Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/11

From Encyclopedia of Mathematics
< User:Maximilian Janisch‎ | latexlist‎ | latex
Revision as of 11:40, 1 September 2019 by Maximilian Janisch (talk | contribs) (AUTOMATIC EDIT of page 11 out of 11 with 83 lines: Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

List

1. w09703029.png ; $$U = \cup _ { i } \operatorname { Im } f$$ ; confidence 0.671

2. w0970409.png ; $$\int _ { 0 } ^ { \pi / 2 } \operatorname { sin } ^ { 2 m + 1 } x d x$$ ; confidence 0.964

3. w09706017.png ; $$2 ^ { m } \leq n \leq 2 ^ { m + 1 } - 1$$ ; confidence 0.976

4. w0970903.png ; $$F ( x )$$ ; confidence 1.000

5. w0971508.png ; $$\lambda = 2 \pi / | k |$$ ; confidence 0.980

6. w09729017.png ; $$A _ { n } ( x _ { 0 } )$$ ; confidence 0.499

7. w09731010.png ; $$\partial ^ { 2 } u / \partial x ^ { 2 } + \partial ^ { 2 } u / \partial y ^ { 2 } + k ^ { 2 } u = 0$$ ; confidence 0.997

8. w0973508.png ; $$A = N \oplus s$$ ; confidence 0.521

9. w0973509.png ; $$A = N \oplus S _ { 1 }$$ ; confidence 0.438

10. w09745039.png ; $$j = g ^ { 3 } / g ^ { 2 }$$ ; confidence 0.799

11. w09745010.png ; $$= \frac { 1 } { z ^ { 2 } } + c 2 z ^ { 2 } + c _ { 4 } z ^ { 4 } + \ldots$$ ; confidence 0.426

12. w09747012.png ; $$x ( t _ { i } ) = x _ { 0 } ( t _ { i } )$$ ; confidence 0.980

13. w13004043.png ; $$K = - ( \frac { 4 | d g | } { ( 1 + | g | ^ { 2 } ) ^ { 2 } | \eta | } \} ^ { 2 }$$ ; confidence 0.571

14. w09751010.png ; $$m _ { k } = \dot { k }$$ ; confidence 0.352

15. w097510202.png ; $$q \in T _ { n } ( k )$$ ; confidence 0.977

16. w12005030.png ; $$D = \langle x ^ { 2 } \} \subset R [ x ]$$ ; confidence 0.413

17. w12005029.png ; $$D = R [ x ] / D$$ ; confidence 0.968

18. w09760044.png ; $$H ^ { i } ( X )$$ ; confidence 0.995

19. w0976009.png ; $$H ^ { 2 n } ( X )$$ ; confidence 0.999

20. w13007023.png ; $$\beta$$ ; confidence 0.911

21. w12010028.png ; $$\nabla _ { i g j k } = \gamma _ { i } g _ { j k }$$ ; confidence 0.315

22. w097670169.png ; $$\operatorname { gr } ( A _ { 1 } ( K ) )$$ ; confidence 0.860

23. w097670151.png ; $$A _ { k + 1 } ( C )$$ ; confidence 0.634

24. w097670153.png ; $$\oplus V _ { k } ( M ) / V _ { k - 1 } ( M )$$ ; confidence 0.970

25. w12007015.png ; $$q$$ ; confidence 0.899

26. w120070106.png ; $$C ^ { \prime } = 1$$ ; confidence 0.999

27. w12008025.png ; $$W ( f \times g ) = W ( f ) . W ( g )$$ ; confidence 0.906

28. w09771010.png ; $$Z _ { \zeta } ( T )$$ ; confidence 0.463

29. w09771067.png ; $$N _ { G } ( T ) / Z _ { G } ( T )$$ ; confidence 0.990

30. w0977109.png ; $$N _ { G } ( T )$$ ; confidence 0.970

31. w0977202.png ; $$f ( x ) = \alpha _ { n } x ^ { n } + \ldots + \alpha _ { 1 } x$$ ; confidence 0.966

32. w120090131.png ; $$\Delta ( \lambda ) ^ { \mu }$$ ; confidence 1.000

33. w120090399.png ; $$L ( \mu )$$ ; confidence 0.993

34. w120090342.png ; $$\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$$ ; confidence 0.487

35. w12011033.png ; $$S ( R ^ { n } ) \times S ( R ^ { n } )$$ ; confidence 0.944

36. w12011024.png ; $$\alpha ^ { \psi } = Op ( J ^ { 1 / 2 } \alpha )$$ ; confidence 0.058

37. w120110153.png ; $$\alpha _ { 2 k + 1 } \in L ^ { 1 } ( \Phi )$$ ; confidence 0.712

38. w12011079.png ; $$A ^ { * } \sigma A = \sigma$$ ; confidence 0.887

39. w120110210.png ; $$G = G ^ { \sigma }$$ ; confidence 0.956

40. w120110192.png ; $$X \in \Phi$$ ; confidence 0.895

41. w120110269.png ; $$g _ { 1 } = | d x | ^ { 2 } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } } \leq g = \frac { | d x | ^ { 2 } } { | x | ^ { 2 } } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } }$$ ; confidence 0.357

42. w09779041.png ; $$\pi _ { 4 n - 1 } ( S ^ { 2 n } ) \rightarrow \pi _ { 4 n } ( S ^ { 2 n + 1 } )$$ ; confidence 0.354

43. w12014036.png ; $$S \square T$$ ; confidence 0.898

44. w130080142.png ; $$T _ { n }$$ ; confidence 0.602

45. w13008076.png ; $$N = 2$$ ; confidence 0.996

46. w130080127.png ; $$S _ { n } = s _ { n } + \theta ^ { 2 } F _ { n }$$ ; confidence 0.942

47. w130080124.png ; $$T _ { 1 } \sim \Lambda$$ ; confidence 0.998

48. w09787060.png ; $$\prod _ { \nu } : \prod _ { i \in I _ { \nu } } f _ { i } : = \sum _ { G } \prod _ { e \in G } < f _ { e _ { 1 } } f _ { e _ { 2 } } > : \prod _ { i \notin [ G ] } f _ { i : }$$ ; confidence 0.238

49. w12017064.png ; $$l \equiv 2 ( \operatorname { mod } 3 )$$ ; confidence 0.997

50. w0979106.png ; $$B ( \lambda )$$ ; confidence 1.000

51. w09791036.png ; $$L _ { - } ( \lambda ) C ( \lambda ) / B ( \lambda )$$ ; confidence 0.885

52. w13009059.png ; $$\Gamma ( H ) = \sum _ { n = 0 } ^ { \infty } H ^ { \otimes n }$$ ; confidence 0.591

53. w13009053.png ; $$\| \varphi \| _ { L ^ { 2 } ( \mu ) } = \sqrt { n ! } | f | _ { H ^ { \otimes n } }$$ ; confidence 0.909

54. w13009083.png ; $$( g ) = g ^ { \prime }$$ ; confidence 1.000

55. w12018046.png ; $$t _ { 1 } \in D ^ { - }$$ ; confidence 0.997

56. w11007022.png ; $$\| x \| _ { 1 }$$ ; confidence 0.650

57. w12019047.png ; $$P = - i \hbar \nabla _ { x }$$ ; confidence 0.929

58. w13012027.png ; $$T _ { W \alpha } = T$$ ; confidence 0.134

59. w12020038.png ; $$\int _ { a } ^ { b } ( f ^ { ( r ) } ( x ) ) ^ { 2 } d x \leq 1$$ ; confidence 0.515

60. w12021059.png ; $$B _ { m } = R$$ ; confidence 0.993

61. w09804013.png ; $$p ( n + 1 ) / 2$$ ; confidence 0.997

62. w11012047.png ; $$( D ) \leq c \text { length } ( C )$$ ; confidence 0.985

63. w09816057.png ; $$Y \times X$$ ; confidence 0.869

64. x120010101.png ; $$\operatorname { Aut } ( R ) / \operatorname { ln } n ( R ) \cong H$$ ; confidence 0.228

65. x12001022.png ; $$\sigma \in \operatorname { Aut } ( R )$$ ; confidence 0.958

66. x12002033.png ; $$D ( R )$$ ; confidence 0.960

67. y11001021.png ; $$J ( \phi )$$ ; confidence 0.976

68. y11001038.png ; $$\| \phi _ { q } \| _ { q } = 1$$ ; confidence 0.797

69. y11001031.png ; $$H _ { 1 } \subset L _ { N }$$ ; confidence 0.459

70. y11001011.png ; $$g ^ { \prime } = \phi ^ { 4 / ( n - 2 ) } g$$ ; confidence 0.828

71. y12001017.png ; $$R _ { 12 } R _ { 13 } R _ { 23 } = R _ { 23 } R _ { 13 } R _ { 12 }$$ ; confidence 0.996

72. y120010139.png ; $$R : X \times X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$$ ; confidence 0.794

73. y12001036.png ; $$R _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$$ ; confidence 0.786

74. y09903095.png ; $$\sigma ( M ^ { 4 } )$$ ; confidence 1.000

75. y099030101.png ; $$\pi _ { 1 } : P _ { 1 } \rightarrow S ^ { 4 }$$ ; confidence 0.998

76. y09907014.png ; $$t _ { \lambda } ^ { \prime }$$ ; confidence 0.881

77. z130100102.png ; $$\forall v \exists u ( \forall w \varphi \leftrightarrow u = w )$$ ; confidence 0.569

78. z13010033.png ; $$\forall y ( \neg y \in x )$$ ; confidence 0.930

79. z13005046.png ; $$I = ( f )$$ ; confidence 0.997

80. z11001018.png ; $$( f g f h )$$ ; confidence 0.723

81. z12002043.png ; $$1.609$$ ; confidence 0.997

82. z09925023.png ; $$001 c 23 + c 02 c 31 + c 03 c 12 \neq 0$$ ; confidence 0.156

83. z1301303.png ; $$x _ { 2 } = r \operatorname { sin } \theta$$ ; confidence 0.977

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/11. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/11&oldid=43829