak { F } _ { \lambda }$ ; confidence 0.661

17. b11066023.png ; $L _ { p } ( R )$ ; confidence 0.962

18. b13001099.png ; $\left( \begin{array} { l l } { A } & { B } \\ { C } & { D } \end{array} \right)$ ; confidence 0.965

19. b13001094.png ; $V ^ { * } - V$ ; confidence 0.998

20. b130010103.png ; $V _ { n } = H _ { n } / \Gamma$ ; confidence 0.724

21. b01511064.png ; $\mu = \delta _ { X }$ ; confidence 0.951

22. b01511035.png ; $U ( y ) = \int _ { \Gamma } f ( x ) d \beta _ { Y } ( x )$ ; confidence 0.820

23. b13002056.png ; $x \in J$ ; confidence 0.908

24. b1300303.png ; $V ^ { \pm } \times V ^ { - } \times V ^ { \pm } \rightarrow V ^ { \pm }$ ; confidence 0.809

25. b110100392.png ; $T _ { K } ( K )$ ; confidence 0.995

26. b110100377.png ; $\frac { c _ { 1 } } { n } \leq ( | K | | K ^ { \circlearrowright } | ) ^ { 1 / n } \leq \frac { c _ { 2 } } { n }$ ; confidence 0.421

27. b11010099.png ; $\| T \| T ^ { - 1 } \| \geq c n$ ; confidence 0.835

28. b12004080.png ; $T : L _ { \infty } \rightarrow L _ { \infty }$ ; confidence 0.978

29. b12004018.png ; $| x _ { y } \| \rightarrow 0$ ; confidence 0.611

30. b1100902.png ; $l ^ { \infty } ( N )$ ; confidence 0.759

31. b110130207.png ; $\left( \begin{array} { c } { y - p } \\ { \vdots } \\ { y - 1 } \\ { y _ { 0 } } \end{array} \right) = \Gamma ^ { - 1 } \left( \begin{array} { c } { 0 } \\ { \vdots } \\ { 0 } \\ { 1 } \end{array} \right)$ ; confidence 0.427

32. b110130197.png ; $f ( \zeta ) > 0$ ; confidence 0.996

33. b11013099.png ; $m _ { 1 } \in M _ { 1 }$ ; confidence 0.998

34. b11013012.png ; $M _ { d } ^ { * } = M _ { d }$ ; confidence 0.900

35. b110130209.png ; $v ( \lambda ) = ( y _ { 0 } + \lambda ^ { - 1 } y _ { - 1 } + \ldots + \lambda ^ { - p } y - p ) y _ { 0 } ^ { - 1 / 2 }$ ; confidence 0.241

36. b1101309.png ; $E _ { 2 }$ ; confidence 0.994

37. b01521049.png ; $\alpha \in S _ { \alpha }$ ; confidence 0.784

38. b0152609.png ; $D \cup \Gamma$ ; confidence 0.999

39. b0152808.png ; $\lambda _ { 0 } + \ldots + \lambda _ { n } = 1$ ; confidence 0.986

40. b01531023.png ; $X _ { s } = X \times s s$ ; confidence 0.533

41. b01535027.png ; $\alpha _ { i } \in \Omega$ ; confidence 0.833

42. b015350372.png ; $\{ \xi _ { t } \}$ ; confidence 0.990

43. b015350251.png ; $\{ \xi _ { t } ( s ) \}$ ; confidence 1.000

44. b015350300.png ; $\delta _ { i k } = 0$ ; confidence 0.900

45. b11016019.png ; $f ( x ) = a x + b$ ; confidence 0.931

46. b11016013.png ; $f ( n ) \equiv 0 ( \operatorname { mod } p )$ ; confidence 1.000

47. b13006022.png ; $\| A \| _ { \infty }$ ; confidence 0.981

48. b13006060.png ; $b _ { i }$ ; confidence 0.854

49. b13007015.png ; $\pi ( m )$ ; confidence 0.999

50. b0153803.png ; $A _ { i } \Gamma \cap A _ { j } = \emptyset$ ; confidence 0.946

51. b01539034.png ; $\operatorname { inf } _ { d } \int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta )$ ; confidence 0.420

52. b01539050.png ; $\theta = \theta _ { i }$ ; confidence 0.949

53. b01539042.png ; $D = \{ d _ { 1 } , d _ { 2 } \}$ ; confidence 0.998

54. b01539023.png ; $P _ { \theta } ( d x ) = p ( x | \theta ) d \mu ( x )$ ; confidence 0.550

55. b01539013.png ; $\delta ( x ) \in D$ ; confidence 0.997

56. b01539045.png ; $\pi ( \theta _ { 1 } ) = \pi _ { 1 }$ ; confidence 0.999

57. b01539046.png ; $\pi ( \theta _ { 2 } ) = \pi _ { 2 }$ ; confidence 0.999

58. b0153901.png ; $( X , B X )$ ; confidence 0.566

59. b01539056.png ; $\delta ^ { * } ( x ) = \left\{ \begin{array} { l l } { d _ { 1 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \leq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \\ { d _ { 2 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \geq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \end{array} \right.$ ; confidence 0.853

60. b01539036.png ; $\int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta ) = E [ L ( \theta , d ) | x ]$ ; confidence 0.885

61. b01539019.png ; $\rho ( \pi , \delta ) = \int _ { \Theta } \rho ( \theta , \delta ) \pi ( d \theta )$ ; confidence 0.993

62. b01539022.png ; $\delta ^ { * } = \delta ^ { * } ( x )$ ; confidence 0.998

63. b01539030.png ; $= \int _ { X } d \mu ( x ) [ \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \nu ( \theta ) ]$ ; confidence 0.736

64. b0153903.png ; $( \Theta , B _ { \Theta } )$ ; confidence 0.937

65. b01539032.png ; $d ^ { x }$ ; confidence 0.785

66. b01539028.png ; $\int \int _ { \Theta } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x ) \pi ( d \theta ) =$ ; confidence 0.604

67. b01539043.png ; $L _ { i j } = L = ( \theta _ { i } , d _ { j } )$ ; confidence 0.694

68. b01539035.png ; $p ( x ) = \int _ { \Theta } p ( x | \theta ) \pi ( \theta ) d \nu ( \theta )$ ; confidence 0.972

69. b01539020.png ; $\rho ( \theta , \delta ) = \int _ { Y } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x )$ ; confidence 0.192

70. b01539052.png ; $L _ { 22 } < L _ { 21 }$ ; confidence 0.945

71. b01539053.png ; $\rho ( \pi , \delta ) = \int _ { X } [ \pi _ { 1 } p ( x | \theta _ { 1 } ) L ( \theta _ { 1 } , \delta ( x ) ) +$ ; confidence 0.977

72. b01539057.png ; $\rho ( \theta , \delta )$ ; confidence 1.000

73. b01539047.png ; $\pi _ { 1 } + \pi _ { 2 } = 1$ ; confidence 0.992

74. b01539029.png ; $= \int \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \mu ( x ) d \nu ( \theta ) =$ ; confidence 0.774

75. b01539040.png ; $E [ L ( \theta , d ) | x ]$ ; confidence 0.361

76. b01539018.png ; $\delta \rho ( \pi , \delta )$ ; confidence 0.650

77. b0153907.png ; $( D , B _ { D } )$ ; confidence 0.999

78. b01539061.png ; $\rho ( \pi , \delta _ { \epsilon } ^ { * } ) \leq \operatorname { inf } _ { \delta } \rho ( \pi , \delta ) + \epsilon$ ; confidence 0.972

79. b01539015.png ; $\pi = \pi ( d \theta )$ ; confidence 0.979

80. b01539011.png ; $\delta = \delta ( x )$ ; confidence 0.981

81. b01539021.png ; $\rho ( \pi , \delta ^ { * } ) = \operatorname { inf } _ { \delta } \int _ { \Theta } \int _ { X } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x ) \pi ( d \theta )$ ; confidence 0.586

82. b01539063.png ; $( \epsilon > 0 )$ ; confidence 0.999

83. b01539054.png ; $+ \pi _ { 2 } p ( x | \theta _ { 2 } ) L ( \theta _ { 2 } , \delta ( x ) ) ] d \mu ( x )$ ; confidence 0.612

84. b0153905.png ; $\{ P _ { \theta } : \theta \in \Theta \}$ ; confidence 0.633

85. b01539058.png ; $\rho ( \pi , \delta )$ ; confidence 1.000

86. b01539044.png ; $i , j = 1,2$ ; confidence 0.881

87. b01539024.png ; $\pi ( d \theta ) = \pi ( \theta ) d \nu ( \theta )$ ; confidence 0.998

88. b01539041.png ; $= \{ \theta _ { 1 } , \theta _ { 2 } \}$ ; confidence 1.000

89. b01539038.png ; $\delta ^ { * } ( x )$ ; confidence 0.978

90. b01539031.png ; $x \in X , \delta ^ { * } ( x )$ ; confidence 0.710

91. b01539060.png ; $\delta _ { \epsilon } ^ { * }$ ; confidence 0.648

92. b0153908.png ; $L ( \theta , d )$ ; confidence 0.992

93. b01539051.png ; $L _ { 11 } < L _ { 12 }$ ; confidence 0.994

94. b01540062.png ; $s ( z ) = q ( z )$ ; confidence 1.000

95. b01540048.png ; $s ( z )$ ; confidence 1.000

96. b01540091.png ; $\Psi _ { 1 } ( Y ) / \hat { q } ( Y ) \leq \psi ( Y ) \leq \Psi _ { 2 } ( Y ) / \hat { q } ( Y )$ ; confidence 0.236

97. b01542034.png ; $x = ( x _ { 1 } + \ldots + x _ { n } ) / n$ ; confidence 0.514

98. b12009080.png ; $| f ( z ) | < 1$ ; confidence 0.992

99. b12009092.png ; $f \in B ( m / n )$ ; confidence 0.956

100. b12009082.png ; $L ( r ) = \int _ { 0 } ^ { 2 \pi } | z f ^ { \prime } ( z ) | d \theta = O ( \operatorname { log } \frac { 1 } { 1 - r } )$ ; confidence 0.970

101. b0154406.png ; $E X _ { 2 j } = \mu _ { 2 }$ ; confidence 0.517

102. b01544026.png ; $X _ { 1 }$ ; confidence 0.637

103. b11025093.png ; $L ( t )$ ; confidence 0.967

104. b01554027.png ; $\phi = \Pi ^ { \prime } \Pi ^ { - 1 }$ ; confidence 0.997

105. b11027042.png ; $P ( s S ) = P ( S )$ ; confidence 0.219

106. b13010015.png ; $k _ { z } = K _ { z } / \| K _ { z } \|$ ; confidence 0.674

107. b01556018.png ; $D \times D \in \Gamma ^ { 2 }$ ; confidence 0.230

108. b12014039.png ; $a ( z )$ ; confidence 0.948

109. b0155806.png ; $p _ { i } = \nu ( \alpha _ { i } )$ ; confidence 0.832

110. b120150110.png ; $d : N \cup \{ 0 \} \rightarrow R$ ; confidence 0.953

111. b12015024.png ; $x = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } x$ ; confidence 0.315

112. b1103309.png ; $\Omega = S ^ { D } = \{ \omega _ { i } \} _ { i \in D }$ ; confidence 0.591

113. b11033038.png ; $P ^ { \prime }$ ; confidence 0.871

114. b01563017.png ; $p \leq 2$ ; confidence 1.000

115. b01565010.png ; $B _ { n } ( x + 1 ) - B _ { n } ( x ) = n x ^ { n - 1 }$ ; confidence 0.672

116. b01566078.png ; $/ N = T$ ; confidence 0.692

117. b01566054.png ; $\alpha = ( k + 1 / 2 )$ ; confidence 0.643

118. b01566081.png ; $1 - \frac { 2 } { \sqrt { 2 \pi } } \int _ { 0 } ^ { \alpha / T } e ^ { - z ^ { 2 } / 2 } d z = \frac { 2 } { \sqrt { 2 \pi } } \int _ { \alpha / \sqrt { T } } ^ { \infty } e ^ { - z ^ { 2 } / 2 } d z$ ; confidence 0.722

119. b01566071.png ; $\nu = a + x + 2 [ \frac { n - t - x - \alpha } { 2 } ] + 1$ ; confidence 0.213

120. b01568021.png ; $2 \operatorname { exp } \{ - \frac { 1 } { 2 } n \epsilon ^ { 2 } \}$ ; confidence 0.999

121. b11037053.png ; $K ( t ) \equiv 1$ ; confidence 0.999

122. b11037052.png ; $= 0 \text { as. } \cdot P _ { \theta _ { 0 } } ]$ ; confidence 0.233

123. b11037025.png ; $0 < \epsilon < i ( \theta _ { 0 } )$ ; confidence 0.998

124. b11034032.png ; $\omega ( x y ) = \omega ( x ) \omega ( y )$ ; confidence 0.999

125. b01572032.png ; $+ \frac { \alpha } { u } [ \alpha ( \frac { \partial u } { \partial x } ) ^ { 2 } + 2 b \frac { \partial u } { \partial x } \frac { \partial u } { \partial y } + c ( \frac { \partial u } { \partial y } ) ^ { 2 } ] +$ ; confidence 0.828

126. b12016030.png ; $x _ { i } ^ { \prime \prime } = x _ { i } ^ { \prime }$ ; confidence 0.895

127. b11038019.png ; $w = \pi ( z )$ ; confidence 0.987

128. b11038070.png ; $\Theta f$ ; confidence 0.864

129. b110390108.png ; $K > 0$ ; confidence 0.999

130. b11040029.png ; $F ^ { 2 } = \beta ^ { 2 } \operatorname { exp } \{ \frac { I \gamma } { \beta } \}$ ; confidence 0.990

131. b11040017.png ; $F . C _ { i j k } = I m$ ; confidence 0.621

132. b01587024.png ; $( 1 - \Delta ) ^ { m } P _ { \alpha } ( x ) = P _ { \alpha - 2 m } ( x )$ ; confidence 0.951

133. b11042025.png ; $V _ { k } \varphi ( x ) = \varphi ( x - h )$ ; confidence 0.922

134. b11042055.png ; $\mu \in R$ ; confidence 0.990

135. b11042087.png ; $\overline { B } ^ { \nu }$ ; confidence 0.987

136. b11042014.png ; $( Id - \Delta ) ^ { \nu }$ ; confidence 0.560

137. b1104407.png ; $\overline { \Xi } \epsilon = 0$ ; confidence 0.326

138. b1104909.png ; $P _ { 1 }$ ; confidence 0.928

139. b0160507.png ; $E _ { \theta } \{ T \}$ ; confidence 0.560

140. b01605010.png ; $b ( \theta ) \equiv 0$ ; confidence 0.580

141. b01616031.png ; $\hat { R } ( c )$ ; confidence 0.613

142. b01616036.png ; $0 < c < 1$ ; confidence 0.979

143. b01615033.png ; $\operatorname { Re } _ { c _ { N } } = n$ ; confidence 0.069

144. b01617015.png ; $F _ { n } ( z _ { 0 } ) = 0$ ; confidence 0.993

145. b0161704.png ; $| w | < r _ { 0 }$ ; confidence 0.478

146. b01617013.png ; $F _ { n } ( z )$ ; confidence 0.855

147. b1105203.png ; $\sum _ { n = 1 } ^ { \infty } l _ { k } ^ { 2 } \operatorname { exp } ( l _ { 1 } + \ldots + l _ { n } ) = \infty$ ; confidence 0.545

148. b11052027.png ; $x \in G _ { n }$ ; confidence 0.415

149. b0164707.png ; $( \tau = \text { const } )$ ; confidence 0.589

150. b11056013.png ; $w _ { 2 } ( F )$ ; confidence 0.966

151. b0165404.png ; $B = \{ b _ { i } : i \in I \}$ ; confidence 0.985

152. b11057061.png ; $H _ { m }$ ; confidence 0.869

153. b11057039.png ; $H _ { k } \circ \operatorname { exp } ( X _ { F } ) = \operatorname { exp } ( X _ { F } ) ( H _ { k } )$ ; confidence 0.992

154. b01655023.png ; $\mu _ { n } ( t ) = 0$ ; confidence 0.990

155. b01655040.png ; $\lambda _ { n } ( t ) = v$ ; confidence 0.997

156. b11059067.png ; $u = q ( x ) \text { on } g$ ; confidence 0.462

157. b01661046.png ; $\vec { u } = A _ { j } ^ { i } u ^ { j }$ ; confidence 0.648

158. b01661030.png ; $R _ { y } ^ { t }$ ; confidence 0.060

159. b13017045.png ; $S _ { T }$ ; confidence 0.992

160. b12027050.png ; $U ( t ) = \sum _ { 1 } ^ { \infty } P ( S _ { k } \leq t ) = \sum _ { 1 } ^ { \infty } F ^ { ( k ) } ( t )$ ; confidence 0.917

161. b11061011.png ; $K ^ { * }$ ; confidence 0.777

162. b0166503.png ; $2 \int \int _ { G } ( x \frac { \partial y } { \partial u } \frac { \partial y } { \partial v } ) d u d v = \oint _ { \partial G } ( x y d y )$ ; confidence 0.204

163. b12030013.png ; $q \in Z ^ { N }$ ; confidence 0.950

164. b12030060.png ; $0 \leq \lambda _ { 1 } ( \eta ) \leq \ldots \leq \lambda _ { m } ( \eta ) \leq \ldots \rightarrow \infty$ ; confidence 0.714

165. b01667088.png ; $A A ^ { T } = ( r - \lambda ) E + \lambda J$ ; confidence 0.999

166. b01667071.png ; $n _ { 1 } = 9$ ; confidence 0.822

167. b11064038.png ; $X _ { 1 } \times X _ { 2 }$ ; confidence 0.987

168. b12031032.png ; $0 \leq \delta \leq ( n - 1 ) / 2 ( n + 1 )$ ; confidence 0.999

169. b12031064.png ; $\tau ^ { n }$ ; confidence 0.408

170. b01673033.png ; $r ^ { 3 } / v \ll 1$ ; confidence 0.747

171. b0167404.png ; $\leq \frac { 1 } { N } \langle U _ { 1 } - U _ { 2 } \} _ { U _ { 2 } }$ ; confidence 0.419

172. b11069080.png ; $M _ { A g }$ ; confidence 0.870

173. b11069063.png ; $P T ( C ) \in G$ ; confidence 0.971

174. b12032011.png ; $\| x + y \| _ { p } = \| u + v \| _ { p }$ ; confidence 0.572

175. b01681038.png ; $n ( z ) = n _ { 0 } e ^ { - m g z / k T }$ ; confidence 0.985

176. b01681021.png ; $H = \sum _ { i } \frac { p _ { i } ^ { 2 } } { 2 m } + \sum _ { i } U ( r _ { i } )$ ; confidence 0.992

177. b01685023.png ; $E = \sum _ { i = 1 } ^ { M } \epsilon _ { i } N _ { i }$ ; confidence 0.900

178. b01685022.png ; $N = \sum _ { i = 1 } ^ { M } N$ ; confidence 0.965

179. b12036013.png ; $E$ ; confidence 0.999

180. b1301906.png ; $F ( x ) = f ( M x )$ ; confidence 1.000

181. b0169001.png ; $d s ^ { 2 } = \frac { d u ^ { 2 } + d v ^ { 2 } } { ( U + V ) ^ { 2 } }$ ; confidence 0.972

182. b0169909.png ; $\Omega _ { M } ( \rho ) \in V _ { M } ^ { V ^ { n } }$ ; confidence 0.820

183. b01692023.png ; $( x \vee C x ) \wedge y = y$ ; confidence 0.985

184. b016920121.png ; $( M )$ ; confidence 1.000

185. b12037030.png ; $h \in \Omega$ ; confidence 0.914

186. b12037092.png ; $\sum \frac { 1 } { 1 }$ ; confidence 0.251

187. b11076042.png ; $\partial ^ { k } f / \partial x : B ^ { m } \rightarrow B$ ; confidence 0.717

188. b016960150.png ; $99$ ; confidence 0.271

189. b016960167.png ; $\tilde { \mathfrak { N } } = \mathfrak { N } \backslash ( V _ { j = 1 } ^ { t } \mathfrak { A } ^ { \prime \prime } )$ ; confidence 0.082

190. b016960126.png ; $\omega _ { i } = 1$ ; confidence 0.972

191. b016960175.png ; $M _ { 1 } \cup M _ { 2 }$ ; confidence 0.994

192. b0169702.png ; $x ^ { \sigma } = x$ ; confidence 0.948

193. b01697035.png ; $t _ { f } ( n )$ ; confidence 0.917

194. b01697056.png ; $\frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n \cdot \operatorname { log } _ { 2 } \operatorname { log } _ { 2 } n } < l _ { f } ( n ) < \frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n }$ ; confidence 0.504

195. b130200102.png ; $\beta \neq - \alpha$ ; confidence 0.992

196. b13020088.png ; $\Delta _ { - } = - \Delta _ { + }$ ; confidence 0.970

197. b13020036.png ; $[ e _ { i } f _ { j } ] = h _ { i }$ ; confidence 0.684

198. b13020048.png ; $\alpha _ { i j } \neq 0$ ; confidence 0.797

199. b13020023.png ; $\alpha _ { i } \in R$ ; confidence 0.443

200. b130200163.png ; $\operatorname { lim } \mathfrak { g } ^ { \alpha } = 1$ ; confidence 0.737

201. b13020073.png ; $9 -$ ; confidence 0.467

202. b01701014.png ; $\alpha _ { k } = a _ { k k } - v _ { k } A _ { k - 1 } ^ { - 1 } u _ { k }$ ; confidence 0.522

203. b01703046.png ; $\mathfrak { M } _ { n }$ ; confidence 0.373

204. b12040052.png ; $\mathfrak { h } \subset \mathfrak { g }$ ; confidence 0.959

205. b01729088.png ; $A = R ( X )$ ; confidence 0.988

206. b01729042.png ; $\partial M _ { A } \subset X \subset M _ { A }$ ; confidence 0.891

207. b0172908.png ; $\Gamma \subset M _ { A }$ ; confidence 0.920

208. b01729066.png ; $| \hat { \alpha } ( \xi ) | > | \hat { \alpha } ( \eta ) |$ ; confidence 0.745

209. b01728011.png ; $\hat { G } \backslash G$ ; confidence 0.582

210. b01733030.png ; $f ( e ^ { i \theta } ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r e ^ { i \theta } )$ ; confidence 0.451

211. b01733087.png ; $N ^ { * } ( D )$ ; confidence 0.999

212. b017330215.png ; $F ^ { \prime } ( w )$ ; confidence 0.999

213. b017330250.png ; $U ^ { N }$ ; confidence 0.743

214. b017330260.png ; $N ^ { * } ( \Omega )$ ; confidence 0.996

215. b017330155.png ; $\Phi ( \theta )$ ; confidence 1.000

216. b017330242.png ; $f ^ { * } ( z ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r z )$ ; confidence 0.445

217. b017330240.png ; $B = H ^ { \infty } \subset H _ { \psi } \subset N ^ { * }$ ; confidence 0.752

218. b017340100.png ; $n ^ { \prime } = - n + m - 1$ ; confidence 0.993

219. b01734046.png ; $t _ { 0 } \in \partial S$ ; confidence 0.816

220. b01734029.png ; $C _ { \alpha }$ ; confidence 0.664

221. b01735065.png ; $K$ ; confidence 0.981

222. b01735056.png ; $K ^ { + }$ ; confidence 0.992

223. b01738057.png ; $L u = \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial u } { \partial t } = 0$ ; confidence 0.466

224. b01738068.png ; $t \in S$ ; confidence 0.474

225. b01740070.png ; $k ^ { \prime } = 1$ ; confidence 0.991

226. b11082017.png ; $\pi _ { i } / ( \pi _ { i } + \pi _ { j } )$ ; confidence 0.304

227. b01747076.png ; $1 \rightarrow K ( n ) \rightarrow B ( n ) \rightarrow S ( n ) \rightarrow 1$ ; confidence 0.993

228. b01747034.png ; $( i i + 1 )$ ; confidence 0.886

229. b01747053.png ; $\Pi ^ { \prime \prime }$ ; confidence 0.914

230. b01747069.png ; $P _ { 1 / 2 }$ ; confidence 0.996

231. b01747067.png ; $\omega ^ { - 1 }$ ; confidence 0.909

232. b017470190.png ; $H ^ { * } ( O ( n ) ) \rightarrow H ^ { * } ( B ( n ) )$ ; confidence 0.999

233. b120420145.png ; $\sum h _ { ( 1 ) } \otimes h _ { ( 2 ) }$ ; confidence 0.516

234. b120420159.png ; $\lambda _ { W } : V \otimes W \rightarrow W \otimes V$ ; confidence 0.988

235. b120420115.png ; $U _ { q } ( \mathfrak { g } )$ ; confidence 0.626

236. b13022030.png ; $L _ { p } ( T )$ ; confidence 0.938

237. b11084049.png ; $X$ ; confidence 0.601

238. b13023050.png ; $G ( u )$ ; confidence 0.489

239. b0175307.png ; $P \{ \mu ( t + t _ { 0 } ) = j | \mu ( t _ { 0 } ) = i \}$ ; confidence 0.724

240. b0175508.png ; $t _ { 1 } + t$ ; confidence 0.973

241. b01756018.png ; $P \{ \xi _ { t } \equiv 0 \} = 1$ ; confidence 0.670

242. b01758025.png ; $\int _ { 0 } ^ { 1 } \frac { 1 - G ( s ) } { F ( s ) - s } d s < \infty$ ; confidence 0.998

243. b0176209.png ; $P _ { C } ^ { 1 }$ ; confidence 0.433

244. b01762024.png ; $r ^ { 2 }$ ; confidence 1.000

245. b11085036.png ; $\operatorname { dim } ( V / K ) = 1$ ; confidence 0.998

246. b120440103.png ; $R [ H \times H$ ; confidence 0.981

247. b12046037.png ; $( \oplus _ { b } G _ { E B } b )$ ; confidence 0.179

248. b11088033.png ; $P _ { I } ^ { f } : C ^ { \infty } \rightarrow L$ ; confidence 0.321

249. b11089088.png ; $\alpha ^ { i }$ ; confidence 0.739

250. b11089054.png ; $f ( x ) = x ^ { t } M x$ ; confidence 0.999

251. b11091027.png ; $\frac { \partial N _ { i } } { \partial t } + u _ { i } \nabla N _ { i } = G _ { i } - L _ { i }$ ; confidence 0.250

252. b13027070.png ; $B \otimes K ( H )$ ; confidence 0.796

253. b1302706.png ; $Q ( H ) = B ( H ) / K ( H )$ ; confidence 0.959

254. b12050014.png ; $M _ { t } : = \operatorname { sup } _ { s \leq t } W _ { s }$ ; confidence 0.396

255. b12051029.png ; $\operatorname { lim } _ { n \rightarrow \infty } \nabla f ( x _ { n } ) = 0$ ; confidence 0.985

256. b12051051.png ; $x _ { + } = x _ { c } + \lambda d$ ; confidence 0.719

257. b11096026.png ; $\nu : Z ( K ) \rightarrow V \subset \operatorname { Aff } ( A )$ ; confidence 0.915

258. b130290121.png ; $\operatorname { dim } A = 2$ ; confidence 0.998

259. b130290203.png ; $0 \leq i \leq d - 1$ ; confidence 0.993

260. b1302903.png ; $d = \operatorname { dim } A$ ; confidence 0.989

261. b11099015.png ; $P _ { \alpha }$ ; confidence 0.384

262. b11099011.png ; $V _ { Q }$ ; confidence 0.244

263. b130300113.png ; $A$ ; confidence 0.535

264. b130300112.png ; $F _ { m }$ ; confidence 0.945

265. b13030089.png ; $n \geq 2 ^ { 13 }$ ; confidence 0.999

266. b01780053.png ; $n = p$ ; confidence 0.858

267. b01780036.png ; $d \geq n$ ; confidence 0.956

268. b01780019.png ; $2 ^ { 12 }$ ; confidence 0.999

269. b12001032.png ; $\frac { \partial v } { \partial t } - 6 v ^ { 2 } \frac { \partial v } { \partial x } + \frac { \partial ^ { 3 } v } { \partial x ^ { 3 } } = 0$ ; confidence 0.944

270. c12001098.png ; $\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$ ; confidence 0.185

271. c11047054.png ; $h : H \rightarrow ( C \bigotimes T M ) / ( H \oplus \overline { H } )$ ; confidence 0.332

272. c11048046.png ; $D ^ { \perp }$ ; confidence 0.893

273. c1100106.png ; $T : A _ { j } \rightarrow A$ ; confidence 0.526

274. c11003017.png ; $v = u ^ { 2 } +$ ; confidence 0.633

275. c11005025.png ; $X _ { t } = 2.632 + 1.492 X _ { t - 1 } - 1.324 X _ { t - 2 } + \epsilon _ { t } ^ { ( 2 ) }$ ; confidence 0.949

276. c11005010.png ; $CW ( 9.63 )$ ; confidence 0.827

277. c02014016.png ; $\Sigma _ { 12 } = \Sigma _ { 2 } ^ { T }$ ; confidence 0.747

278. c02016022.png ; $K _ { X } K _ { X }$ ; confidence 0.800

279. c02019023.png ; $C A$ ; confidence 0.232

280. c02023043.png ; $X \backslash K _ { X }$ ; confidence 0.934

281. c020280124.png ; $E ( \lambda )$ ; confidence 1.000

282. c020280177.png ; $\underline { C } ( E ) = \operatorname { sup } C ( K )$ ; confidence 0.963

283. c11008041.png ; $f$ ; confidence 0.647

284. c11006048.png ; $0 \leq j < k$ ; confidence 0.995

285. c12004012.png ; $( f \in H _ { C } ( D ) )$ ; confidence 0.513

286. c12004049.png ; $f \in H _ { c } ( D )$ ; confidence 0.898

287. c12004038.png ; $\rho \in C ^ { 2 } ( \overline { \Omega } )$ ; confidence 0.996

288. c0204203.png ; $E \times E$ ; confidence 0.999

289. c020540218.png ; $\nabla ^ { \prime } = \nabla$ ; confidence 0.998

290. c020540105.png ; $s _ { m } = r - s - \operatorname { rank } M _ { m } - 1$ ; confidence 0.443

291. c020540177.png ; $\epsilon ( \sigma ) = 1$ ; confidence 0.993

292. c02055049.png ; $1$ ; confidence 0.897

293. c02055058.png ; $t \otimes _ { k } K$ ; confidence 0.618

294. c02064012.png ; $\mu = \beta \nu$ ; confidence 0.406

295. c02064013.png ; $\lambda : V \rightarrow P$ ; confidence 0.999

296. c0206506.png ; $1 / \mu = d S / d \sigma$ ; confidence 0.936

297. c1300406.png ; $\psi ( z ) : = \frac { d } { d z } \{ \operatorname { log } \Gamma ( z ) \} = \frac { \Gamma ^ { \prime } ( z ) } { \Gamma ( z ) }$ ; confidence 0.998

298. c1300407.png ; $\operatorname { log } \Gamma ( z ) = \int _ { 1 } ^ { z } \psi ( t ) d t$ ; confidence 0.962

299. c020740168.png ; $F ( 1 _ { A } ) = 1 _ { F A }$ ; confidence 0.901

300. c020740394.png ; $( \alpha \circ \beta ) ( c ) _ { d x } = \sum _ { b } \alpha ( b ) _ { a } \beta ( c ) _ { b }$ ; confidence 0.330

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/3. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/3&oldid=43833