Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/1

From Encyclopedia of Mathematics
< User:Maximilian Janisch‎ | latexlist‎ | latex
Revision as of 11:37, 1 September 2019 by Maximilian Janisch (talk | contribs) (AUTOMATIC EDIT (page 1 out of 1): Updated image/latex database (currently 3083 images latexified; order by Confidence, ascending: False.)
Jump to: navigation, search

List

1. a13001017.png ; $3 + 5$ ; confidence 0.136

2. a1300107.png ; $A , B , C \in C$ ; confidence 0.982

3. a1300103.png ; $( - ) ^ { * } : C ^ { 0 p } \rightarrow C$ ; confidence 0.505

4. a1300109.png ; $s = s ( ( A ^ { * } ) ^ { ( B ^ { * } ) } , ( B ^ { * } ) ^ { ( C ^ { * } ) } )$ ; confidence 0.907

5. a13001014.png ; $R el$ ; confidence 0.544

6. a1300104.png ; $d ( A , B ) : B ^ { A } \cong A ^ { * } B ^ { * }$ ; confidence 0.988

7. a1300105.png ; $4$ ; confidence 0.531

8. a13001015.png ; $S ^ { * } = S$ ; confidence 0.463

9. a13001016.png ; $B ^ { A } \cong ( A ^ { * } \otimes B )$ ; confidence 0.992

10. a1300106.png ; $B$ ; confidence 0.895

11. a1300102.png ; $C$ ; confidence 0.838

12. t12001048.png ; $( S , g )$ ; confidence 0.978

13. t120010139.png ; $3$ ; confidence 1.000

14. t120010117.png ; $D$ ; confidence 0.538

15. t12001030.png ; $5$ ; confidence 0.885

16. t12001056.png ; $F _ { 3 }$ ; confidence 0.996

17. t12001095.png ; $\operatorname { dim } ( S ) = 4 n + 3$ ; confidence 0.958

18. t120010140.png ; $\geq 7$ ; confidence 0.562

19. t120010134.png ; $( 4 n + 3 )$ ; confidence 1.000

20. t12001082.png ; $Z = S \nmid F _ { \tau }$ ; confidence 0.763

21. t12001041.png ; $\{ \xi ^ { \alpha } , \eta ^ { \alpha } , \Phi ^ { \alpha } \} \alpha = 1,2,3$ ; confidence 0.761

22. t120010159.png ; $4 n$ ; confidence 0.999

23. t120010109.png ; $m > 3$ ; confidence 0.916

24. t120010141.png ; $7$ ; confidence 0.937

25. t12001038.png ; $\eta ^ { \alpha } ( Y ) = g ( \xi ^ { \alpha } , Y )$ ; confidence 0.932

26. t120010135.png ; $S ( p )$ ; confidence 0.693

27. t120010148.png ; $T ^ { 2 } \times SO ( 3 )$ ; confidence 0.990

28. t12001034.png ; $SO ( 3 )$ ; confidence 0.940

29. t12001039.png ; $\Phi ^ { \alpha } ( Y ) = \nabla _ { Y } \xi ^ { \alpha }$ ; confidence 0.798

30. t120010125.png ; $\dot { i } \leq n$ ; confidence 0.190

31. t12001022.png ; $n \geq 1$ ; confidence 0.967

32. t12001035.png ; $SU ( 2 )$ ; confidence 0.811

33. t120010115.png ; $11$ ; confidence 1.000

34. t120010128.png ; $b _ { 2 } \neq b _ { 4 }$ ; confidence 0.995

35. t120010105.png ; $SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) ) , SO ( k ) / SO ( k - 4 ) \times Sp ( 1 )$ ; confidence 0.164

36. t12001057.png ; $0$ ; confidence 0.311

37. t12001021.png ; $m = 4 n + 3$ ; confidence 0.997

38. t12001088.png ; $\hat { v } ^ { ( S ) }$ ; confidence 0.182

39. t120010130.png ; $b _ { 2 } \neq b _ { 6 }$ ; confidence 0.994

40. t12001020.png ; $\operatorname { Sp } ( ( m + 1 ) / 4 )$ ; confidence 0.694

41. t12001072.png ; $\xi ( \tau ) = \tau _ { 1 } \xi ^ { 1 } + \tau _ { 2 } \xi ^ { 2 } + \tau _ { 3 } \xi ^ { 3 }$ ; confidence 0.998

42. t12001081.png ; $U ( 1 ) _ { \tau } \subset \operatorname { SU } ( 2 )$ ; confidence 0.671

43. t120010123.png ; $\sum _ { k = 1 } ^ { n } k ( n + 1 - k ) ( n + 1 - 2 k ) b _ { 2 k } = 0$ ; confidence 0.782

44. t12001028.png ; $\{ I ^ { 1 } , R ^ { 2 } , \hat { P } \}$ ; confidence 0.143

45. t12001060.png ; $S ^ { 3 } / \Gamma$ ; confidence 0.633

46. t12001098.png ; $k$ ; confidence 0.208

47. t12001070.png ; $\tau = ( \tau _ { 1 } , \tau _ { 2 } , \tau _ { 3 } ) \in R ^ { 3 }$ ; confidence 0.999

48. t12001029.png ; $C ( S )$ ; confidence 0.946

49. t1200104.png ; $$m$$ ; confidence 0.499

50. t12001053.png ; $\{ \xi ^ { 1 } , \xi ^ { 2 } , \xi ^ { 3 } \}$ ; confidence 1.000

51. t12001099.png ; $_ { \nabla } ( G / K )$ ; confidence 0.326

52. t12001094.png ; $$n + 2$$ ; confidence 1.000

53. t120010118.png ; $4 n + 3$ ; confidence 1.000

54. t120010129.png ; $15$ ; confidence 1.000

55. t12001014.png ; $5$ ; confidence 0.574

56. t12001075.png ; $s ^ { 2 }$ ; confidence 0.942

57. t12001040.png ; $\alpha = 1,2,3$ ; confidence 0.734

58. t12001046.png ; $\lambda = \operatorname { dim } ( \delta ) - 1$ ; confidence 0.702

59. t120010101.png ; $$Z = G / U ( 1 ) . K$$ ; confidence 0.948

60. t1200109.png ; $$1$$ ; confidence 0.742

61. t120010116.png ; $\operatorname { dim } ( O ) = 4$ ; confidence 0.996

62. t120010114.png ; $\operatorname { im } ( S ) = 7$ ; confidence 0.799

63. t1200106.png ; $U ( ( m + 1 ) / 2 )$ ; confidence 0.997

64. t12001079.png ; $F _ { \tau } \subset F _ { 3 } \subset S$ ; confidence 0.996

65. t12001026.png ; $\xi ^ { \mathscr { L } } = I ^ { \mathscr { L } } ( \partial _ { r } )$ ; confidence 0.127

66. t120010106.png ; $G _ { 2 } / \operatorname { Sp } ( 1 ) , \quad F _ { 4 } / \operatorname { Sp } ( 3 ) , E _ { 6 } / SU ( 6 ) , \quad E _ { 7 } / \operatorname { Spin } ( 12 ) , \quad E _ { 8 } / E _ { 7 }$ ; confidence 0.614

67. t12001032.png ; $g ( \xi ^ { \alpha } , \xi ^ { b } ) = \delta _ { \alpha b }$ ; confidence 0.989

68. t120010136.png ; $p = ( p _ { 1 } , \dots , p _ { n } + 2 )$ ; confidence 0.447

69. t120010100.png ; $O = G / \operatorname { Sp } ( 1 ) . K$ ; confidence 0.187

70. t12001091.png ; $z$ ; confidence 1.000

71. t120010121.png ; $S = SU ( m ) / S ( U ( m - 2 ) \times U ( 1 ) )$ ; confidence 0.541

72. t120010158.png ; $$T ^ { n }$$ ; confidence 0.616

73. t12001019.png ; $( C ( S ) , \overline { g } )$ ; confidence 0.418

74. t120010108.png ; $Sp ( 0 )$ ; confidence 0.378

75. t12001064.png ; $s ^ { 3 }$ ; confidence 0.948

76. t120010138.png ; $D$ ; confidence 0.661

77. t12001011.png ; $$\xi = I ( \partial _ { r } )$$ ; confidence 0.869

78. t120010107.png ; $$n \geq 0$$ ; confidence 0.996

79. t12001061.png ; $\Gamma \subset SU ( 2 )$ ; confidence 0.951

80. t120010124.png ; $b _ { 2 } i + 1 ( S ) = 0$ ; confidence 0.920

81. t1200107.png ; $m = 2 i + 1$ ; confidence 0.871

82. t12001033.png ; $[ \xi ^ { \alpha } , \xi ^ { b } ] = 2 \epsilon _ { \alpha b c } \xi ^ { c }$ ; confidence 0.322

83. t12001077.png ; $\xi ( \tau )$ ; confidence 0.999

84. t120010133.png ; $$S ( p ) = U ( 1 ) _ { p } \backslash U ( n + 2 ) / U ( n )$$ ; confidence 0.916

85. t1200108.png ; $1 > 1$ ; confidence 0.983

86. t120010120.png ; $b _ { 2 } ( s ) \leq 1$ ; confidence 0.580

87. t12001085.png ; $0$ ; confidence 0.355

88. t12001078.png ; $1$ ; confidence 0.998

89. t12001074.png ; $2$ ; confidence 1.000

90. t12001071.png ; $\tau _ { 1 } ^ { 2 } + \tau _ { 3 } ^ { 2 } + \tau _ { 3 } ^ { 2 } = 1$ ; confidence 0.974

91. t120010147.png ; $T ^ { 2 } \times \operatorname { Sp } ( 1 )$ ; confidence 0.987

92. t1200105.png ; $( C ( S ) , \overline { g } ) = ( R _ { + } \times S , d \nu ^ { 2 } + r ^ { 2 } g )$ ; confidence 0.265

93. t120010110.png ; $k > 7$ ; confidence 0.997

94. t120010104.png ; $\operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) , \quad \operatorname { Sp } ( n + 1 ) / \operatorname { Sp } ( n ) \times Z _ { 2 }$ ; confidence 0.901

95. t12001097.png ; $SO ( 4 n + 3 )$ ; confidence 0.906

96. a0100206.png ; $t$ ; confidence 0.637

97. a0100205.png ; $P = \cup _ { n _ { 1 } , \ldots , n _ { k } , \ldots } \cap _ { k = 1 } ^ { \infty } E _ { n _ { 1 } } \square \ldots x _ { k }$ ; confidence 0.192

98. a0100204.png ; $\{ E _ { n _ { 1 } } \ldots n _ { k } \}$ ; confidence 0.382

99. a01002013.png ; $$\sigma \delta$$ ; confidence 0.999

100. a01008023.png ; $A _ { x _ { 1 } } ^ { \prime } \ldots x _ { k } = A _ { 1 } \cap \ldots \cap A _ { x _ { 1 } } \ldots x _ { k }$ ; confidence 0.061

101. a0100808.png ; $x _ { 1 } , \ldots , A _ { x _ { 1 } } \ldots x _ { k } , \ldots ,$ ; confidence 0.104

102. a0100805.png ; $\{ A _ { n _ { 1 } } \ldots n _ { k } \}$ ; confidence 0.200

103. a0100807.png ; $A _ { x } _ { 1 } \ldots x _ { k } x _ { k + 1 } \subset A _ { x _ { 1 } } \ldots x _ { k }$ ; confidence 0.139

104. a01008024.png ; $M$ ; confidence 0.626

105. a0100803.png ; $x$ ; confidence 0.475

106. a110420123.png ; $\pi$ ; confidence 0.772

107. a110420169.png ; $K$ ; confidence 0.738

108. a110420153.png ; $K _ { 0 } ( B ) ^ { + }$ ; confidence 0.993

109. a11042060.png ; $K _ { 1 }$ ; confidence 0.970

110. a110420164.png ; $C ( S ^ { 2 n } )$ ; confidence 0.540

111. a110420108.png ; $\tau ( x y ) = \tau ( y x )$ ; confidence 0.993

112. a110420163.png ; $\theta = 1 - \theta$ ; confidence 0.998

113. a110420118.png ; $$H$$ ; confidence 0.998

114. a11042090.png ; $n > 0$ ; confidence 0.998

115. a11042070.png ; $K _ { 0 } ( \varphi ) = \alpha$ ; confidence 0.993

116. a11042086.png ; $z \in G$ ; confidence 0.715

117. a110420112.png ; $f : G \rightarrow R$ ; confidence 0.996

118. a11042095.png ; $C ^ { * }$ ; confidence 0.866

119. a11042050.png ; $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } , \Sigma ( A ) )$ ; confidence 0.990

120. a110420127.png ; $D$ ; confidence 0.683

121. a110420138.png ; $I \mapsto I$ ; confidence 0.782

122. a110420149.png ; $K _ { 0 } ( \varphi ) : K _ { 0 } ( A ) \rightarrow K _ { 0 } ( B )$ ; confidence 0.977

123. a110420113.png ; $f ( G ^ { + } ) \subseteq R ^ { + }$ ; confidence 1.000

124. a110420128.png ; $h$ ; confidence 0.307

125. a11042064.png ; $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } , \Sigma ( A ) )$ ; confidence 0.990

126. a11042053.png ; $K _ { 0 } ( A )$ ; confidence 0.745

127. a110420117.png ; $H ^ { + } = G ^ { + } \cap H$ ; confidence 0.999

128. a11042063.png ; $\square ^ { * }$ ; confidence 0.982

129. a110420150.png ; $K _ { 0 } ( \varphi )$ ; confidence 0.924

130. a11042084.png ; $x _ { 1 } , x _ { 2 } , y _ { 1 } , y _ { 2 } \in G$ ; confidence 0.943

131. a11042088.png ; $( G , G ^ { + } )$ ; confidence 1.000

132. a11042079.png ; $25$ ; confidence 0.396

133. a110420162.png ; $\theta = \theta ^ { \prime }$ ; confidence 0.994

134. a110420121.png ; $y \leq x$ ; confidence 0.998

135. a11042066.png ; $\alpha : K _ { 0 } ( A ) \rightarrow K _ { 0 } ( B )$ ; confidence 0.991

136. a11042067.png ; $\alpha ( K _ { 0 } ( A ) ^ { + } ) = K _ { 0 } ( B ) ^ { + }$ ; confidence 0.997

137. a11042055.png ; $K _ { 0 } ( A ) ^ { + }$ ; confidence 0.988

138. a11042077.png ; $K _ { 0 } ( \varphi ) = K _ { 0 } ( \psi )$ ; confidence 0.842

139. a110420161.png ; $A _ { \theta } \cong A _ { \theta }$ ; confidence 0.999

140. a110420110.png ; $f$ ; confidence 1.000

141. a11042089.png ; $\geq 0$ ; confidence 1.000

142. a11042078.png ; $4$ ; confidence 0.978

143. a110420166.png ; $2 n$ ; confidence 1.000

144. a11042068.png ; $\alpha ( \Sigma ( A ) ) = \Sigma ( B )$ ; confidence 0.988

145. a11042069.png ; $\varphi : A \rightarrow B$ ; confidence 0.999

146. a11042072.png ; $\alpha ( \Sigma ( A ) ) \subseteq \Sigma ( B )$ ; confidence 0.978

147. a11042087.png ; $x _ { i } \leq z \leq y _ { j }$ ; confidence 0.967

148. a110420154.png ; $K _ { 0 }$ ; confidence 0.936

149. a110420137.png ; $\tau \mapsto K _ { 0 } ( \tau )$ ; confidence 0.994

150. a11042091.png ; $x \in G$ ; confidence 0.737

151. a110420126.png ; $K _ { 0 } ( \tau ) ( [ p ] _ { 0 } - [ q ] _ { 0 } ) = \tau ( p ) - \tau ( q )$ ; confidence 0.889

152. a110420122.png ; $y \in H$ ; confidence 0.503

153. a110420134.png ; $K _ { 0 } ( I ) \rightarrow K _ { 0 } ( A )$ ; confidence 0.923

154. a110420109.png ; $x , y \in A$ ; confidence 0.906

155. a11042092.png ; $x > 0$ ; confidence 0.700

156. a110420158.png ; $A _ { \theta }$ ; confidence 0.786

157. a11042065.png ; $( K _ { 0 } ( B ) , K _ { 0 } ( B ) ^ { + } , \Sigma ( B ) )$ ; confidence 0.997

158. a110420107.png ; $\tau : A \rightarrow C$ ; confidence 0.987

159. a110420133.png ; $i$ ; confidence 0.450

160. a11042075.png ; $\varphi , \psi : A \rightarrow B$ ; confidence 0.980

161. a11042056.png ; $\Sigma ( A )$ ; confidence 0.626

162. a110420119.png ; $x \in H ^ { + }$ ; confidence 0.518

163. a110420120.png ; $y \in G ^ { + }$ ; confidence 0.943

164. a110420143.png ; $1$ ; confidence 0.989

165. a11042085.png ; $x _ { i } \leq y _ { j }$ ; confidence 0.993

166. a110420160.png ; $K _ { 0 } ( B ) = Z + \theta Z$ ; confidence 0.898

167. a11042098.png ; $K _ { 1 } ( A ) = 0$ ; confidence 0.997

168. a110420125.png ; $( K _ { 0 } ( A ) , K _ { 0 } ( A ) ^ { + } )$ ; confidence 0.951

169. a13013088.png ; $t$ ; confidence 0.354

170. a13013059.png ; $i$ ; confidence 0.570

171. a13013037.png ; $SL _ { 2 } ( C )$ ; confidence 0.910

172. a13013039.png ; $Q = \sum _ { j = 0 } ^ { \infty } Q _ { j } z ^ { - j } , Q _ { j } = \left( \begin{array} { c c } { h _ { j } } & { e _ { j } } \\ { f _ { j } } & { - h _ { j } } \end{array} \right)$ ; confidence 0.875

173. a13013075.png ; $( g )$ ; confidence 0.981

174. a13013023.png ; $$= \operatorname { exp } ( x P _ { 0 } z + \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { r } ) g ( z ) . . \operatorname { exp } ( - x P _ { 0 } z - \sum _ { r = 1 } ^ { \infty } Q _ { 0 } z ^ { \gamma } )$$ ; confidence 0.382

175. a13013026.png ; $( 1 )$ ; confidence 0.515

176. a13013067.png ; $C [ t ] = C [ t _ { 1 } , t _ { 2 } , \ldots$ ; confidence 0.593

177. a13013078.png ; $q ^ { ( l ) } = 2 i \frac { \tau _ { l } + 1 } { \tau _ { l } } , r ^ { ( l ) } = - 2 i \frac { \tau _ { l } - 1 } { \tau _ { l } }$ ; confidence 0.315

178. a130130100.png ; $$A K N S$$ ; confidence 0.971

179. a13013025.png ; $C ^ { \infty } ( s ^ { 1 } , SL _ { 2 } ( C ) )$ ; confidence 0.430

180. a13013032.png ; $\phi$ ; confidence 0.476

181. a13013042.png ; $X _ { i } \in \operatorname { sl } _ { 2 } ( C )$ ; confidence 0.209

182. a13013053.png ; $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right)$ ; confidence 0.416

183. a13013021.png ; $$h$$ ; confidence 0.644

184. a13013046.png ; $\frac { \partial } { \partial t _ { k } } F _ { i j } = \frac { \partial } { \partial t _ { i } } F _ { j k }$ ; confidence 0.932

185. a13013010.png ; $t = ( t _ { x } )$ ; confidence 0.458

186. a13013034.png ; $\phi _ { - } ^ { - 1 } \frac { \partial } { \partial t _ { \mu } } - Q _ { 0 } z ^ { \mu } \phi _ { - } = \frac { \partial } { \partial t _ { \mu } } - Q ^ { ( n ) }$ ; confidence 0.140

187. a13013083.png ; $C$ ; confidence 0.175

188. a13013066.png ; $5$ ; confidence 0.571

189. a13013055.png ; $L ( \Lambda _ { 0 } )$ ; confidence 0.993

190. a13013049.png ; $k$ ; confidence 0.504

191. a13013022.png ; $\phi ( x , t , z ) =$ ; confidence 0.998

192. a1301301.png ; $\left. \begin{array} { l } { i \frac { \partial } { \partial t } q ( x , t ) = i q t = - \frac { 1 } { 2 } q x x + q ^ { 2 } r } \\ { i \frac { \partial } { \partial t } r ( x , t ) = i r t = \frac { 1 } { 2 } r x - q r ^ { 2 } } \end{array} \right.$ ; confidence 0.260

193. a13013027.png ; $\phi = \phi _ { - } \phi _ { + }$ ; confidence 0.996

194. a1301302.png ; $\frac { \partial } { \partial t } P _ { 1 } - \frac { \partial } { \partial x } Q _ { 2 } + [ P _ { 1 } , Q _ { 2 } ] = 0$ ; confidence 0.971

195. a13013056.png ; $A _ { 1 } ^ { ( 1 ) }$ ; confidence 0.822

196. a13013070.png ; $( \tau _ { l } )$ ; confidence 0.726

197. a13013040.png ; $Q ^ { ( n ) } = \sum _ { j = 0 } ^ { n } Q _ { j } z ^ { n - j }$ ; confidence 0.991

198. a1301304.png ; $8$ ; confidence 0.857

199. a13013016.png ; $8$ ; confidence 0.804

200. a13013085.png ; $$L$$ ; confidence 0.550

201. a13013054.png ; $t _ { n }$ ; confidence 0.933

202. a13013079.png ; $F _ { j k } ^ { ( l ) } : = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau _ { l } )$ ; confidence 0.981

203. a13013028.png ; $\phi _ { - } ( x , t , z ) = \operatorname { exp } ( \sum _ { i = 1 } ^ { \infty } \chi _ { i } ( x , t ) z ^ { - i } )$ ; confidence 0.963

204. a130130103.png ; $K P$ ; confidence 0.846

205. a13013098.png ; $\pi$ ; confidence 0.434

206. a13013029.png ; $\phi _ { + } = \operatorname { exp } ( \sum _ { j = 1 } ^ { \infty } \phi _ { j } ( x , t ) z ^ { j } )$ ; confidence 0.999

207. a13013031.png ; $( \partial / \partial t _ { x } ) - Q _ { 0 } z ^ { x }$ ; confidence 0.284

208. a13013020.png ; $0.00$ ; confidence 0.237

209. a13013044.png ; $F _ { j k } =$ ; confidence 0.626

210. a13013045.png ; $$= \frac { 1 } { 2 } \operatorname { Tr } ( \sum _ { r = 0 } ^ { j } ( j - r ) Q _ { r } Q _ { k + j - r } + \frac { 1 } { 2 } \sum _ { r = 0 } ^ { j } ( r - k ) Q _ { r } Q _ { k + j - r } )$$ ; confidence 0.240

211. a13013090.png ; $N$ ; confidence 0.183

212. a13013047.png ; $i$ ; confidence 0.889

213. a13013024.png ; $g ( z )$ ; confidence 0.996

214. a13013069.png ; $\tau ( t ) = ( \tau _ { l } ( t ) ) _ { l \in Z }$ ; confidence 0.585

215. a13013091.png ; $$L : = P _ { 0 } \frac { d } { d x } + P _ { 1 } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) \frac { d } { d x } + \left( \begin{array} { c c } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$$ ; confidence 0.711

216. a13013076.png ; $P ^ { ( l ) }$ ; confidence 0.869

217. a13013051.png ; $F _ { j k } = \frac { \partial } { \partial t _ { j } } \frac { \partial } { \partial t _ { k } } \operatorname { log } ( \tau )$ ; confidence 0.976

218. a13013052.png ; $q ^ { ( l + 1 ) } = - ( q ^ { ( l ) } ) ^ { 2 } r ^ { ( l ) } + q ^ { ( l ) } \operatorname { log } ( q ^ { ( l ) } ) , r ^ { ( l + 1 ) } = \frac { 1 } { q ^ { ( l ) } }$ ; confidence 0.906

219. a1301306.png ; $Q ^ { ( n ) } : = Q _ { 0 } z ^ { n } + Q _ { 1 } z ^ { n - 1 } \ldots Q _ { n }$ ; confidence 0.716

220. a13013036.png ; $\partial / \partial x = \partial / \partial t _ { 1 }$ ; confidence 0.401

221. a13013014.png ; $\Leftrightarrow [ \frac { \partial } { \partial x } - P , \frac { \partial } { \partial t _ { n } } - Q ^ { ( n ) } ] = 0$ ; confidence 0.947

222. a1301305.png ; $P = P _ { 0 } z + P _ { 1 } : = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { l l } { 0 } & { q } \\ { r } & { 0 } \end{array} \right)$ ; confidence 0.374

223. a13013041.png ; $\sum _ { i = 0 } ^ { \infty } X _ { i } z ^ { - i }$ ; confidence 0.831

224. a13013096.png ; $P _ { 1 }$ ; confidence 0.674

225. a13013097.png ; $L ( \psi ) = z \psi$ ; confidence 0.998

226. a1301303.png ; $P _ { 1 } = \left( \begin{array} { c c c } { 0 } & { \square } & { q } \\ { r } & { \square } & { 0 } \end{array} \right) , Q _ { 2 } = \left( \begin{array} { c c } { - \frac { i } { 2 } q r } & { \frac { i } { 2 } q x } \\ { - \frac { i } { 2 } r _ { x } } & { \frac { i } { 2 } q r } \end{array} \right)$ ; confidence 0.352

227. a1301307.png ; $Q$ ; confidence 0.380

228. a13013058.png ; $s = \sum _ { i > 0 } C \lambda ^ { i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus \sum _ { i > 0 } C \lambda ^ { - i } \left( \begin{array} { c c } { - 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) \oplus C _ { i }$ ; confidence 0.161

229. a13013095.png ; $12$ ; confidence 0.590

230. a13013035.png ; $Q _ { 0 } = P _ { 0 }$ ; confidence 0.896

231. a13013073.png ; $Q$ ; confidence 0.095

232. a13013099.png ; $z \in C$ ; confidence 0.369

233. a13013033.png ; $\phi - ^ { 1 } ( \frac { \partial } { \partial x } - P _ { 0 z } ) \phi _ { - } = \frac { \partial } { \partial x } - P$ ; confidence 0.173

234. a13013013.png ; $\frac { \partial } { \partial t _ { m } } P - \frac { \partial } { \partial x } Q ^ { ( m ) } + [ P , Q ^ { ( r ) } ] = 0 \Leftrightarrow$ ; confidence 0.156

235. a13013012.png ; $Q _ { 1 } = P _ { 1 }$ ; confidence 0.999

236. a13013030.png ; $( \partial / \partial x ) - P _ { 0 } z$ ; confidence 0.947

237. a13013048.png ; $i$ ; confidence 0.474

238. a13013043.png ; $F _ { j k }$ ; confidence 0.974

239. a13013093.png ; $P _ { n + 1 } = \sum _ { i = 0 } ^ { n + 1 } u _ { i } ( \frac { d } { d x } ) ^ { i }$ ; confidence 0.947

240. a1301308.png ; $s l _ { 2 }$ ; confidence 0.247

241. a13013092.png ; $( 2 \times 2 )$ ; confidence 1.000

242. a13013017.png ; $P$ ; confidence 0.462

243. a13013038.png ; $\frac { \partial } { \partial t _ { n } } Q = [ Q ^ { ( n ) } , Q ] , n \geq 1$ ; confidence 0.137

244. a13013074.png ; $T$ ; confidence 0.973

245. a12022026.png ; $L ^ { Y } ( X , Y )$ ; confidence 0.431

246. a12022034.png ; $0 \leq S \leq T \in L ( X )$ ; confidence 0.657

247. a1202206.png ; $\varepsilon \in X$ ; confidence 0.430

248. a12022022.png ; $Y$ ; confidence 0.894

249. a12022037.png ; $r _ { ess } ( T )$ ; confidence 0.259

250. a12022013.png ; $$T : X \rightarrow Y$$ ; confidence 0.863

251. a12022011.png ; $X = 1 ^ { p }$ ; confidence 0.914

252. a12022021.png ; $T$ ; confidence 0.750

253. a1202209.png ; $x | < e$ ; confidence 0.841

254. a1202207.png ; $| e | | < 1$ ; confidence 0.271

255. a12022039.png ; $S < T$ ; confidence 0.984

256. a12022042.png ; $r _ { e . s s } ( T ) \in \sigma _ { ess } ( T )$ ; confidence 0.088

257. a12022025.png ; $Y = L ^ { 1 } ( \mu )$ ; confidence 1.000

258. a12022033.png ; $5$ ; confidence 0.396

259. a12022038.png ; $S , T \in L ( X )$ ; confidence 0.814

260. a12022035.png ; $r ( S ) \leq r ( T )$ ; confidence 0.998

261. a12022036.png ; $\sigma _ { ess } ( T )$ ; confidence 0.490

262. a12022012.png ; $1 \leq p < \infty$ ; confidence 0.999

263. a12022031.png ; $0 \leq S \leq T$ ; confidence 0.838

264. a12022010.png ; $X = c 0$ ; confidence 0.759

265. a1202208.png ; $| x | | \leq 1$ ; confidence 0.929

266. a130240286.png ; $1 - \alpha$ ; confidence 0.993

267. a130240135.png ; $A$ ; confidence 0.952

268. a130240204.png ; $74$ ; confidence 0.550

269. a13024051.png ; $3$ ; confidence 0.891

270. a130240441.png ; $\beta _ { 1 } , \ldots , \beta _ { p }$ ; confidence 0.501

271. a130240336.png ; $Z = X \Gamma + F$ ; confidence 0.500

272. a130240339.png ; $\Sigma _ { 1 } = X _ { 4 } ^ { \prime } \Sigma X _ { 4 }$ ; confidence 0.322

273. a130240101.png ; $x$ ; confidence 0.751

274. a130240218.png ; $z = \Gamma y$ ; confidence 0.946

275. a13024048.png ; $s \times p$ ; confidence 0.642

276. a13024059.png ; $( i , j )$ ; confidence 0.935

277. a130240137.png ; $B$ ; confidence 0.651

278. a130240478.png ; $0$ ; confidence 0.969

279. a130240397.png ; $M _ { E }$ ; confidence 0.680

280. a130240527.png ; $( n$ ; confidence 0.239

281. a130240519.png ; $Z _ { 13 }$ ; confidence 0.481

282. a130240539.png ; $T _ { 1 }$ ; confidence 0.446

283. a130240452.png ; $P$ ; confidence 0.403

284. a130240446.png ; $j = 1 , \ldots , p$ ; confidence 0.616

285. a130240545.png ; $2$ ; confidence 0.985

286. a130240141.png ; $$c$$ ; confidence 0.324

287. a130240308.png ; $\hat { \eta } _ { \Omega } = X \hat { \beta }$ ; confidence 0.485

288. a130240106.png ; $t$ ; confidence 0.895

289. a130240516.png ; $R = V _ { 33 } ^ { - 1 } V _ { 32 }$ ; confidence 0.628

290. a130240276.png ; $\leq F _ { \alpha ; q , x - \gamma }$ ; confidence 0.345

291. a130240431.png ; $a ^ { \prime } \Theta$ ; confidence 0.987

292. a130240449.png ; $y _ { 1 } , \dots , y _ { j }$ ; confidence 0.424

293. a130240196.png ; $\sqrt { 3 }$ ; confidence 0.281

294. a130240399.png ; $X _ { 3 }$ ; confidence 0.593

295. a130240238.png ; $MS _ { e } = SS _ { e } / ( n - r )$ ; confidence 0.793

296. a130240152.png ; $X \beta$ ; confidence 0.414

297. a130240309.png ; $\sum _ { i j k } ( y _ { i j k } - \eta _ { i j } ) ^ { 2 }$ ; confidence 0.779

298. a130240444.png ; $N$ ; confidence 0.740

299. a130240371.png ; $Z _ { 1 } M _ { E } ^ { - 1 } Z _ { 1 } ^ { \prime }$ ; confidence 0.548

300. a130240500.png ; $2$ ; confidence 0.672

301. a130240342.png ; $Y , B , E$ ; confidence 0.984

302. a130240194.png ; $8$ ; confidence 0.593

303. a130240509.png ; $E [ Z _ { 32 } , Z _ { 33 } ] = 0$ ; confidence 0.584

304. a130240343.png ; $2$ ; confidence 0.473

305. a13024029.png ; $1$ ; confidence 0.458

306. a130240122.png ; $t _ { 1 } , t _ { 2 } , \ldots$ ; confidence 0.731

307. a130240407.png ; $$M _ { E } = \sum _ { i j k } ( y _ { i j k } - y _ { i j . } ) ^ { \prime } ( y _ { i j k } - y _ { i j } )$$ ; confidence 0.159

308. a130240518.png ; $Z _ { 12 }$ ; confidence 0.917

309. a13024039.png ; $p \times p$ ; confidence 0.711

310. a130240383.png ; $H ^ { \prime }$ ; confidence 0.219

311. a13024067.png ; $e _ { j k }$ ; confidence 0.169

312. a130240506.png ; $Z _ { 32 } , Z _ { 33 }$ ; confidence 0.917

313. a130240430.png ; $a ^ { \prime } \Theta$ ; confidence 0.275

314. a130240110.png ; $x$ ; confidence 0.968

315. a130240248.png ; $( q , n - r )$ ; confidence 0.777

316. a130240348.png ; $( r - q ) \times p$ ; confidence 1.000

317. a130240213.png ; $7$ ; confidence 0.945

318. a130240472.png ; $i = 1 , \ldots , m$ ; confidence 0.480

319. a130240453.png ; $q = 1$ ; confidence 0.790

320. a130240338.png ; $N ( 0 , \Sigma _ { 1 } )$ ; confidence 0.996

321. a130240373.png ; $z _ { 1 }$ ; confidence 0.669

322. a13024025.png ; $y , \beta , e$ ; confidence 0.936

323. a130240244.png ; $= \operatorname { sin } \gamma q$ ; confidence 0.055

324. a130240162.png ; $c ^ { \prime } \beta = \eta$ ; confidence 0.492

325. a130240424.png ; $( 1 \times p )$ ; confidence 1.000

326. a130240485.png ; $B$ ; confidence 0.738

327. a130240302.png ; $\hat { \eta } \omega$ ; confidence 0.852

328. a130240236.png ; $n - r$ ; confidence 0.377

329. a130240142.png ; $m \times 1$ ; confidence 0.995

330. a130240191.png ; $X ^ { \prime } X \hat { \beta } = X ^ { \prime } y$ ; confidence 0.277

331. a130240254.png ; $6$ ; confidence 0.612

332. a130240524.png ; $Z _ { 12 } - Z _ { 13 } \Sigma _ { 33 } ^ { - 1 } \Sigma _ { 32 }$ ; confidence 0.727

333. a130240289.png ; $\hat { \psi } \pm S \cdot \hat { \sigma } \hat { \psi }$ ; confidence 0.134

334. a130240285.png ; $\psi \in L$ ; confidence 0.533

335. a130240177.png ; $\alpha$ ; confidence 0.905

336. a130240334.png ; $\Gamma = B X$ ; confidence 0.884

337. a130240443.png ; $H _ { j } : X _ { 3 } \beta _ { j } = 0$ ; confidence 0.980

338. a130240301.png ; $\hat { \eta } \Omega$ ; confidence 0.902

339. a130240515.png ; $Z _ { 0 } = Z _ { 12 } - Z _ { 13 } R$ ; confidence 0.674

340. a130240414.png ; $f ( Z _ { 1 } )$ ; confidence 0.795

341. a130240429.png ; $\Theta$ ; confidence 0.834

342. a130240261.png ; $\psi = \sum _ { i = 1 } ^ { q } d _ { i } \zeta _ { i }$ ; confidence 0.961

343. a13024019.png ; $y$ ; confidence 0.478

344. a130240396.png ; $M _ { H }$ ; confidence 0.989

345. a130240408.png ; $y _ { i j k }$ ; confidence 0.873

346. a130240353.png ; $E ( Z _ { 3 } ) = 0$ ; confidence 0.631

347. a130240109.png ; $( \alpha , \beta , \gamma ) ^ { \prime } = \beta$ ; confidence 1.000

348. a130240367.png ; $M _ { E } = Z _ { 3 } ^ { \prime } Z _ { 3 }$ ; confidence 0.783

349. a130240493.png ; $( 1 , t _ { j } , \ldots , t _ { j } ^ { k } ) ^ { \prime }$ ; confidence 0.604

350. a13024046.png ; $m \times s$ ; confidence 0.983

351. a130240242.png ; $SS _ { H } = \sum _ { i = 1 } ^ { \Psi } z _ { i } ^ { 2 }$ ; confidence 0.251

352. a130240423.png ; $$q \times 1$$ ; confidence 1.000

353. a130240216.png ; $\operatorname { dim } ( \Omega ) = r$ ; confidence 0.998

354. a130240354.png ; $E ( Z _ { 2 } )$ ; confidence 0.857

355. a130240330.png ; $( p \times p _ { 1 } )$ ; confidence 0.958

356. a130240362.png ; $22$ ; confidence 0.710

357. a130240240.png ; $\sigma ^ { 2 }$ ; confidence 0.864

358. a130240281.png ; $\| d \| ^ { 2 } \sigma ^ { 2 }$ ; confidence 0.982

359. a13024015.png ; $n > m$ ; confidence 0.980

360. a130240209.png ; $S$ ; confidence 0.868

361. a130240219.png ; $$I$$ ; confidence 0.738

362. a130240231.png ; $a$ ; confidence 0.607

363. a130240220.png ; $$n \times n$$ ; confidence 0.980

364. a130240147.png ; $\mu$ ; confidence 0.780

365. a130240239.png ; $$MS _ { e }$$ ; confidence 0.884

366. a130240375.png ; $$( n - r ) F$$ ; confidence 1.000

367. a130240328.png ; $$H : X _ { 3 } B X _ { 4 } = 0$$ ; confidence 0.914

368. a130240508.png ; $$E ( Z _ { 13 } ) = 0$$ ; confidence 0.388

369. a120310159.png ; $\Omega$ ; confidence 0.783

370. a110010249.png ; $$( A + \delta A ) \hat { x } = \hat { \lambda } \hat { x }$$ ; confidence 0.467

371. a110010186.png ; $$A + \delta A$$ ; confidence 0.999

372. a110010124.png ; $$A A ^ { + } A = A$$ ; confidence 0.999

373. a110010282.png ; $$A _ { i } \in R ^ { n \times n }$$ ; confidence 0.952

374. a11001016.png ; $$x + \delta x$$ ; confidence 0.997

375. a110010117.png ; $$A x = b$$ ; confidence 0.981

376. a110010138.png ; $$\sigma _ { i } ( A ) - \sigma _ { 1 } ( \delta A ) \leq \sigma _ { i } ( A + \delta A ) \leq \sigma _ { i } ( A ) + \sigma _ { i } ( \delta A )$$ ; confidence 0.987

377. a110010250.png ; $$A x - \hat { \lambda } x = - \delta A x$$ ; confidence 0.499

378. a110010217.png ; $$1 / | y ^ { i } _ { x ^ { i } } ^ { * }$$ ; confidence 0.245

379. a110010278.png ; $$X$$ ; confidence 0.962

380. a110010144.png ; $$\frac { \| ( A + \delta A ) ^ { + } - A ^ { + } \| } { \| ( A + \delta A ) ^ { + } \| _ { 2 } } \leq \mu \| A ^ { + } \| _ { 2 } \| \delta A _ { 2 }$$ ; confidence 0.551

381. a11001037.png ; $$\| \delta b \| \leq \epsilon \| b \|$$ ; confidence 0.440

382. a01020027.png ; $$3$$ ; confidence 0.899

383. a01020080.png ; $6$ ; confidence 0.907

384. a01020025.png ; $$D : \mathfrak { D } \rightarrow A$$ ; confidence 0.505

385. a11002020.png ; $$D _ { 2 }$$ ; confidence 0.967

386. a01021067.png ; $$( 1 / z ) d z$$ ; confidence 0.991

387. a010210119.png ; $$d [ ( \omega ) ] = 2 g - 2$$ ; confidence 0.588

388. a01022081.png ; $$\alpha _ { j k } = \alpha _ { k l }$$ ; confidence 0.439

389. a01024027.png ; $2$ ; confidence 0.729

390. a01024055.png ; $$L \subset F$$ ; confidence 0.990

391. a01024062.png ; $$B i$$ ; confidence 0.539

392. a01024073.png ; $$\omega P _ { i } P _ { j }$$ ; confidence 0.938

393. a110040185.png ; $$p | D _ { i }$$ ; confidence 0.587

394. a11004020.png ; $a$ ; confidence 0.856

395. a110040170.png ; $$A$$ ; confidence 0.998

396. a110040106.png ; $$L ] = \lambda$$ ; confidence 0.859

397. a110040196.png ; $$\varphi _ { L } : A \rightarrow P ^ { 4 }$$ ; confidence 0.936

398. a0101207.png ; $$\sum _ { n = 0 } ^ { \infty } f ^ { ( n ) } ( \lambda _ { n } ) P _ { n } ( z )$$ ; confidence 0.754

399. a01012049.png ; $$A _ { 1 } ^ { * }$$ ; confidence 0.975

400. a01012050.png ; $$z | > 1$$ ; confidence 0.823

401. a12002022.png ; $$F _ { 0 } = f$$ ; confidence 0.979

402. a1200203.png ; $$A \subset Y$$ ; confidence 0.990

403. a11006029.png ; $$B _ { j } \in B$$ ; confidence 0.414

404. a01043023.png ; $$t \rightarrow \infty$$ ; confidence 0.998

405. a13004067.png ; $$\psi \in \Gamma$$ ; confidence 1.000

406. a130040149.png ; $$\Lambda _ { S 5 } T$$ ; confidence 0.591

407. a130040397.png ; $$\operatorname { Mod } ^ { * } S = \operatorname { Mod } ^ { * } L _ { D }$$ ; confidence 0.117

408. a13004089.png ; $$D$$ ; confidence 0.984

409. a130040367.png ; $$\tilde { \Omega }$$ ; confidence 0.505

410. a130040685.png ; $X \in X$ ; confidence 0.278

411. a130040442.png ; $$h ^ { - 1 } ( F _ { 0 } )$$ ; confidence 0.995

412. a130050230.png ; $$A ^ { \# }$$ ; confidence 0.967

413. a130050246.png ; $$Z _ { G } ( - q ^ { - 1 } ) \neq 0$$ ; confidence 0.985

414. a11010055.png ; $$C _ { W } ( X )$$ ; confidence 0.985

415. a1101003.png ; $$V$$ ; confidence 0.987

416. a120050110.png ; $$M$$ ; confidence 0.455

417. a12005085.png ; $$0 \leq t _ { 1 } \leq \ldots \leq t _ { k } \leq T$$ ; confidence 0.863

418. a1200608.png ; $$c ( x )$$ ; confidence 0.998

419. a130060150.png ; $$P _ { V } ^ { \# } ( n )$$ ; confidence 0.472

420. a13006083.png ; $$\overline { H }$$ ; confidence 0.950

421. a130070121.png ; $$n \equiv a ( \operatorname { mod } b )$$ ; confidence 0.605

422. a13007057.png ; $$A _ { \alpha } ( x ) = o ( \frac { x } { \operatorname { log } x } )$$ ; confidence 0.911

423. a13007080.png ; $$\sigma ( n ) > \sigma ( m )$$ ; confidence 0.996

424. a13007033.png ; $$< 1$$ ; confidence 0.999

425. a13007083.png ; $$H ( x ) > ( 1 - \varepsilon ) ( \operatorname { log } x ) ^ { 2 }$$ ; confidence 0.997

426. a11016019.png ; $$x _ { k + 1 } = M ^ { - 1 } ( N x _ { k } + b )$$ ; confidence 0.894

427. a11016079.png ; $$[ M ^ { - 1 } A ] x = [ M ^ { - 1 } b ]$$ ; confidence 0.783

428. a11016027.png ; $$A = L + D + U$$ ; confidence 0.995

429. a1101706.png ; $$\phi : \Omega \rightarrow \Omega _ { t }$$ ; confidence 0.989

430. a13008083.png ; $$X \leftarrow ( U - 1 / 2 ) / ( \sqrt { ( U - U ^ { 2 } ) } / 2 )$$ ; confidence 0.910

431. a13008058.png ; $$X \leftarrow m + s ( U _ { 1 } + U _ { 2 } - 1 )$$ ; confidence 0.929

432. a110220101.png ; $$R ( f )$$ ; confidence 1.000

433. a110220112.png ; $$\int _ { H } f d m = \int _ { \Omega } R _ { 1 } f d P _ { 1 } = \int _ { \Omega } R _ { 2 } f d P _ { 2 }$$ ; confidence 0.794

434. a1201008.png ; $$y ( 0 ) = x$$ ; confidence 0.978

435. a12010079.png ; $$( I + \lambda A )$$ ; confidence 0.992

436. a01055060.png ; $$\partial X ^ { \prime \prime }$$ ; confidence 0.986

437. a12012069.png ; $$p ^ { * } y \leq \lambda ^ { * } p ^ { * } x$$ ; confidence 0.875

438. a12012024.png ; $$7$$ ; confidence 0.986

439. a12012049.png ; $$x ^ { \prime } > x$$ ; confidence 0.689

440. a11028017.png ; $$l ( D ) \geq \chi ( G ) - 1$$ ; confidence 0.970

441. a11028064.png ; $$\chi ( G ) < \operatorname { girth } ( G )$$ ; confidence 0.791

442. a11032019.png ; $$z \rightarrow 0$$ ; confidence 0.986

443. a1201308.png ; $$m$$ ; confidence 0.259

444. a11033016.png ; $$N p$$ ; confidence 0.998

445. a01060019.png ; $H _ { \hat { j } }$ ; confidence 0.205

446. a01064020.png ; $$d ( m )$$ ; confidence 0.930

447. a01064015.png ; $$k _ { 1 } = 2$$ ; confidence 0.992

448. a01070020.png ; $$\beta : S \rightarrow B / L$$ ; confidence 0.984

449. a11036013.png ; $$n > 1$$ ; confidence 0.998

450. a01071024.png ; $$A = A _ { 1 } \cap \ldots \cap A _ { n }$$ ; confidence 0.254

451. a11038041.png ; $$\approx 3$$ ; confidence 0.590

452. a11038040.png ; $$\sim 2$$ ; confidence 0.512

453. a12015047.png ; $$\operatorname { ad } X$$ ; confidence 0.415

454. a12015069.png ; $$\mathfrak { a } / W$$ ; confidence 0.438

455. a12015019.png ; $$( g )$$ ; confidence 0.376

456. a01081095.png ; $$\lambda \neq \mu$$ ; confidence 0.997

457. a01081069.png ; $$U _ { j } ^ { * } ( \xi )$$ ; confidence 0.987

458. a01082073.png ; $$X \in Ob \odot$$ ; confidence 0.251

459. a01084029.png ; $$l \mapsto ( . l )$$ ; confidence 0.425

460. a11040023.png ; $$T ^ { * }$$ ; confidence 0.984

461. a11041070.png ; $$K _ { X } ^ { v } \otimes L ^ { i }$$ ; confidence 0.368

462. a12016064.png ; $$\lambda < 1$$ ; confidence 0.995

463. a120160130.png ; $$W E = R . F . I$$ ; confidence 0.845

464. a12016079.png ; $$1 / ( 1 - \lambda )$$ ; confidence 0.977

465. a01095099.png ; $$X = \xi ^ { i }$$ ; confidence 0.662

466. a01105018.png ; $$f \times ( O _ { X } )$$ ; confidence 0.620

467. a12017016.png ; $$b ( t ) = F ( t ) + \int _ { 0 } ^ { t } K ( t - s ) b ( s ) d s$$ ; confidence 0.998

468. a0112107.png ; $$\operatorname { Ai } ( x )$$ ; confidence 0.619

469. a011210114.png ; $$w ^ { \prime \prime } ( z ) = z w ( z )$$ ; confidence 0.701

470. a12018084.png ; $$10 ^ { 16 }$$ ; confidence 1.000

471. a01130060.png ; $$\gamma m$$ ; confidence 0.719

472. a01137073.png ; $$\{ U _ { i } \}$$ ; confidence 0.984

473. a011370171.png ; $$f ( \psi ( z ) )$$ ; confidence 0.994

474. a01137088.png ; $$\int _ { - \infty } ^ { + \infty } \operatorname { ln } \| \operatorname { exp } ( i t f _ { \alpha } ) \| \frac { d t } { 1 + t ^ { 2 } } < \infty$$ ; confidence 0.982

475. a01139015.png ; $$\mu _ { f } ( E ) = \int _ { E } f d x$$ ; confidence 0.622

476. a1104901.png ; $$D = d / d t$$ ; confidence 0.954

477. a011450195.png ; $$C / \Omega$$ ; confidence 0.538

478. a0114501.png ; $$A _ { k } ^ { 2 }$$ ; confidence 0.983

479. a01146020.png ; $$( 2 n - 2 p )$$ ; confidence 1.000

480. a011460108.png ; $$x \in A ^ { p } ( X ) = A ^ { * } ( X ) \cap H ^ { 2 p } ( X )$$ ; confidence 0.669

481. a01146029.png ; $$p = n - 1$$ ; confidence 0.999

482. a01149058.png ; $$D ( x _ { 0 } ) = 0$$ ; confidence 0.998

483. a01150079.png ; $$x _ { 0 } ^ { 3 } x _ { 1 } + x _ { 1 } ^ { 3 } x _ { 2 } + x _ { 2 } ^ { 3 } x _ { 0 } = 0$$ ; confidence 0.999

484. a01152034.png ; $$\tau : G \times V \rightarrow V$$ ; confidence 0.995

485. a01152028.png ; $$G _ { X } = \{ g \in G : g x = x \}$$ ; confidence 0.901

486. a01152036.png ; $$V ^ { 1 }$$ ; confidence 0.987

487. a13018015.png ; $$\tau \in V o c$$ ; confidence 0.532

488. a011600189.png ; $$( K / k )$$ ; confidence 0.875

489. a011600128.png ; $$f _ { 1 } = \ldots = f _ { m }$$ ; confidence 0.889

490. a011600249.png ; $$L / K$$ ; confidence 0.986

491. a011600198.png ; $$N _ { 0 }$$ ; confidence 0.151

492. a011600163.png ; $$1 \leq h _ { m } \leq h . \phi ( m )$$ ; confidence 0.774

493. a01162010.png ; $$f ( x ) - P _ { n } ^ { 0 } ( x )$$ ; confidence 0.810

494. a01164040.png ; $$q ( V )$$ ; confidence 0.977

495. a01164014.png ; $$| K _ { i } | = | i K _ { V ^ { J } } |$$ ; confidence 0.620

496. a011640127.png ; $$M = 10 p _ { t x } - p _ { g } - 2 p ^ { ( 1 ) } + 12 + \theta$$ ; confidence 0.369

497. a011640155.png ; $$p _ { g } \neq 1$$ ; confidence 0.708

498. a01165079.png ; $$H$$ ; confidence 0.957

499. a011650288.png ; $$m = \nu ( P )$$ ; confidence 0.995

500. a01165078.png ; $$H \times H \rightarrow H$$ ; confidence 0.989

501. a011650412.png ; $$A _ { \alpha } \subseteq A$$ ; confidence 0.993

502. a011650252.png ; $$\forall x _ { k }$$ ; confidence 0.834

503. a011650408.png ; $$\Omega _ { p } ^ { * } = \Omega _ { p } \cup \{ F _ { i } ^ { * } : F _ { i } \in \Omega _ { f } \}$$ ; confidence 0.985

504. a01169071.png ; $$L _ { \Omega }$$ ; confidence 0.997

505. a01172012.png ; $$\operatorname { Red } : X ( K ) \rightarrow X _ { 0 } ( k )$$ ; confidence 0.991

506. a01178066.png ; $$p \in C$$ ; confidence 0.958

507. a01178016.png ; $$b a P$$ ; confidence 0.779

508. a011820124.png ; $$M \times N$$ ; confidence 0.757

509. a01197046.png ; $$U - \text { a.p. } \subset S ^ { p } - \text { a.p. } \subset W ^ { p } - \text { a.p. } \subset B ^ { p } - \text { a.p. } \quad p \geq 1$$ ; confidence 0.179

510. a01198058.png ; $$\{ f ( x ) \overline { \phi } _ { \lambda } ( x ) \}$$ ; confidence 0.564

511. a0119906.png ; $$\pi _ { k } ( x )$$ ; confidence 0.899

512. a13022025.png ; $$i : A \rightarrow X$$ ; confidence 0.601

513. a11054026.png ; $$O ( n ^ { 2 } \operatorname { log } n )$$ ; confidence 0.568

514. a13023028.png ; $$f _ { 1 } = ( P _ { n } \ldots P _ { 1 } ) ^ { 1 } f$$ ; confidence 0.568

515. a13023034.png ; $$\| f _ { 1 } - P _ { U \cap V ^ { J } } f \| \leq c ^ { 2 l - 1 } \| f \|$$ ; confidence 0.287

516. a13023032.png ; $$1 \rightarrow \infty$$ ; confidence 0.982

517. a01204016.png ; $$\partial M ^ { n + 1 } = K ^ { n }$$ ; confidence 0.516

518. a01204017.png ; $$X \subset Y$$ ; confidence 0.590

519. a0120907.png ; $$\alpha \neq 0$$ ; confidence 0.947

520. a01209091.png ; $$N ( R ) \neq 0$$ ; confidence 0.997

521. a01209097.png ; $$Z ( A ) = A \cap Z ( R )$$ ; confidence 0.998

522. a01210023.png ; $$| \alpha | = \sqrt { \overline { \alpha } \alpha }$$ ; confidence 0.964

523. a01212040.png ; $$\alpha _ { i } + 1$$ ; confidence 0.659

524. a0121604.png ; $$\phi = \operatorname { am } z$$ ; confidence 0.783

525. a11058047.png ; $$= v : q$$ ; confidence 0.846

526. a12023068.png ; $$c _ { q }$$ ; confidence 0.425

527. a1202303.png ; $$f \in C ( \partial D )$$ ; confidence 0.993

528. a01221035.png ; $$f ( t ) = \psi ( \phi ( t ) )$$ ; confidence 0.999

529. a01225011.png ; $$R > 0$$ ; confidence 1.000

530. a01233050.png ; $$x <$$ ; confidence 0.424

531. a01234035.png ; $$a \in V$$ ; confidence 0.699

532. a012410135.png ; $$f ( S )$$ ; confidence 0.968

533. a01241063.png ; $$s = s ^ { * } \cup ( s \backslash s ^ { * } ) ^ { * } U \ldots$$ ; confidence 0.271

534. a012410141.png ; $$R ^ { n } \subset C ^ { k }$$ ; confidence 0.407

535. a01243088.png ; $$f$$ ; confidence 0.816

536. a012430100.png ; $$I Y \subset O$$ ; confidence 0.739

537. a012460130.png ; $$X \equiv 0$$ ; confidence 0.220

538. a11060013.png ; $$0.96$$ ; confidence 1.000

539. a01255032.png ; $$\Gamma _ { n } ^ { \alpha } ( H ) _ { \alpha } ^ { 8 }$$ ; confidence 0.595

540. a110610171.png ; $$h \in \operatorname { Diff } ^ { + } ( M )$$ ; confidence 0.591

541. a110610104.png ; $$Z = \int _ { A } D A \sqrt { \operatorname { det } ( / \partial _ { A } ^ { * } / \partial _ { A } ) } \operatorname { exp } [ - \| F \| ^ { 2 } ]$$ ; confidence 0.921

542. a11063032.png ; $$\rho _ { 0 n + } = \operatorname { sin } A$$ ; confidence 0.354

543. a01280065.png ; $$\times \frac { \partial ^ { m + n } } { \partial x ^ { m } \partial y ^ { n } } [ x ^ { \gamma + m - 1 } y ^ { \prime } + n - 1 _ { ( 1 - x - y ) } \alpha + w + n - \gamma - \gamma ^ { \prime } ]$$ ; confidence 0.072

544. a01293027.png ; $$L u \equiv \frac { \partial u } { \partial t } - \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = 0$$ ; confidence 0.607

545. a01294080.png ; $$F _ { b }$$ ; confidence 0.450

546. a01294081.png ; $$f \in F$$ ; confidence 0.988

547. a012950197.png ; $$( L _ { 2 } )$$ ; confidence 0.999

548. a01296094.png ; $$n > r$$ ; confidence 0.999

549. a012970198.png ; $$\hat { W } \square _ { \infty } ^ { \gamma }$$ ; confidence 0.199

550. a012970176.png ; $$d _ { 2 n - 1 } = d _ { 2 n }$$ ; confidence 0.797

551. a012970129.png ; $$S _ { 2 } ^ { \gamma }$$ ; confidence 0.562

552. a012970196.png ; $$m \geq r$$ ; confidence 0.999

553. a01297077.png ; $$\operatorname { inf } _ { u \in \mathfrak { N } } \| x - u \| = \operatorname { sup } _ { F \in X ^ { * } } [ F ( x ) - \operatorname { sup } _ { u \in \mathfrak { N } } F ( u ) ]$$ ; confidence 0.144

554. a012970244.png ; $$L ( f )$$ ; confidence 0.998

555. a01298030.png ; $$\phi _ { k } ( t _ { k } ) = 1$$ ; confidence 0.994

556. a01298033.png ; $$X = H$$ ; confidence 0.599

557. a01300068.png ; $$P _ { 0 } ( z )$$ ; confidence 0.963

558. a01300057.png ; $$L _ { p } ( E )$$ ; confidence 0.872

559. a01300016.png ; $$\operatorname { deg } P \leq n$$ ; confidence 0.996

560. a01301081.png ; $$D ^ { 0 } f = f$$ ; confidence 0.998

561. a13027051.png ; $$\{ x _ { n j } ^ { \prime } \}$$ ; confidence 0.273

562. a01303027.png ; $$\operatorname { sup } _ { x \in \mathfrak { M } } \| x - A x \|$$ ; confidence 0.679

563. a01317026.png ; $$y _ { t } = t - S _ { \eta _ { t } }$$ ; confidence 0.968

564. a013180116.png ; $$H _ { k + 1 } ( f ( M ) )$$ ; confidence 0.998

565. a013180158.png ; $$\| T _ { M } \|$$ ; confidence 0.918

566. a0132202.png ; $$F ( z ) = z + \alpha _ { 0 } + \frac { \alpha _ { 1 } } { z } + \ldots$$ ; confidence 0.619

567. a01322017.png ; $$\overline { B } = C F ( \Delta ^ { \prime } )$$ ; confidence 0.999

568. a11066057.png ; $$1 ^ { 1 } = 1 ^ { 1 } ( N )$$ ; confidence 0.689

569. a11068093.png ; $$L f \theta$$ ; confidence 0.169

570. a110680125.png ; $$p / p$$ ; confidence 0.977

571. a110680195.png ; $$b _ { i } = \alpha _ { i } \alpha _ { 1 }$$ ; confidence 0.437

572. a11068053.png ; $$r ^ { \prime } < r$$ ; confidence 0.977

573. a11068076.png ; $$\alpha \geq b$$ ; confidence 0.978

574. a110680200.png ; $$r$$ ; confidence 0.805

575. a110680179.png ; $$\phi _ { x y } a \leq b$$ ; confidence 0.847

576. a01325016.png ; $$\operatorname { Arg } f$$ ; confidence 0.692

577. a01325046.png ; $$0 \notin f ( \partial D )$$ ; confidence 0.904

578. a01325015.png ; $$\operatorname { arg } f$$ ; confidence 0.862

579. a11070050.png ; $$\beta ( A )$$ ; confidence 0.999

580. a11070056.png ; $$M ( A ) = V \backslash N ( A )$$ ; confidence 0.983

581. a11070080.png ; $$\Omega ^ { p } [ V ]$$ ; confidence 0.985

582. a120280141.png ; $$S _ { E } = \{ \omega \in \hat { G } : E + \omega \subseteq E \}$$ ; confidence 0.881

583. a01357020.png ; $$g ( u ) d u$$ ; confidence 0.997

584. a01359029.png ; $$\Phi ^ { ( 3 ) } ( x )$$ ; confidence 0.986

585. a01367016.png ; $$J _ { \nu } ( x ) \sim \sqrt { \frac { 2 } { \pi x } } [ \operatorname { cos } ( x - \frac { \pi \nu } { 2 } - \frac { \pi } { 4 } ) \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \alpha _ { 2 n } x ^ { - 2 n }$$ ; confidence 0.755

586. a0136709.png ; $$f ( x ) \sim \sum _ { n = 0 } ^ { \infty } a _ { n } \phi _ { n } ( x ) \quad ( x \rightarrow x _ { 0 } )$$ ; confidence 0.754

587. a11079027.png ; $$M \subset G$$ ; confidence 0.949

588. a13029066.png ; $$Y$$ ; confidence 0.441

589. a13029031.png ; $$P \rightarrow \Sigma$$ ; confidence 0.991

590. a01398016.png ; $$f ( \lambda ) = ( \frac { \sigma ^ { 2 } } { 2 \pi } ) | \phi ( e ^ { i \lambda } ) | ^ { - 2 }$$ ; confidence 0.996

591. a01406076.png ; $$\mathfrak { A } _ { s _ { 1 } }$$ ; confidence 0.833

592. a014060256.png ; $$A = S ^ { \prime }$$ ; confidence 0.502

593. a01406028.png ; $$20$$ ; confidence 0.906

594. a014060135.png ; $$W _ { N } \rightarrow W _ { n }$$ ; confidence 0.076

595. a01409051.png ; $$\psi ( t _ { i } )$$ ; confidence 0.991

596. a014090219.png ; $$L ( \Sigma )$$ ; confidence 0.983

597. a014140121.png ; $$\sigma ( 1 ) = s$$ ; confidence 0.805

598. a01419058.png ; $$\phi ( t ) \equiv$$ ; confidence 0.467

599. a014190112.png ; $$\dot { x } = A x$$ ; confidence 0.608

600. a0141905.png ; $$x _ { y } + 1 = t$$ ; confidence 0.287

601. a01419047.png ; $$t _ { + } < + \infty$$ ; confidence 0.793

602. a13032031.png ; $$p < .5$$ ; confidence 1.000

603. a13032030.png ; $$Y _ { i } = 2 X _ { i } - 1$$ ; confidence 0.991

604. a0142305.png ; $$\{ A \rangle$$ ; confidence 0.294

605. a0143001.png ; $$\epsilon - \delta$$ ; confidence 0.998

606. a01431097.png ; $$| x$$ ; confidence 0.207

607. a0143102.png ; $$e$$ ; confidence 0.314

608. a01431093.png ; $$A ( \iota X A ( x ) )$$ ; confidence 0.456

609. a01431027.png ; $$\exists x A$$ ; confidence 0.894

610. b11019019.png ; $$x ^ { * } ( x ^ { * } y ) = x \wedge y$$ ; confidence 0.991

611. b11019030.png ; $$( x ^ { * } y ) ^ { * } z = ( x ^ { * } z ) ^ { * } ( y ^ { * } z )$$ ; confidence 0.974

612. b120210148.png ; $$\mathfrak { p } \supset b$$ ; confidence 0.356

613. b12021067.png ; $$( L ( \lambda ) )$$ ; confidence 1.000

614. b120210104.png ; $$\rho = ( 1 / 2 ) \sum _ { \alpha \in \Delta ^ { + } } \alpha$$ ; confidence 0.628

615. b120210102.png ; $$\{ \mu _ { i } \} _ { i = 1 } ^ { s - 1 } = \{ w . \lambda \} _ { w \in W ^ { ( k ) } }$$ ; confidence 0.489

616. b12021075.png ; $$\mathfrak { F } _ { \lambda }$$ ; confidence 0.661

617. b11066023.png ; $$L _ { p } ( R )$$ ; confidence 0.962

618. b13001099.png ; $$\left( \begin{array} { l l } { A } & { B } \\ { C } & { D } \end{array} \right)$$ ; confidence 0.965

619. b13001094.png ; $$V ^ { * } - V$$ ; confidence 0.998

620. b130010103.png ; $$V _ { n } = H _ { n } / \Gamma$$ ; confidence 0.724

621. b01511064.png ; $$\mu = \delta _ { X }$$ ; confidence 0.951

622. b01511035.png ; $$U ( y ) = \int _ { \Gamma } f ( x ) d \beta _ { Y } ( x )$$ ; confidence 0.820

623. b13002056.png ; $$x \in J$$ ; confidence 0.908

624. b1300303.png ; $$V ^ { \pm } \times V ^ { - } \times V ^ { \pm } \rightarrow V ^ { \pm }$$ ; confidence 0.809

625. b110100392.png ; $$T _ { K } ( K )$$ ; confidence 0.995

626. b110100377.png ; $$\frac { c _ { 1 } } { n } \leq ( | K | | K ^ { \circlearrowright } | ) ^ { 1 / n } \leq \frac { c _ { 2 } } { n }$$ ; confidence 0.421

627. b11010099.png ; $$\| T \| T ^ { - 1 } \| \geq c n$$ ; confidence 0.835

628. b12004080.png ; $$T : L _ { \infty } \rightarrow L _ { \infty }$$ ; confidence 0.978

629. b12004018.png ; $$| x _ { y } \| \rightarrow 0$$ ; confidence 0.611

630. b1100902.png ; $$l ^ { \infty } ( N )$$ ; confidence 0.759

631. b110130207.png ; $$\left( \begin{array} { c } { y - p } \\ { \vdots } \\ { y - 1 } \\ { y _ { 0 } } \end{array} \right) = \Gamma ^ { - 1 } \left( \begin{array} { c } { 0 } \\ { \vdots } \\ { 0 } \\ { 1 } \end{array} \right)$$ ; confidence 0.427

632. b110130197.png ; $$f ( \zeta ) > 0$$ ; confidence 0.996

633. b11013099.png ; $$m _ { 1 } \in M _ { 1 }$$ ; confidence 0.998

634. b11013012.png ; $$M _ { d } ^ { * } = M _ { d }$$ ; confidence 0.900

635. b110130209.png ; $$v ( \lambda ) = ( y _ { 0 } + \lambda ^ { - 1 } y _ { - 1 } + \ldots + \lambda ^ { - p } y - p ) y _ { 0 } ^ { - 1 / 2 }$$ ; confidence 0.241

636. b1101309.png ; $$E _ { 2 }$$ ; confidence 0.994

637. b01521049.png ; $$\alpha \in S _ { \alpha }$$ ; confidence 0.784

638. b0152609.png ; $$D \cup \Gamma$$ ; confidence 0.999

639. b0152808.png ; $$\lambda _ { 0 } + \ldots + \lambda _ { n } = 1$$ ; confidence 0.986

640. b01531023.png ; $$X _ { s } = X \times s s$$ ; confidence 0.533

641. b01535027.png ; $$\alpha _ { i } \in \Omega$$ ; confidence 0.833

642. b015350372.png ; $$\{ \xi _ { t } \}$$ ; confidence 0.990

643. b015350251.png ; $$\{ \xi _ { t } ( s ) \}$$ ; confidence 1.000

644. b015350300.png ; $$\delta _ { i k } = 0$$ ; confidence 0.900

645. b11016019.png ; $$f ( x ) = a x + b$$ ; confidence 0.931

646. b11016013.png ; $$f ( n ) \equiv 0 ( \operatorname { mod } p )$$ ; confidence 1.000

647. b13006022.png ; $$\| A \| _ { \infty }$$ ; confidence 0.981

648. b13006060.png ; $$b _ { i }$$ ; confidence 0.854

649. b13007015.png ; $$\pi ( m )$$ ; confidence 0.999

650. b0153803.png ; $$A _ { i } \Gamma \cap A _ { j } = \emptyset$$ ; confidence 0.946

651. b01539034.png ; $\operatorname { inf } _ { d } \int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta )$ ; confidence 0.420

652. b01539050.png ; $\theta = \theta _ { i }$ ; confidence 0.949

653. b01539042.png ; $D = \{ d _ { 1 } , d _ { 2 } \}$ ; confidence 0.998

654. b01539023.png ; $P _ { \theta } ( d x ) = p ( x | \theta ) d \mu ( x )$ ; confidence 0.550

655. b01539013.png ; $\delta ( x ) \in D$ ; confidence 0.997

656. b01539045.png ; $\pi ( \theta _ { 1 } ) = \pi _ { 1 }$ ; confidence 0.999

657. b01539046.png ; $\pi ( \theta _ { 2 } ) = \pi _ { 2 }$ ; confidence 0.999

658. b0153901.png ; $( X , B X )$ ; confidence 0.566

659. b01539056.png ; $\delta ^ { * } ( x ) = \left\{ \begin{array} { l l } { d _ { 1 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \leq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \\ { d _ { 2 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \geq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \end{array} \right.$ ; confidence 0.853

660. b01539036.png ; $\int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta ) = E [ L ( \theta , d ) | x ]$ ; confidence 0.885

661. b01539019.png ; $\rho ( \pi , \delta ) = \int _ { \Theta } \rho ( \theta , \delta ) \pi ( d \theta )$ ; confidence 0.993

662. b01539022.png ; $\delta ^ { * } = \delta ^ { * } ( x )$ ; confidence 0.998

663. b01539030.png ; $= \int _ { X } d \mu ( x ) [ \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \nu ( \theta ) ]$ ; confidence 0.736

664. b0153903.png ; $( \Theta , B _ { \Theta } )$ ; confidence 0.937

665. b01539032.png ; $d ^ { x }$ ; confidence 0.785

666. b01539028.png ; $\int \int _ { \Theta } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x ) \pi ( d \theta ) =$ ; confidence 0.604

667. b01539043.png ; $L _ { i j } = L = ( \theta _ { i } , d _ { j } )$ ; confidence 0.694

668. b01539035.png ; $p ( x ) = \int _ { \Theta } p ( x | \theta ) \pi ( \theta ) d \nu ( \theta )$ ; confidence 0.972

669. b01539020.png ; $\rho ( \theta , \delta ) = \int _ { Y } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x )$ ; confidence 0.192

670. b01539052.png ; $L _ { 22 } < L _ { 21 }$ ; confidence 0.945

671. b01539053.png ; $\rho ( \pi , \delta ) = \int _ { X } [ \pi _ { 1 } p ( x | \theta _ { 1 } ) L ( \theta _ { 1 } , \delta ( x ) ) +$ ; confidence 0.977

672. b01539057.png ; $\rho ( \theta , \delta )$ ; confidence 1.000

673. b01539047.png ; $\pi _ { 1 } + \pi _ { 2 } = 1$ ; confidence 0.992

674. b01539029.png ; $= \int \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \mu ( x ) d \nu ( \theta ) =$ ; confidence 0.774

675. b01539040.png ; $E [ L ( \theta , d ) | x ]$ ; confidence 0.361

676. b01539018.png ; $\delta \rho ( \pi , \delta )$ ; confidence 0.650

677. b0153907.png ; $( D , B _ { D } )$ ; confidence 0.999

678. b01539061.png ; $\rho ( \pi , \delta _ { \epsilon } ^ { * } ) \leq \operatorname { inf } _ { \delta } \rho ( \pi , \delta ) + \epsilon$ ; confidence 0.972

679. b01539015.png ; $\pi = \pi ( d \theta )$ ; confidence 0.979

680. b01539011.png ; $\delta = \delta ( x )$ ; confidence 0.981

681. b01539021.png ; $\rho ( \pi , \delta ^ { * } ) = \operatorname { inf } _ { \delta } \int _ { \Theta } \int _ { X } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x ) \pi ( d \theta )$ ; confidence 0.586

682. b01539063.png ; $( \epsilon > 0 )$ ; confidence 0.999

683. b01539054.png ; $+ \pi _ { 2 } p ( x | \theta _ { 2 } ) L ( \theta _ { 2 } , \delta ( x ) ) ] d \mu ( x )$ ; confidence 0.612

684. b0153905.png ; $\{ P _ { \theta } : \theta \in \Theta \}$ ; confidence 0.633

685. b01539058.png ; $\rho ( \pi , \delta )$ ; confidence 1.000

686. b01539044.png ; $i , j = 1,2$ ; confidence 0.881

687. b01539024.png ; $\pi ( d \theta ) = \pi ( \theta ) d \nu ( \theta )$ ; confidence 0.998

688. b01539041.png ; $= \{ \theta _ { 1 } , \theta _ { 2 } \}$ ; confidence 1.000

689. b01539038.png ; $\delta ^ { * } ( x )$ ; confidence 0.978

690. b01539031.png ; $x \in X , \delta ^ { * } ( x )$ ; confidence 0.710

691. b01539060.png ; $\delta _ { \epsilon } ^ { * }$ ; confidence 0.648

692. b0153908.png ; $L ( \theta , d )$ ; confidence 0.992

693. b01539051.png ; $L _ { 11 } < L _ { 12 }$ ; confidence 0.994

694. b01540062.png ; $$s ( z ) = q ( z )$$ ; confidence 1.000

695. b01540048.png ; $$s ( z )$$ ; confidence 1.000

696. b01540091.png ; $$\Psi _ { 1 } ( Y ) / \hat { q } ( Y ) \leq \psi ( Y ) \leq \Psi _ { 2 } ( Y ) / \hat { q } ( Y )$$ ; confidence 0.236

697. b01542034.png ; $$x = ( x _ { 1 } + \ldots + x _ { n } ) / n$$ ; confidence 0.514

698. b12009080.png ; $$| f ( z ) | < 1$$ ; confidence 0.992

699. b12009092.png ; $$f \in B ( m / n )$$ ; confidence 0.956

700. b12009082.png ; $$L ( r ) = \int _ { 0 } ^ { 2 \pi } | z f ^ { \prime } ( z ) | d \theta = O ( \operatorname { log } \frac { 1 } { 1 - r } )$$ ; confidence 0.970

701. b0154406.png ; $$E X _ { 2 j } = \mu _ { 2 }$$ ; confidence 0.517

702. b01544026.png ; $$X _ { 1 }$$ ; confidence 0.637

703. b11025093.png ; $$L ( t )$$ ; confidence 0.967

704. b01554027.png ; $$\phi = \Pi ^ { \prime } \Pi ^ { - 1 }$$ ; confidence 0.997

705. b11027042.png ; $$P ( s S ) = P ( S )$$ ; confidence 0.219

706. b13010015.png ; $$k _ { z } = K _ { z } / \| K _ { z } \|$$ ; confidence 0.674

707. b01556018.png ; $$D \times D \in \Gamma ^ { 2 }$$ ; confidence 0.230

708. b12014039.png ; $$a ( z )$$ ; confidence 0.948

709. b0155806.png ; $$p _ { i } = \nu ( \alpha _ { i } )$$ ; confidence 0.832

710. b120150110.png ; $$d : N \cup \{ 0 \} \rightarrow R$$ ; confidence 0.953

711. b12015024.png ; $$x = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } x$$ ; confidence 0.315

712. b1103309.png ; $$\Omega = S ^ { D } = \{ \omega _ { i } \} _ { i \in D }$$ ; confidence 0.591

713. b11033038.png ; $$P ^ { \prime }$$ ; confidence 0.871

714. b01563017.png ; $$p \leq 2$$ ; confidence 1.000

715. b01565010.png ; $$B _ { n } ( x + 1 ) - B _ { n } ( x ) = n x ^ { n - 1 }$$ ; confidence 0.672

716. b01566078.png ; $$/ N = T$$ ; confidence 0.692

717. b01566054.png ; $$\alpha = ( k + 1 / 2 )$$ ; confidence 0.643

718. b01566081.png ; $$1 - \frac { 2 } { \sqrt { 2 \pi } } \int _ { 0 } ^ { \alpha / T } e ^ { - z ^ { 2 } / 2 } d z = \frac { 2 } { \sqrt { 2 \pi } } \int _ { \alpha / \sqrt { T } } ^ { \infty } e ^ { - z ^ { 2 } / 2 } d z$$ ; confidence 0.722

719. b01566071.png ; $$\nu = a + x + 2 [ \frac { n - t - x - \alpha } { 2 } ] + 1$$ ; confidence 0.213

720. b01568021.png ; $$2 \operatorname { exp } \{ - \frac { 1 } { 2 } n \epsilon ^ { 2 } \}$$ ; confidence 0.999

721. b11037053.png ; $$K ( t ) \equiv 1$$ ; confidence 0.999

722. b11037052.png ; $$= 0 \text { as. } \cdot P _ { \theta _ { 0 } } ]$$ ; confidence 0.233

723. b11037025.png ; $$0 < \epsilon < i ( \theta _ { 0 } )$$ ; confidence 0.998

724. b11034032.png ; $$\omega ( x y ) = \omega ( x ) \omega ( y )$$ ; confidence 0.999

725. b01572032.png ; $$+ \frac { \alpha } { u } [ \alpha ( \frac { \partial u } { \partial x } ) ^ { 2 } + 2 b \frac { \partial u } { \partial x } \frac { \partial u } { \partial y } + c ( \frac { \partial u } { \partial y } ) ^ { 2 } ] +$$ ; confidence 0.828

726. b12016030.png ; $$x _ { i } ^ { \prime \prime } = x _ { i } ^ { \prime }$$ ; confidence 0.895

727. b11038019.png ; $$w = \pi ( z )$$ ; confidence 0.987

728. b11038070.png ; $$\Theta f$$ ; confidence 0.864

729. b110390108.png ; $$K > 0$$ ; confidence 0.999

730. b11040029.png ; $$F ^ { 2 } = \beta ^ { 2 } \operatorname { exp } \{ \frac { I \gamma } { \beta } \}$$ ; confidence 0.990

731. b11040017.png ; $$F . C _ { i j k } = I m$$ ; confidence 0.621

732. b01587024.png ; $$( 1 - \Delta ) ^ { m } P _ { \alpha } ( x ) = P _ { \alpha - 2 m } ( x )$$ ; confidence 0.951

733. b11042025.png ; $$V _ { k } \varphi ( x ) = \varphi ( x - h )$$ ; confidence 0.922

734. b11042055.png ; $$\mu \in R$$ ; confidence 0.990

735. b11042087.png ; $$\overline { B } ^ { \nu }$$ ; confidence 0.987

736. b11042014.png ; $$( Id - \Delta ) ^ { \nu }$$ ; confidence 0.560

737. b1104407.png ; $$\overline { \Xi } \epsilon = 0$$ ; confidence 0.326

738. b1104909.png ; $$P _ { 1 }$$ ; confidence 0.928

739. b0160507.png ; $$E _ { \theta } \{ T \}$$ ; confidence 0.560

740. b01605010.png ; $$b ( \theta ) \equiv 0$$ ; confidence 0.580

741. b01616031.png ; $$\hat { R } ( c )$$ ; confidence 0.613

742. b01616036.png ; $$0 < c < 1$$ ; confidence 0.979

743. b01615033.png ; $$\operatorname { Re } _ { c _ { N } } = n$$ ; confidence 0.069

744. b01617015.png ; $$F _ { n } ( z _ { 0 } ) = 0$$ ; confidence 0.993

745. b0161704.png ; $$| w | < r _ { 0 }$$ ; confidence 0.478

746. b01617013.png ; $$F _ { n } ( z )$$ ; confidence 0.855

747. b1105203.png ; $$\sum _ { n = 1 } ^ { \infty } l _ { k } ^ { 2 } \operatorname { exp } ( l _ { 1 } + \ldots + l _ { n } ) = \infty$$ ; confidence 0.545

748. b11052027.png ; $$x \in G _ { n }$$ ; confidence 0.415

749. b0164707.png ; $$( \tau = \text { const } )$$ ; confidence 0.589

750. b11056013.png ; $$w _ { 2 } ( F )$$ ; confidence 0.966

751. b0165404.png ; $$B = \{ b _ { i } : i \in I \}$$ ; confidence 0.985

752. b11057061.png ; $$H _ { m }$$ ; confidence 0.869

753. b11057039.png ; $$H _ { k } \circ \operatorname { exp } ( X _ { F } ) = \operatorname { exp } ( X _ { F } ) ( H _ { k } )$$ ; confidence 0.992

754. b01655023.png ; $$\mu _ { n } ( t ) = 0$$ ; confidence 0.990

755. b01655040.png ; $$\lambda _ { n } ( t ) = v$$ ; confidence 0.997

756. b11059067.png ; $$u = q ( x ) \text { on } g$$ ; confidence 0.462

757. b01661046.png ; $$\vec { u } = A _ { j } ^ { i } u ^ { j }$$ ; confidence 0.648

758. b01661030.png ; $$R _ { y } ^ { t }$$ ; confidence 0.060

759. b13017045.png ; $$S _ { T }$$ ; confidence 0.992

760. b12027050.png ; $$U ( t ) = \sum _ { 1 } ^ { \infty } P ( S _ { k } \leq t ) = \sum _ { 1 } ^ { \infty } F ^ { ( k ) } ( t )$$ ; confidence 0.917

761. b11061011.png ; $$K ^ { * }$$ ; confidence 0.777

762. b0166503.png ; $$2 \int \int _ { G } ( x \frac { \partial y } { \partial u } \frac { \partial y } { \partial v } ) d u d v = \oint _ { \partial G } ( x y d y )$$ ; confidence 0.204

763. b12030013.png ; $$q \in Z ^ { N }$$ ; confidence 0.950

764. b12030060.png ; $$0 \leq \lambda _ { 1 } ( \eta ) \leq \ldots \leq \lambda _ { m } ( \eta ) \leq \ldots \rightarrow \infty$$ ; confidence 0.714

765. b01667088.png ; $$A A ^ { T } = ( r - \lambda ) E + \lambda J$$ ; confidence 0.999

766. b01667071.png ; $$n _ { 1 } = 9$$ ; confidence 0.822

767. b11064038.png ; $$X _ { 1 } \times X _ { 2 }$$ ; confidence 0.987

768. b12031032.png ; $$0 \leq \delta \leq ( n - 1 ) / 2 ( n + 1 )$$ ; confidence 0.999

769. b12031064.png ; $$\tau ^ { n }$$ ; confidence 0.408

770. b01673033.png ; $$r ^ { 3 } / v \ll 1$$ ; confidence 0.747

771. b0167404.png ; $$\leq \frac { 1 } { N } \langle U _ { 1 } - U _ { 2 } \} _ { U _ { 2 } }$$ ; confidence 0.419

772. b11069080.png ; $$M _ { A g }$$ ; confidence 0.870

773. b11069063.png ; $$P T ( C ) \in G$$ ; confidence 0.971

774. b12032011.png ; $$\| x + y \| _ { p } = \| u + v \| _ { p }$$ ; confidence 0.572

775. b01681038.png ; $$n ( z ) = n _ { 0 } e ^ { - m g z / k T }$$ ; confidence 0.985

776. b01681021.png ; $$H = \sum _ { i } \frac { p _ { i } ^ { 2 } } { 2 m } + \sum _ { i } U ( r _ { i } )$$ ; confidence 0.992

777. b01685023.png ; $$E = \sum _ { i = 1 } ^ { M } \epsilon _ { i } N _ { i }$$ ; confidence 0.900

778. b01685022.png ; $$N = \sum _ { i = 1 } ^ { M } N$$ ; confidence 0.965

779. b12036013.png ; $$E$$ ; confidence 0.999

780. b1301906.png ; $$F ( x ) = f ( M x )$$ ; confidence 1.000

781. b0169001.png ; $$d s ^ { 2 } = \frac { d u ^ { 2 } + d v ^ { 2 } } { ( U + V ) ^ { 2 } }$$ ; confidence 0.972

782. b0169909.png ; $$\Omega _ { M } ( \rho ) \in V _ { M } ^ { V ^ { n } }$$ ; confidence 0.820

783. b01692023.png ; $$( x \vee C x ) \wedge y = y$$ ; confidence 0.985

784. b016920121.png ; $$( M )$$ ; confidence 1.000

785. b12037030.png ; $$h \in \Omega$$ ; confidence 0.914

786. b12037092.png ; $$\sum \frac { 1 } { 1 }$$ ; confidence 0.251

787. b11076042.png ; $$\partial ^ { k } f / \partial x : B ^ { m } \rightarrow B$$ ; confidence 0.717

788. b016960150.png ; $$99$$ ; confidence 0.271

789. b016960167.png ; $$\tilde { \mathfrak { N } } = \mathfrak { N } \backslash ( V _ { j = 1 } ^ { t } \mathfrak { A } ^ { \prime \prime } )$$ ; confidence 0.082

790. b016960126.png ; $$\omega _ { i } = 1$$ ; confidence 0.972

791. b016960175.png ; $$M _ { 1 } \cup M _ { 2 }$$ ; confidence 0.994

792. b0169702.png ; $$x ^ { \sigma } = x$$ ; confidence 0.948

793. b01697035.png ; $$t _ { f } ( n )$$ ; confidence 0.917

794. b01697056.png ; $$\frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n \cdot \operatorname { log } _ { 2 } \operatorname { log } _ { 2 } n } < l _ { f } ( n ) < \frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n }$$ ; confidence 0.504

795. b130200102.png ; $$\beta \neq - \alpha$$ ; confidence 0.992

796. b13020088.png ; $$\Delta _ { - } = - \Delta _ { + }$$ ; confidence 0.970

797. b13020036.png ; $$[ e _ { i } f _ { j } ] = h _ { i }$$ ; confidence 0.684

798. b13020048.png ; $$\alpha _ { i j } \neq 0$$ ; confidence 0.797

799. b13020023.png ; $$\alpha _ { i } \in R$$ ; confidence 0.443

800. b130200163.png ; $$\operatorname { lim } \mathfrak { g } ^ { \alpha } = 1$$ ; confidence 0.737

801. b13020073.png ; $$9 -$$ ; confidence 0.467

802. b01701014.png ; $$\alpha _ { k } = a _ { k k } - v _ { k } A _ { k - 1 } ^ { - 1 } u _ { k }$$ ; confidence 0.522

803. b01703046.png ; $$\mathfrak { M } _ { n }$$ ; confidence 0.373

804. b12040052.png ; $$\mathfrak { h } \subset \mathfrak { g }$$ ; confidence 0.959

805. b01729088.png ; $$A = R ( X )$$ ; confidence 0.988

806. b01729042.png ; $$\partial M _ { A } \subset X \subset M _ { A }$$ ; confidence 0.891

807. b0172908.png ; $$\Gamma \subset M _ { A }$$ ; confidence 0.920

808. b01729066.png ; $$| \hat { \alpha } ( \xi ) | > | \hat { \alpha } ( \eta ) |$$ ; confidence 0.745

809. b01728011.png ; $$\hat { G } \backslash G$$ ; confidence 0.582

810. b01733030.png ; $$f ( e ^ { i \theta } ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r e ^ { i \theta } )$$ ; confidence 0.451

811. b01733087.png ; $$N ^ { * } ( D )$$ ; confidence 0.999

812. b017330215.png ; $$F ^ { \prime } ( w )$$ ; confidence 0.999

813. b017330250.png ; $$U ^ { N }$$ ; confidence 0.743

814. b017330260.png ; $$N ^ { * } ( \Omega )$$ ; confidence 0.996

815. b017330155.png ; $$\Phi ( \theta )$$ ; confidence 1.000

816. b017330242.png ; $$f ^ { * } ( z ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r z )$$ ; confidence 0.445

817. b017330240.png ; $$B = H ^ { \infty } \subset H _ { \psi } \subset N ^ { * }$$ ; confidence 0.752

818. b017340100.png ; $$n ^ { \prime } = - n + m - 1$$ ; confidence 0.993

819. b01734046.png ; $$t _ { 0 } \in \partial S$$ ; confidence 0.816

820. b01734029.png ; $$C _ { \alpha }$$ ; confidence 0.664

821. b01735065.png ; $$K$$ ; confidence 0.981

822. b01735056.png ; $$K ^ { + }$$ ; confidence 0.992

823. b01738057.png ; $$L u = \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial u } { \partial t } = 0$$ ; confidence 0.466

824. b01738068.png ; $$t \in S$$ ; confidence 0.474

825. b01740070.png ; $$k ^ { \prime } = 1$$ ; confidence 0.991

826. b11082017.png ; $$\pi _ { i } / ( \pi _ { i } + \pi _ { j } )$$ ; confidence 0.304

827. b01747076.png ; $$1 \rightarrow K ( n ) \rightarrow B ( n ) \rightarrow S ( n ) \rightarrow 1$$ ; confidence 0.993

828. b01747034.png ; $$( i i + 1 )$$ ; confidence 0.886

829. b01747053.png ; $$\Pi ^ { \prime \prime }$$ ; confidence 0.914

830. b01747069.png ; $$P _ { 1 / 2 }$$ ; confidence 0.996

831. b01747067.png ; $$\omega ^ { - 1 }$$ ; confidence 0.909

832. b017470190.png ; $$H ^ { * } ( O ( n ) ) \rightarrow H ^ { * } ( B ( n ) )$$ ; confidence 0.999

833. b120420145.png ; $$\sum h _ { ( 1 ) } \otimes h _ { ( 2 ) }$$ ; confidence 0.516

834. b120420159.png ; $$\lambda _ { W } : V \otimes W \rightarrow W \otimes V$$ ; confidence 0.988

835. b120420115.png ; $$U _ { q } ( \mathfrak { g } )$$ ; confidence 0.626

836. b13022030.png ; $$L _ { p } ( T )$$ ; confidence 0.938

837. b11084049.png ; $$X$$ ; confidence 0.601

838. b13023050.png ; $$G ( u )$$ ; confidence 0.489

839. b0175307.png ; $$P \{ \mu ( t + t _ { 0 } ) = j | \mu ( t _ { 0 } ) = i \}$$ ; confidence 0.724

840. b0175508.png ; $$t _ { 1 } + t$$ ; confidence 0.973

841. b01756018.png ; $$P \{ \xi _ { t } \equiv 0 \} = 1$$ ; confidence 0.670

842. b01758025.png ; $$\int _ { 0 } ^ { 1 } \frac { 1 - G ( s ) } { F ( s ) - s } d s < \infty$$ ; confidence 0.998

843. b0176209.png ; $$P _ { C } ^ { 1 }$$ ; confidence 0.433

844. b01762024.png ; $$r ^ { 2 }$$ ; confidence 1.000

845. b11085036.png ; $$\operatorname { dim } ( V / K ) = 1$$ ; confidence 0.998

846. b120440103.png ; $$R [ H \times H$$ ; confidence 0.981

847. b12046037.png ; $$( \oplus _ { b } G _ { E B } b )$$ ; confidence 0.179

848. b11088033.png ; $$P _ { I } ^ { f } : C ^ { \infty } \rightarrow L$$ ; confidence 0.321

849. b11089088.png ; $$\alpha ^ { i }$$ ; confidence 0.739

850. b11089054.png ; $$f ( x ) = x ^ { t } M x$$ ; confidence 0.999

851. b11091027.png ; $$\frac { \partial N _ { i } } { \partial t } + u _ { i } \nabla N _ { i } = G _ { i } - L _ { i }$$ ; confidence 0.250

852. b13027070.png ; $$B \otimes K ( H )$$ ; confidence 0.796

853. b1302706.png ; $$Q ( H ) = B ( H ) / K ( H )$$ ; confidence 0.959

854. b12050014.png ; $$M _ { t } : = \operatorname { sup } _ { s \leq t } W _ { s }$$ ; confidence 0.396

855. b12051029.png ; $$\operatorname { lim } _ { n \rightarrow \infty } \nabla f ( x _ { n } ) = 0$$ ; confidence 0.985

856. b12051051.png ; $$x _ { + } = x _ { c } + \lambda d$$ ; confidence 0.719

857. b11096026.png ; $$\nu : Z ( K ) \rightarrow V \subset \operatorname { Aff } ( A )$$ ; confidence 0.915

858. b130290121.png ; $$\operatorname { dim } A = 2$$ ; confidence 0.998

859. b130290203.png ; $$0 \leq i \leq d - 1$$ ; confidence 0.993

860. b1302903.png ; $$d = \operatorname { dim } A$$ ; confidence 0.989

861. b11099015.png ; $$P _ { \alpha }$$ ; confidence 0.384

862. b11099011.png ; $$V _ { Q }$$ ; confidence 0.244

863. b130300113.png ; $$A$$ ; confidence 0.535

864. b130300112.png ; $$F _ { m }$$ ; confidence 0.945

865. b13030089.png ; $$n \geq 2 ^ { 13 }$$ ; confidence 0.999

866. b01780053.png ; $$n = p$$ ; confidence 0.858

867. b01780036.png ; $$d \geq n$$ ; confidence 0.956

868. b01780019.png ; $$2 ^ { 12 }$$ ; confidence 0.999

869. b12001032.png ; $$\frac { \partial v } { \partial t } - 6 v ^ { 2 } \frac { \partial v } { \partial x } + \frac { \partial ^ { 3 } v } { \partial x ^ { 3 } } = 0$$ ; confidence 0.944

870. c12001098.png ; $$\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$$ ; confidence 0.185

871. c11047054.png ; $$h : H \rightarrow ( C \bigotimes T M ) / ( H \oplus \overline { H } )$$ ; confidence 0.332

872. c11048046.png ; $$D ^ { \perp }$$ ; confidence 0.893

873. c1100106.png ; $$T : A _ { j } \rightarrow A$$ ; confidence 0.526

874. c11003017.png ; $$v = u ^ { 2 } +$$ ; confidence 0.633

875. c11005025.png ; $$X _ { t } = 2.632 + 1.492 X _ { t - 1 } - 1.324 X _ { t - 2 } + \epsilon _ { t } ^ { ( 2 ) }$$ ; confidence 0.949

876. c11005010.png ; $$CW ( 9.63 )$$ ; confidence 0.827

877. c02014016.png ; $$\Sigma _ { 12 } = \Sigma _ { 2 } ^ { T }$$ ; confidence 0.747

878. c02016022.png ; $$K _ { X } K _ { X }$$ ; confidence 0.800

879. c02019023.png ; $$C A$$ ; confidence 0.232

880. c02023043.png ; $$X \backslash K _ { X }$$ ; confidence 0.934

881. c020280124.png ; $$E ( \lambda )$$ ; confidence 1.000

882. c020280177.png ; $$\underline { C } ( E ) = \operatorname { sup } C ( K )$$ ; confidence 0.963

883. c11008041.png ; $$f$$ ; confidence 0.647

884. c11006048.png ; $$0 \leq j < k$$ ; confidence 0.995

885. c12004012.png ; $$( f \in H _ { C } ( D ) )$$ ; confidence 0.513

886. c12004049.png ; $$f \in H _ { c } ( D )$$ ; confidence 0.898

887. c12004038.png ; $$\rho \in C ^ { 2 } ( \overline { \Omega } )$$ ; confidence 0.996

888. c0204203.png ; $$E \times E$$ ; confidence 0.999

889. c020540218.png ; $$\nabla ^ { \prime } = \nabla$$ ; confidence 0.998

890. c020540105.png ; $$s _ { m } = r - s - \operatorname { rank } M _ { m } - 1$$ ; confidence 0.443

891. c020540177.png ; $$\epsilon ( \sigma ) = 1$$ ; confidence 0.993

892. c02055049.png ; $$1$$ ; confidence 0.897

893. c02055058.png ; $$t \otimes _ { k } K$$ ; confidence 0.618

894. c02064012.png ; $$\mu = \beta \nu$$ ; confidence 0.406

895. c02064013.png ; $$\lambda : V \rightarrow P$$ ; confidence 0.999

896. c0206506.png ; $$1 / \mu = d S / d \sigma$$ ; confidence 0.936

897. c1300406.png ; $$\psi ( z ) : = \frac { d } { d z } \{ \operatorname { log } \Gamma ( z ) \} = \frac { \Gamma ^ { \prime } ( z ) } { \Gamma ( z ) }$$ ; confidence 0.998

898. c1300407.png ; $$\operatorname { log } \Gamma ( z ) = \int _ { 1 } ^ { z } \psi ( t ) d t$$ ; confidence 0.962

899. c020740168.png ; $$F ( 1 _ { A } ) = 1 _ { F A }$$ ; confidence 0.901

900. c020740394.png ; $$( \alpha \circ \beta ) ( c ) _ { d x } = \sum _ { b } \alpha ( b ) _ { a } \beta ( c ) _ { b }$$ ; confidence 0.330

901. c020740146.png ; $$\alpha \rightarrow \dot { b }$$ ; confidence 0.200

902. c020740328.png ; $$e \in E$$ ; confidence 0.839

903. c020740324.png ; $$( \alpha _ { e } ) _ { é \in E }$$ ; confidence 0.403

904. c020740318.png ; $$Z [ X _ { é } : e \in E$$ ; confidence 0.114

905. c12007011.png ; $$1 \leq i \leq n - 1$$ ; confidence 0.993

906. c12007055.png ; $$Ab ^ { Z C } \approx Ab ^ { C }$$ ; confidence 0.662

907. c02092013.png ; $$\Omega _ { 0 } \times \{ x _ { 0 }$$ ; confidence 0.971

908. c02092043.png ; $$x = x ^ { 0 }$$ ; confidence 0.989

909. c020890175.png ; $$F ^ { - } ( \zeta _ { 0 } )$$ ; confidence 0.984

910. c020890110.png ; $$\psi = \psi ( s )$$ ; confidence 0.998

911. c0209509.png ; $$u ( x _ { 0 } ) = u _ { 0 }$$ ; confidence 0.932

912. c02095032.png ; $$L u = \sum _ { | \alpha | \leq m } \alpha _ { \alpha } ( x ) \frac { \partial ^ { \alpha } u } { \partial x ^ { \alpha } } = f ( x )$$ ; confidence 0.358

913. c02096032.png ; $$y _ { n + 1 } = y _ { n } + \frac { h } { 2 } ( f _ { n + 1 } + f _ { n } )$$ ; confidence 0.957

914. c02104082.png ; $$- w$$ ; confidence 0.598

915. c02104057.png ; $$- u _ { 3 }$$ ; confidence 0.803

916. c12008028.png ; $$A _ { j } A _ { k l } = A _ { k l } A _ { j }$$ ; confidence 0.372

917. c02106028.png ; $$V ( t ) = - V ( s )$$ ; confidence 1.000

918. c13005021.png ; $$\Gamma$$ ; confidence 0.974

919. c02110012.png ; $$x \in \operatorname { Dom } A$$ ; confidence 0.300

920. c02113024.png ; $$\partial I ^ { p }$$ ; confidence 0.973

921. c021180110.png ; $$E \| X _ { k } \| ^ { 3 + \alpha } < \infty$$ ; confidence 0.604

922. c11013026.png ; $$f \in C ^ { k }$$ ; confidence 0.918

923. c11016063.png ; $$( a b \alpha ) ^ { \alpha } = \alpha ^ { \alpha } b ^ { \alpha } \alpha ^ { \alpha }$$ ; confidence 0.173

924. c1101705.png ; $$D _ { p }$$ ; confidence 0.949

925. c11017044.png ; $$C \rho _ { p } C ^ { \prime }$$ ; confidence 0.884

926. c02147033.png ; $$\tilde { Y } \square _ { j } ^ { ( k ) } \in Y _ { j }$$ ; confidence 0.172

927. c02148045.png ; $$b \neq 0$$ ; confidence 1.000

928. c02150017.png ; $$y ^ { \prime \prime } - y > f ( x )$$ ; confidence 1.000

929. c02152013.png ; $$V ( \Lambda ^ { \prime } ) \otimes V ( \Lambda ^ { \prime \prime } )$$ ; confidence 0.996

930. c0215505.png ; $$\phi : \mathfrak { g } \rightarrow \mathfrak { g } ( V )$$ ; confidence 0.515

931. c02157044.png ; $$\chi \pi _ { \alpha }$$ ; confidence 0.268

932. c02157034.png ; $$\pi _ { 0 }$$ ; confidence 0.537

933. c02160021.png ; $$A$$ ; confidence 0.992

934. c02161069.png ; $$\alpha _ { \nu } ( x ) \rightarrow b _ { \nu } ( x ^ { \prime } )$$ ; confidence 0.798

935. c02162068.png ; $$\pi _ { \mathscr { q } } ( F )$$ ; confidence 0.437

936. c02162091.png ; $$c _ { q } ( \xi ) = \kappa ( \eta ^ { q } )$$ ; confidence 0.820

937. c021620209.png ; $$B G$$ ; confidence 0.998

938. c02162087.png ; $$\kappa ( \eta ^ { q } ) \in H ^ { 2 q } ( B )$$ ; confidence 0.856

939. c02165039.png ; $$E X ^ { 2 n } < \infty$$ ; confidence 0.974

940. c02165011.png ; $$t _ { k } \in R ^ { 1 }$$ ; confidence 0.998

941. c02172031.png ; $$b _ { k } ^ { \prime } = ( - 1 ) ^ { k + 1 } b _ { k }$$ ; confidence 0.930

942. c02176012.png ; $$X = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } X$$ ; confidence 0.670

943. c0217608.png ; $$p ( x ) = \frac { 1 } { ( 2 \pi ) ^ { 3 / 2 } \sigma ^ { 2 } } \operatorname { exp } \{ - \frac { 1 } { 2 \sigma ^ { 2 } } ( x _ { 1 } ^ { 2 } + x _ { 2 } ^ { 2 } + x _ { 3 } ^ { 2 } ) \}$$ ; confidence 0.970

944. c130070146.png ; $$k ( C ^ { * } )$$ ; confidence 0.992

945. c13007063.png ; $$g = 0 \Rightarrow c$$ ; confidence 0.793

946. c0218501.png ; $$\tau = \tau ( E )$$ ; confidence 0.992

947. c13009010.png ; $$x _ { j } = \operatorname { cos } ( \pi j / N )$$ ; confidence 0.826

948. c02203033.png ; $$C _ { \omega }$$ ; confidence 0.073

949. c02204033.png ; $$h ^ { * } ( pt )$$ ; confidence 0.903

950. c02204098.png ; $$\Omega _ { 2 n } ^ { 2 } \rightarrow Z$$ ; confidence 0.476

951. c02211060.png ; $$\xi _ { 1 } ^ { 2 } + \ldots + \xi _ { k - m - 1 } ^ { 2 } + \mu _ { 1 } \xi _ { k - m } ^ { 2 } + \ldots + \mu _ { m } \xi _ { k - 1 } ^ { 2 }$$ ; confidence 0.818

952. c12016016.png ; $$j = 1 : n$$ ; confidence 0.980

953. c11021043.png ; $$T ( 0 ) = 0$$ ; confidence 0.574

954. c11020072.png ; $$\lambda \in \Lambda$$ ; confidence 0.954

955. c13010015.png ; $$f = \sum _ { i = 1 } ^ { n } \alpha _ { i } \chi _ { i }$$ ; confidence 0.422

956. c02229022.png ; $$+ \frac { 1 } { 2 } \sum _ { 0 < u \leq \sqrt { x / 3 } } ( [ \sqrt { x - 2 u ^ { 2 } } ] - u ) + O ( \sqrt { x } )$$ ; confidence 0.498

957. c0222907.png ; $$\theta \leq 1 / 2$$ ; confidence 0.991

958. c0223301.png ; $$a ( r )$$ ; confidence 0.924

959. c02237023.png ; $$N = L . L$$ ; confidence 0.482

960. c02237063.png ; $$Q / Z$$ ; confidence 0.664

961. c02240053.png ; $$( k \times n )$$ ; confidence 1.000

962. c02242028.png ; $$\phi ( x ) = [ ( 1 - x ) ( 1 + x ) ] ^ { 1 / 2 }$$ ; confidence 0.999

963. c02242026.png ; $$\phi ( x ) \equiv 1$$ ; confidence 0.999

964. c02242019.png ; $$\phi ( x ) = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta }$$ ; confidence 0.998

965. c0224501.png ; $$x ( t ) : R \rightarrow R ^ { n }$$ ; confidence 0.947

966. c1102508.png ; $$20$$ ; confidence 0.225

967. c02250014.png ; $$j \leq n$$ ; confidence 0.544

968. c02253039.png ; $$[ \gamma ]$$ ; confidence 1.000

969. c0225705.png ; $$x \in D _ { A }$$ ; confidence 0.542

970. c0225702.png ; $$x _ { n } \in D _ { A }$$ ; confidence 0.553

971. c022660300.png ; $$K ( f )$$ ; confidence 0.998

972. c022660241.png ; $$C = C ( f )$$ ; confidence 0.996

973. c022660281.png ; $$f : D \rightarrow \Omega$$ ; confidence 1.000

974. c02266075.png ; $$\mu ( E ) = \mu _ { 1 } ( E ) = 0$$ ; confidence 0.998

975. c02266091.png ; $$\mu _ { 2 } ( C R ) = 0$$ ; confidence 0.984

976. c022660219.png ; $$F = \{ f ( z ) \}$$ ; confidence 0.999

977. c02269052.png ; $$\Delta = \tilde { A } + \hat { B } - \hat { C }$$ ; confidence 0.152

978. c02270026.png ; $$g : Y \rightarrow Z$$ ; confidence 0.951

979. c11029014.png ; $$Q ( t ) : S ^ { \prime } \rightarrow S ^ { \prime }$$ ; confidence 0.764

980. c022780429.png ; $$\phi ^ { h } ( pt )$$ ; confidence 0.800

981. c022780377.png ; $$1 B S G$$ ; confidence 0.389

982. c02278052.png ; $$N \gg n$$ ; confidence 0.849

983. c02278060.png ; $$B O _ { m } \times B O _ { n } \rightarrow B O _ { m } + n$$ ; confidence 0.775

984. c022780545.png ; $$B P \square ^ { * } ( B P )$$ ; confidence 0.987

985. c022780129.png ; $$\Omega _ { f r } ^ { i }$$ ; confidence 0.443

986. c02278058.png ; $$O ( X ) = \oplus _ { n = - \infty } ^ { + \infty } O ^ { n } ( X )$$ ; confidence 0.863

987. c022780210.png ; $$x _ { i } / ( e ^ { x _ { i } } - 1 )$$ ; confidence 0.947

988. c022780302.png ; $$( S _ { \omega } ^ { c } ( e ) T ) [ M ] \in Z$$ ; confidence 0.570

989. c022780356.png ; $$\Omega$$ ; confidence 0.892

990. c022780445.png ; $$M U ^ { * } ( X )$$ ; confidence 0.986

991. c022780177.png ; $$( n )$$ ; confidence 0.998

992. c022780128.png ; $$\Omega _ { fr } ^ { - i } = \Omega _ { i } ^ { fr } = \pi _ { i + N } ( S ^ { N } )$$ ; confidence 0.922

993. c022780207.png ; $$e ^ { x _ { i } } - 1$$ ; confidence 0.882

994. c022780328.png ; $$im ( \Omega _ { S C } \rightarrow \Omega _ { O } )$$ ; confidence 0.230

995. c022800161.png ; $$\partial N$$ ; confidence 0.677

996. c02286015.png ; $$b _ { i + 1 } \ldots b _ { j }$$ ; confidence 0.553

997. c02289075.png ; $$l _ { i } ( P ) \leq l _ { i } < l _ { i } ( P ) + 1$$ ; confidence 0.413

998. c02292048.png ; $$V _ { 3 }$$ ; confidence 0.998

999. c02292049.png ; $$\operatorname { lm } c _ { 3 } = 0$$ ; confidence 0.496

1000. c0229306.png ; $$\{ x _ { n } > 0 \}$$ ; confidence 0.980

1001. c02293015.png ; $$u ( x ) = w ( x _ { n } ) \operatorname { exp } i ( x _ { 1 } \xi _ { 1 } + \ldots + x _ { n - 1 } \xi _ { n - 1 } )$$ ; confidence 0.744

1002. c02294010.png ; $$M$$ ; confidence 1.000

1003. c023050103.png ; $$\operatorname { cd } _ { p } ( X ) \leq \operatorname { cohcd } ( X ) + 1$$ ; confidence 0.970

1004. c02305060.png ; $$( U ) = n - 1$$ ; confidence 0.999

1005. c02305085.png ; $$cd _ { l } ( Spec A )$$ ; confidence 0.637

1006. c02312031.png ; $$x g = \lambda x$$ ; confidence 0.984

1007. c023140243.png ; $$u \mapsto \rho ( u ) - \operatorname { Tr } ( \text { ad } u ) \in \operatorname { End } _ { K } ( M )$$ ; confidence 0.830

1008. c02311056.png ; $$A ^ { G } = \{ \alpha \in A : g \alpha = \alpha \text { for all } g \in G \}$$ ; confidence 0.750

1009. c023110101.png ; $$Z G$$ ; confidence 0.957

1010. c02315041.png ; $$f : S ^ { m } \rightarrow S ^ { n }$$ ; confidence 0.195

1011. c023150291.png ; $$\pi _ { n } ( E ) = \pi$$ ; confidence 0.997

1012. c02315068.png ; $$\square ^ { 1 } P ^ { i } = P$$ ; confidence 0.776

1013. c023150156.png ; $$i ^ { * } ( \phi ) = 0$$ ; confidence 0.997

1014. c023150259.png ; $$\beta \circ \beta = 0$$ ; confidence 0.978

1015. c023150187.png ; $$\alpha : H ^ { n } ( : Z ) \rightarrow H ^ { n + 3 } ( : Z _ { 2 } )$$ ; confidence 0.262

1016. c0231806.png ; $$\pi ^ { 1 } ( X )$$ ; confidence 0.999

1017. c1301504.png ; $$C ^ { \infty } ( D ( \Omega ) )$$ ; confidence 0.935

1018. c023250173.png ; $$\beta _ { 0 }$$ ; confidence 0.851

1019. c023250187.png ; $$[ \sigma ] = [ \alpha _ { 1 } ^ { \alpha _ { 1 } } \ldots a _ { n } ^ { \alpha _ { n } } ]$$ ; confidence 0.729

1020. c0232708.png ; $$\overline { \overline { A } } = \vec { A }$$ ; confidence 0.649

1021. c02338015.png ; $$\phi \in \Phi$$ ; confidence 0.995

1022. c023380197.png ; $$F \subset U$$ ; confidence 0.980

1023. c02338044.png ; $$x 0$$ ; confidence 0.689

1024. c023380172.png ; $$C ( S ^ { n } )$$ ; confidence 0.498

1025. c02338039.png ; $$f \in L _ { 1 } ( G )$$ ; confidence 0.969

1026. c023530133.png ; $$\Pi ^ { N } \tau$$ ; confidence 0.183

1027. c023550235.png ; $$\beta Y \backslash Y$$ ; confidence 0.989

1028. c023550175.png ; $$X = 0$$ ; confidence 0.554

1029. c023550172.png ; $$\overline { f } : \mu X \rightarrow \mu Y$$ ; confidence 0.995

1030. c0236203.png ; $$| \alpha ( z ) |$$ ; confidence 0.916

1031. c02389043.png ; $$\{ d F _ { i } \} _ { 1 } ^ { m }$$ ; confidence 0.930

1032. c024100277.png ; $$\partial _ { r }$$ ; confidence 0.315

1033. c024100241.png ; $$f : K \rightarrow K$$ ; confidence 0.997

1034. c02411026.png ; $$d = ( d _ { n } )$$ ; confidence 0.939

1035. c02412032.png ; $$\pi J ( s ) = \operatorname { sin } \pi s \int _ { r } ^ { \infty } \delta ^ { s - 1 } f ( - \delta ) d \delta + \frac { r ^ { s } } { 2 } \int _ { - \pi } ^ { \pi } e ^ { i \theta s } f ( r e ^ { i \theta } ) d \theta$$ ; confidence 0.764

1036. c02412084.png ; $$\int _ { - \infty } ^ { \infty } ( P ( x ) / Q ( x ) ) d x$$ ; confidence 0.988

1037. c02412065.png ; $$J ( s ) = \operatorname { lim } J _ { N } ( s ) = 2 ( 2 \pi ) ^ { s - 1 } \zeta ( 1 - s ) \operatorname { sin } \frac { \pi s } { 2 }$$ ; confidence 0.964

1038. c02412030.png ; $$f ( z ) = 1 / ( e ^ { z } - 1 )$$ ; confidence 0.999

1039. c02416048.png ; $$O _ { A } = O _ { D } / J | _ { A }$$ ; confidence 0.748

1040. c1103302.png ; $$DT ( S )$$ ; confidence 0.583

1041. c1103309.png ; $$p _ { i } \in S$$ ; confidence 0.931

1042. c0244507.png ; $$U ( A ) \subset Y$$ ; confidence 0.995

1043. c0245107.png ; $$P ( A | B ) = \frac { P ( A \cap B ) } { P ( B ) }$$ ; confidence 0.724

1044. c02452065.png ; $$x _ { 0 } \in V ^ { n }$$ ; confidence 0.974

1045. c0245407.png ; $$\dot { \phi } = \omega$$ ; confidence 0.997

1046. c02467021.png ; $$A _ { 3 }$$ ; confidence 0.999

1047. c02473061.png ; $$\Omega ^ { \prime } = \| \Omega _ { \alpha } ^ { \prime \beta } \|$$ ; confidence 0.913

1048. c024730113.png ; $$P _ { i j } = \frac { 1 } { n - 2 } R _ { j } - \delta _ { j } ^ { i } \frac { R } { 2 ( n - 1 ) ( n - 2 ) }$$ ; confidence 0.947

1049. c120180209.png ; $$\varepsilon$$ ; confidence 0.504

1050. c120180501.png ; $$g \in S ^ { 2 } \varepsilon$$ ; confidence 0.445

1051. c120180506.png ; $$N = N \times \{ 1 \} \times \{ 0 \}$$ ; confidence 1.000

1052. c120180420.png ; $$C ^ { \infty } ( \tilde { N } )$$ ; confidence 0.330

1053. c120180152.png ; $$\gamma$$ ; confidence 0.764

1054. c120180182.png ; $$\tau _ { 2 } \Theta = - \Theta$$ ; confidence 0.618

1055. c02478054.png ; $$f ^ { \prime } ( z _ { 0 } )$$ ; confidence 0.967

1056. c024780240.png ; $$0 < \beta \leq 2 \pi$$ ; confidence 0.997

1057. c024780261.png ; $$( x ^ { 2 } / a ^ { 2 } ) + ( y ^ { 2 } / b ^ { 2 } ) = 1$$ ; confidence 0.891

1058. c024780245.png ; $$\operatorname { arg } z = c$$ ; confidence 0.995

1059. c02479065.png ; $$f ( \zeta )$$ ; confidence 0.995

1060. c02480058.png ; $$D \subset D _ { 1 }$$ ; confidence 0.990

1061. c02482046.png ; $$\leq ( n + 1 ) ( n + 2 ) / 2$$ ; confidence 0.994

1062. c024850206.png ; $$f ^ { \prime } ( x _ { 1 } ) \equiv 0$$ ; confidence 0.424

1063. c02485065.png ; $$A . B$$ ; confidence 0.944

1064. c024850182.png ; $$m = p _ { 1 } ^ { \alpha _ { 1 } } \ldots p _ { s } ^ { \alpha _ { S } }$$ ; confidence 0.462

1065. c02489056.png ; $$\mu ( d )$$ ; confidence 1.000

1066. c0248905.png ; $$\alpha ( x ) - b ( x ) = f ( x ) g ( x ) + p h ( x )$$ ; confidence 0.849

1067. c02490030.png ; $$q = p ^ { r }$$ ; confidence 0.892

1068. c02499018.png ; $$\int _ { - \pi } ^ { \pi } f ( x ) d x = 0$$ ; confidence 0.988

1069. c02502055.png ; $$r \uparrow 1$$ ; confidence 0.659

1070. c13019046.png ; $$X = R ^ { n }$$ ; confidence 0.975

1071. c0251306.png ; $$f _ { i } : D ^ { n } \rightarrow M _ { i }$$ ; confidence 0.449

1072. c02513010.png ; $$f _ { 2 } \circ f _ { 1 } ^ { - 1 }$$ ; confidence 0.997

1073. c025140162.png ; $$X \in V ( B )$$ ; confidence 0.996

1074. c025140160.png ; $$E = T B$$ ; confidence 0.999

1075. c025140196.png ; $$X : B \rightarrow T B$$ ; confidence 0.984

1076. c02515011.png ; $$Y \in T _ { y } ( P )$$ ; confidence 0.991

1077. c02517037.png ; $$\omega ^ { k } = d x ^ { k }$$ ; confidence 0.878

1078. c02518080.png ; $$f _ { x } ^ { - 1 }$$ ; confidence 0.443

1079. c02518044.png ; $$X _ { X } \in T _ { X } ( M )$$ ; confidence 0.414

1080. c02518096.png ; $$T _ { s ( x ) } ( E ) = \Delta _ { s ( x ) } \oplus T _ { s ( x ) } ( F _ { x } )$$ ; confidence 0.402

1081. c12019044.png ; $$T ( M )$$ ; confidence 0.884

1082. c025350104.png ; $$B \rightarrow H$$ ; confidence 0.991

1083. c025350101.png ; $$E _ { 1 } \rightarrow E _ { 1 }$$ ; confidence 0.970

1084. c025420100.png ; $$\neg \neg \exists x R \supset \exists x R$$ ; confidence 0.760

1085. c0254401.png ; $$\int _ { \alpha } ^ { b } p ( t ) \operatorname { ln } | t - t _ { 0 } | d t = f ( t _ { 0 } ) + C$$ ; confidence 0.687

1086. c02544025.png ; $$D ^ { + } = \cup _ { k = 1 } ^ { m } D _ { k }$$ ; confidence 0.835

1087. c02544057.png ; $$\forall x \in D _ { k } : \mu _ { k } \Delta u + ( \lambda _ { k } + \mu _ { k } ) \text { grad div } u = 0$$ ; confidence 0.915

1088. c02545035.png ; $$T ^ { * }$$ ; confidence 0.527

1089. c02547051.png ; $$\alpha \wedge ( d \alpha ) ^ { n }$$ ; confidence 0.989

1090. c02547063.png ; $$\alpha = d t + \sum p _ { i } d q _ { i }$$ ; confidence 0.858

1091. c02547031.png ; $$\alpha \wedge ( d \alpha ) ^ { s } ( x ) \neq 0$$ ; confidence 0.978

1092. c12020014.png ; $$W ^ { m + 1 }$$ ; confidence 0.972

1093. c120210117.png ; $$\Lambda _ { n } ( \theta ) - h ^ { \prime } \Delta _ { n } ( \theta ) \rightarrow - \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h$$ ; confidence 0.843

1094. c02560048.png ; $$u ^ { k } = u ^ { k - 1 } - \Delta \lambda _ { k } \phi ^ { \prime } ( u ^ { k - 1 } ) ^ { - 1 } \phi ( u ^ { 0 } )$$ ; confidence 0.687

1095. c02560042.png ; $$\frac { d u } { d \lambda } = - \phi ^ { \prime } ( u ) ^ { - 1 } \phi ( u ^ { 0 } )$$ ; confidence 0.984

1096. c0256402.png ; $$\{ \alpha _ { n } \} _ { n = 0 } ^ { \omega } \quad \text { and } \quad \{ b _ { n } \} _ { n = 1 } ^ { \omega }$$ ; confidence 0.788

1097. c02565066.png ; $$D \subset R$$ ; confidence 0.995

1098. c02570021.png ; $$I \rightarrow \cup _ { i \in l } J _ { i }$$ ; confidence 0.225

1099. c02571015.png ; $$f ^ { - 1 } ( F )$$ ; confidence 0.999

1100. c0257107.png ; $$U = U ( x _ { 0 } )$$ ; confidence 0.991

1101. c02572034.png ; $$y _ { 0 } = A _ { x }$$ ; confidence 0.344

1102. c02572035.png ; $$B \circ A$$ ; confidence 0.963

1103. c02572060.png ; $$x - y \in U$$ ; confidence 0.997

1104. c02583071.png ; $$i B _ { 0 }$$ ; confidence 0.998

1105. c02589013.png ; $$( T ^ { * } ( t ) = T ( t ) )$$ ; confidence 0.991

1106. c02592019.png ; $$631$$ ; confidence 0.381

1107. c02597042.png ; $$e ^ { i } ( e _ { j } ) = \delta _ { j } ^ { s }$$ ; confidence 0.182

1108. c026010134.png ; $$\mathfrak { A } _ { E }$$ ; confidence 0.121

1109. c026010308.png ; $$v _ { ( E ) } = v$$ ; confidence 0.188

1110. c026010417.png ; $$\rho < 1$$ ; confidence 0.998

1111. c026010468.png ; $$P s$$ ; confidence 0.529

1112. c026010588.png ; $$J ( \alpha )$$ ; confidence 1.000

1113. c02601042.png ; $$N = N _ { 0 }$$ ; confidence 0.799

1114. c026010556.png ; $$d y _ { t } = h ( x _ { t } ) d t + d w _ { t } ^ { 0 }$$ ; confidence 0.993

1115. c02604071.png ; $$A _ { n } x _ { n } = y _ { n }$$ ; confidence 0.869

1116. c02604027.png ; $$P Q$$ ; confidence 0.981

1117. c02604025.png ; $$A _ { n } : E _ { n } \rightarrow F _ { n }$$ ; confidence 0.561

1118. c02623020.png ; $$c _ { 1 } = f ^ { \prime } ( 0 ) = 1$$ ; confidence 0.991

1119. c02623013.png ; $$\int _ { - \pi } ^ { \pi } d \mu ( \theta ) = 1$$ ; confidence 0.969

1120. c0262508.png ; $$( f _ { 1 } + f _ { 2 } ) ( x ) = f _ { 1 } ( x ) + f _ { 2 } ( x )$$ ; confidence 0.957

1121. c110400102.png ; $$M ^ { \perp } = \{ x \in G$$ ; confidence 0.985

1122. c026390117.png ; $$r _ { u } \times r _ { v } \neq 0$$ ; confidence 0.643

1123. c02643058.png ; $$F [ f ^ { * } g ] = \sqrt { 2 \pi } F [ f ] F [ g ]$$ ; confidence 0.818

1124. c02643025.png ; $$F [ f ] = \frac { F [ g ] } { 1 - \sqrt { 2 \pi } F [ K ] }$$ ; confidence 0.997

1125. c02645091.png ; $$X _ { 1 }$$ ; confidence 0.237

1126. c02645033.png ; $$\sum _ { K \in \mathscr { K } } \lambda _ { K } \chi _ { K } ( i ) = \chi _ { I } ( i ) \quad \text { for all } i \in I$$ ; confidence 0.223

1127. c02646046.png ; $$\{ x _ { k } \}$$ ; confidence 0.963

1128. c02646028.png ; $$x _ { k + 1 } = x _ { k } - \alpha _ { k } p _ { k }$$ ; confidence 0.819

1129. c0264605.png ; $$\alpha _ { i } < b _ { i }$$ ; confidence 0.878

1130. c02646017.png ; $$i _ { k } = k - n [ k / n ] + 1$$ ; confidence 0.964

1131. c0264808.png ; $$\alpha _ { i } : A _ { i } \rightarrow X$$ ; confidence 0.918

1132. c02648027.png ; $$\pi _ { i } : S \rightarrow A$$ ; confidence 0.579

1133. c02648015.png ; $$\prod _ { i \in l } ^ { * } A _ { i }$$ ; confidence 0.474

1134. c11041079.png ; $$A ^ { * } B$$ ; confidence 0.976

1135. c11041043.png ; $$C X Y$$ ; confidence 0.226

1136. c11041077.png ; $$B _ { 1 }$$ ; confidence 0.988

1137. c11041081.png ; $$\{ X _ { t } : t \in T \}$$ ; confidence 0.835

1138. c11043040.png ; $$m ( S ) ^ { 2 } > ( 2 k + 1 ) ( n - k ) + \frac { k ( k + 1 ) } { 2 } - \frac { 2 ^ { k } n ^ { 2 k + 1 } } { m ( 2 k ) ! \left( \begin{array} { l } { n } \\ { k } \end{array} \right) }$$ ; confidence 0.753

1139. c0265803.png ; $$\eta _ { Y | X } ^ { 2 } = 1 - E [ \frac { D ( Y | X ) } { D Y } ]$$ ; confidence 0.635

1140. c026600121.png ; $$\operatorname { lm } z ( x ) = 1$$ ; confidence 0.908

1141. c11044082.png ; $$C ( n ) = 0$$ ; confidence 1.000

1142. c02683020.png ; $$\sum _ { 2 } = \sum _ { \nu \in \langle \nu \rangle } U _ { 2 } ( n - D \nu )$$ ; confidence 0.960

1143. c02687095.png ; $$D U$$ ; confidence 0.990

1144. c026870129.png ; $$( \nabla _ { X } U ) _ { p }$$ ; confidence 0.933

1145. c026870106.png ; $$e _ { i } = \partial / \partial x ^ { i } | _ { p }$$ ; confidence 0.599

1146. c02691013.png ; $$\Gamma ( C ) = V$$ ; confidence 0.882

1147. c02697049.png ; $$| w | < 1 / 16$$ ; confidence 0.877

1148. c13025017.png ; $$Y _ { j } = i$$ ; confidence 0.850

1149. c02698053.png ; $$E _ { 8 }$$ ; confidence 0.860

1150. c02700011.png ; $$\frac { F _ { n } ( - x ) } { \Phi ( - x ) } = \operatorname { exp } \{ - \frac { x ^ { 3 } } { \sqrt { n } } \lambda ( - \frac { x } { \sqrt { n } } ) \} [ 1 + O ( \frac { x } { \sqrt { n } } ) ]$$ ; confidence 0.444

1151. c0270004.png ; $$E _ { e } ^ { t X } 1$$ ; confidence 0.078

1152. c12026044.png ; $$1 \leq n \leq N$$ ; confidence 0.763

1153. c12026032.png ; $$V _ { 0 } ^ { n } = V _ { j } ^ { n } = 0$$ ; confidence 0.626

1154. c1104902.png ; $$\sqrt { 2 }$$ ; confidence 0.191

1155. c1202706.png ; $$t \mapsto \gamma ( t ) = \operatorname { exp } _ { p } ( t v )$$ ; confidence 0.936

1156. c1202805.png ; $$X *$$ ; confidence 0.383

1157. c1202808.png ; $$F T op$$ ; confidence 0.332

1158. c02717082.png ; $$q = 59$$ ; confidence 0.998

1159. c027180124.png ; $$7$$ ; confidence 0.254

1160. c027180172.png ; $$M _ { k } = C _ { k }$$ ; confidence 0.997

1161. c027180181.png ; $$E _ { x } ( s )$$ ; confidence 0.467

1162. c02718064.png ; $$H ( K )$$ ; confidence 0.395

1163. c02721080.png ; $$N = \mu / ( n + 1 )$$ ; confidence 0.992

1164. c02721040.png ; $$P ( x ) = \sum _ { j = 1 } ^ { \mu } L j ( x ) f ( x ^ { ( j ) } )$$ ; confidence 0.718

1165. c02724015.png ; $$x ^ { 3 } + y ^ { 3 } - 3 a x y = 0$$ ; confidence 0.887

1166. c02727013.png ; $$j = \frac { 1728 g _ { 2 } ^ { 3 } } { g _ { 2 } ^ { 3 } - 27 g _ { 3 } ^ { 2 } }$$ ; confidence 0.284

1167. c12030053.png ; $$\sum _ { i = 1 } ^ { n } S _ { i } S _ { i } ^ { * } < I$$ ; confidence 0.253

1168. c12030069.png ; $$n = \infty$$ ; confidence 1.000

1169. c12030087.png ; $$T _ { 1 } ( H )$$ ; confidence 0.995

1170. c12030042.png ; $$u : H \rightarrow H ^ { \prime }$$ ; confidence 0.987

1171. c12031028.png ; $$| \alpha | = \sum _ { l = 1 } ^ { d ^ { 2 } } \alpha _ { l }$$ ; confidence 0.447

1172. c027320130.png ; $$C = R _ { k m m } ^ { i } R _ { k } ^ { k k m }$$ ; confidence 0.081

1173. c027480106.png ; $$\Sigma _ { S }$$ ; confidence 0.760

1174. c027480102.png ; $$( \sigma ^ { t } f ) ( t ^ { \prime } ) = f ( t + t ^ { \prime } )$$ ; confidence 1.000

1175. c11050032.png ; $$H C ^ { 0 } ( A )$$ ; confidence 0.945

1176. c02757085.png ; $$z$$ ; confidence 0.525

1177. c02760032.png ; $$( u = const )$$ ; confidence 0.538

1178. c0276008.png ; $$- \infty < z < \infty$$ ; confidence 0.577

1179. c0276205.png ; $$F \in L ^ { * }$$ ; confidence 0.961

1180. d03006013.png ; $$+ \frac { 1 } { 2 \alpha } \int _ { x - w t } ^ { x + c t } \psi ( \xi ) d \xi + \frac { 1 } { 2 } [ \phi ( x + a t ) + \phi ( x - a t ) ]$$ ; confidence 0.187

1181. d03002056.png ; $$D x$$ ; confidence 0.713

1182. d030020144.png ; $$\operatorname { gr } D _ { X }$$ ; confidence 0.395

1183. d03002094.png ; $$f ^ { * } N = O _ { X } \otimes _ { f } - 1 _ { O _ { Y } } f ^ { - 1 } N$$ ; confidence 0.906

1184. d12002092.png ; $$V _ { V }$$ ; confidence 0.082

1185. d120020131.png ; $$= g ( \overline { u } _ { 1 } ) - \overline { q } = g ( \overline { u } _ { 1 } ) - v _ { M }$$ ; confidence 0.711

1186. d120020174.png ; $$( US )$$ ; confidence 0.980

1187. d12002050.png ; $$( L )$$ ; confidence 0.982

1188. d12002046.png ; $$= \operatorname { min } _ { k \in P } c ^ { T } x ^ { ( k ) } + u _ { 1 } ^ { T } ( A _ { 1 } x ^ { ( k ) } - b _ { 1 } )$$ ; confidence 0.488

1189. d13002017.png ; $$0 \leq k < 1$$ ; confidence 0.997

1190. d03021016.png ; $$2$$ ; confidence 0.110

1191. d11002099.png ; $$f : S \rightarrow C$$ ; confidence 0.674

1192. d1100407.png ; $$S _ { p } ^ { n + p } ( c ) = \{ x \in R _ { p } ^ { n + p + 1 }$$ ; confidence 0.809

1193. d03025016.png ; $$u _ { n } + 1 - k$$ ; confidence 0.616

1194. d0302808.png ; $$\tau _ { n } ( t ) = \frac { 1 } { 2 \pi } \frac { 2 ^ { 2 n } ( n ! ) ^ { 2 } } { ( 2 n ) ! } \operatorname { cos } ^ { 2 n } \frac { t } { 2 }$$ ; confidence 0.804

1195. d11008067.png ; $$= d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) \cdot e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . f ( w ^ { H _ { i } } | v ^ { H _ { i } } )$$ ; confidence 0.435

1196. d11009089.png ; $$D \subseteq g H g ^ { - 1 }$$ ; confidence 0.970

1197. d03062019.png ; $$\alpha \in C \cup \{ \infty \}$$ ; confidence 0.176

1198. d03070037.png ; $$\pi ^ { \prime } : X ^ { \prime } \rightarrow S ^ { \prime }$$ ; confidence 0.952

1199. d030700139.png ; $$\kappa ^ { \prime } \cong \kappa \otimes O \Lambda$$ ; confidence 0.541

1200. d0307909.png ; $$\lambda ^ { m }$$ ; confidence 0.955

1201. d03087032.png ; $$\pi ( \chi )$$ ; confidence 0.978

1202. d03087020.png ; $$C ^ { \infty } ( G )$$ ; confidence 0.980

1203. d11011084.png ; $$L \cup O$$ ; confidence 0.130

1204. d11011051.png ; $$M _ { 1 } = H \cap _ { k \tau _ { S } } H ^ { \prime }$$ ; confidence 0.307

1205. d13005022.png ; $$m - 2 r$$ ; confidence 1.000

1206. d130060103.png ; $$Z \in X$$ ; confidence 0.820

1207. d13006091.png ; $$m _ { B } ( A ) = 0$$ ; confidence 0.968

1208. d13006089.png ; $$m B$$ ; confidence 0.535

1209. d03101088.png ; $$S ^ { 4 k - 1 }$$ ; confidence 0.950

1210. d13008069.png ; $$H = C ^ { n }$$ ; confidence 0.847

1211. d130080108.png ; $$F \in Hol ( D )$$ ; confidence 0.805

1212. d0311001.png ; $$\zeta ( s ) = \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n ^ { s } }$$ ; confidence 0.995

1213. d03125086.png ; $$\Omega _ { X / Y } ^ { 1 }$$ ; confidence 0.919

1214. d03125044.png ; $$\phi : A \rightarrow A$$ ; confidence 0.991

1215. d03128063.png ; $$s ^ { \prime } : Y ^ { \prime } \rightarrow X ^ { \prime }$$ ; confidence 0.953

1216. d031280173.png ; $$R ^ { i } F = H ^ { i } \circ R ^ { * } F$$ ; confidence 0.941

1217. d03128077.png ; $$f t = g t$$ ; confidence 0.997

1218. d031280129.png ; $$f : X ^ { \cdot } \rightarrow Y$$ ; confidence 0.209

1219. d031380303.png ; $$\Pi \stackrel { D } { 3 } = F _ { \sigma \delta }$$ ; confidence 0.232

1220. d031380332.png ; $$E = N$$ ; confidence 0.995

1221. d031380384.png ; $$\sum _ { \mathfrak { D } _ { 1 } ^ { 1 } } ( E \times N ^ { N } )$$ ; confidence 0.290

1222. d031380296.png ; $$\sum _ { \sim } D _ { n + 1 } ^ { 0 }$$ ; confidence 0.204

1223. d0314205.png ; $$k [ ( T _ { i j } ) _ { 1 \leq i \leq d } ]$$ ; confidence 0.679

1224. d0314706.png ; $$| \hat { b } _ { n } | = 1$$ ; confidence 0.209

1225. d03154015.png ; $$G r$$ ; confidence 0.809

1226. d13009046.png ; $$1 \leq u \leq \operatorname { exp } ( \operatorname { log } ( 3 / 5 ) - \epsilon _ { y } )$$ ; confidence 0.512

1227. d13009024.png ; $$1 \leq u \leq 2$$ ; confidence 0.976

1228. d13009051.png ; $$u > 1$$ ; confidence 0.987

1229. d03168056.png ; $$q _ { 2 } \neq q _ { 1 }$$ ; confidence 0.828

1230. d0316809.png ; $$\Delta ^ { m } y _ { n } = \sum _ { k = 0 } ^ { m } ( - 1 ) ^ { m - k } \left( \begin{array} { c } { m } \\ { k } \end{array} \right) y _ { n + k }$$ ; confidence 0.786

1231. d03173088.png ; $$| u - v | \leq \operatorname { inf } _ { w ^ { \prime } \in K } | u - w |$$ ; confidence 0.210

1232. d03175051.png ; $$Z _ { h }$$ ; confidence 0.217

1233. d03175013.png ; $$\overline { G } = G + \Gamma$$ ; confidence 0.752

1234. d03177042.png ; $$t = t _ { 0 } = x _ { 0 } ( 0 )$$ ; confidence 0.983

1235. d031830278.png ; $$u \leq \theta u$$ ; confidence 0.794

1236. d031830344.png ; $$\operatorname { rank } ( A _ { i } ) = \operatorname { rank } ( B _ { i } )$$ ; confidence 0.983

1237. d031830290.png ; $$A = \sum _ { i = 0 } ^ { d } A _ { i } u _ { A } ^ { i }$$ ; confidence 0.523

1238. d031830239.png ; $$G ( G / F _ { 1 } ) = G _ { 1 }$$ ; confidence 0.998

1239. d031830269.png ; $$\operatorname { ord } ( \theta ) = \sum e$$ ; confidence 0.833

1240. d031830152.png ; $$G \neq 0$$ ; confidence 0.999

1241. d031830116.png ; $$\{ A \}$$ ; confidence 0.999

1242. d031830267.png ; $$\theta = \Pi _ { i } \partial _ { i } ^ { e _ { i } ^ { e _ { i } } }$$ ; confidence 0.142

1243. d03185095.png ; $$x \neq \pm 1$$ ; confidence 0.956

1244. d03185088.png ; $$( \operatorname { sin } x ) ^ { \prime } = \operatorname { cos } x$$ ; confidence 1.000

1245. d031850109.png ; $$( \frac { u } { v } ) ^ { \prime } = \frac { u ^ { \prime } v - u v ^ { \prime } } { v ^ { 2 } }$$ ; confidence 0.958

1246. d03185094.png ; $$( \operatorname { arccos } x ) ^ { \prime } = - 1 / \sqrt { 1 - x ^ { 2 } }$$ ; confidence 0.996

1247. d03189028.png ; $$\Delta \rightarrow 0$$ ; confidence 0.981

1248. d03191048.png ; $$x _ { 2 } ( t )$$ ; confidence 0.998

1249. d0319107.png ; $$\dot { x } = f ( t )$$ ; confidence 0.623

1250. d03191051.png ; $$x _ { 1 } ( t _ { 0 } ) = x _ { 2 } ( t _ { 0 } )$$ ; confidence 0.998

1251. d03192079.png ; $$0 < l < n$$ ; confidence 0.998

1252. d031930232.png ; $$= \Phi ( z ) \operatorname { exp } \{ \frac { z - t } { \pi } \int \int _ { S } \frac { A ( \zeta ) w ( \zeta ) + B ( \zeta ) \overline { w ( \zeta ) } } { ( \zeta - z ) ( \zeta - t ) w } d \xi d \eta \}$$ ; confidence 0.918

1253. d03195029.png ; $$W _ { 2 } ^ { p }$$ ; confidence 0.986

1254. d03195033.png ; $$L u = \operatorname { div } ( p ( x ) \operatorname { grad } u ) + q ( x ) u$$ ; confidence 0.840

1255. d031990131.png ; $$R _ { L } = H ( V )$$ ; confidence 0.569

1256. d03201064.png ; $$( x - x _ { 0 } ) / ( t - t _ { 0 } ) = u _ { 0 }$$ ; confidence 0.980

1257. d03201093.png ; $$n - m$$ ; confidence 0.998

1258. d03201062.png ; $$\partial x / u = \partial t / 1$$ ; confidence 0.967

1259. d03206019.png ; $$\sum _ { n = 1 } ^ { \infty } | x _ { n } ( t ) |$$ ; confidence 0.933

1260. d03206068.png ; $$| x ( t ( t ) ) \| \leq \rho$$ ; confidence 0.117

1261. d032100109.png ; $$\dot { x } ( t ) = A x ( t - h ) - D x ( t )$$ ; confidence 0.986

1262. d03207031.png ; $$2 \pi \alpha$$ ; confidence 0.461

1263. d03211024.png ; $$z = \phi _ { i }$$ ; confidence 0.976

1264. d032130352.png ; $$s ^ { \prime } ( \Omega ^ { r } ( X ) )$$ ; confidence 0.911

1265. d032130227.png ; $$\int _ { S } \omega$$ ; confidence 0.561

1266. d032130311.png ; $$\omega \in \Omega ^ { d } [ X ]$$ ; confidence 0.948

1267. d032150132.png ; $$\hat { V }$$ ; confidence 0.359

1268. d03224071.png ; $$d \omega = d \square ^ { * } \omega = 0$$ ; confidence 0.954

1269. d03225022.png ; $$\partial M$$ ; confidence 0.831

1270. d03232015.png ; $$u _ { R } ^ { k } ( x ) = \sum _ { i = 1 } ^ { n } u _ { i } a _ { i } ^ { k } ( x )$$ ; confidence 0.362

1271. d03232034.png ; $$u ( x _ { i } )$$ ; confidence 0.997

1272. d03233032.png ; $$r \in F$$ ; confidence 0.671

1273. d03233040.png ; $$b _ { 0 }$$ ; confidence 0.363

1274. d03233041.png ; $$r : h \rightarrow f ( x _ { 0 } + h ) - f ( x _ { 0 } ) - h _ { 0 } ( h )$$ ; confidence 0.388

1275. d03236035.png ; $$\frac { \partial u } { \partial t } + u \frac { \partial u } { \partial x } = D \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } }$$ ; confidence 0.994

1276. d032450444.png ; $$X _ { 1 } \cup X _ { 2 } = X$$ ; confidence 0.917

1277. d032450146.png ; $$\operatorname { dim } X \times Y < \operatorname { dim } X + \operatorname { dim } Y$$ ; confidence 0.994

1278. d032450371.png ; $$\{ fd ( M )$$ ; confidence 0.531

1279. d032450404.png ; $$[ V ] = \operatorname { limsup } ( \operatorname { log } d _ { V } ( n ) \operatorname { log } ( n ) ^ { - 1 } )$$ ; confidence 0.618

1280. d032450327.png ; $$< \operatorname { Gdim } L < 1 +$$ ; confidence 0.485

1281. d03248013.png ; $$d ( I ^ { n } ) = n$$ ; confidence 0.754

1282. d03249024.png ; $$s \in Z$$ ; confidence 0.983

1283. d03249026.png ; $$G$$ ; confidence 0.797

1284. d032600176.png ; $$w _ { N } ( \alpha ) \geq n$$ ; confidence 0.879

1285. d03261012.png ; $$y = y _ { 0 } - a n$$ ; confidence 0.836

1286. d0326107.png ; $$a x + b y = 1$$ ; confidence 0.602

1287. d1301309.png ; $$z = r \operatorname { cos } \theta$$ ; confidence 0.866

1288. d032890165.png ; $$\operatorname { li } x / \phi ( d )$$ ; confidence 0.594

1289. d03289066.png ; $$s = - 2 \nu - \delta$$ ; confidence 0.945

1290. d1201904.png ; $$C _ { 0 } ^ { \infty } ( \Omega ) \subset L _ { 2 } ( \Omega )$$ ; confidence 0.992

1291. d12018028.png ; $$H ^ { p } ( d \theta / 2 \pi )$$ ; confidence 0.994

1292. d12018084.png ; $$C ( G )$$ ; confidence 1.000

1293. d13017013.png ; $$0 < \lambda _ { 1 } ( \Omega ) \leq \lambda _ { 2 } ( \Omega ) \leq$$ ; confidence 0.992

1294. d03292042.png ; $$\sigma > h$$ ; confidence 0.998

1295. d03292035.png ; $$s = 0$$ ; confidence 0.992

1296. d11022035.png ; $$L y = g$$ ; confidence 0.990

1297. d11023041.png ; $$K = \overline { K } \cap L _ { m } ( G )$$ ; confidence 0.866

1298. d03311036.png ; $$| \{ Z \} _ { n } | \rightarrow \infty$$ ; confidence 0.988

1299. d03316011.png ; $$\sigma _ { i } ^ { z }$$ ; confidence 0.702

1300. d03318044.png ; $$e ( B / A ) f ( B / A ) = n$$ ; confidence 0.996

1301. d03318055.png ; $$f ( B / A ) = 1$$ ; confidence 0.999

1302. d03319041.png ; $$t _ { 8 } + 1 / 2 = t _ { n } + \tau / 2$$ ; confidence 0.248

1303. d03321058.png ; $$R _ { 2 } : x ^ { \prime } \Sigma ^ { - 1 } ( \mu ^ { ( 1 ) } - \mu ^ { ( 2 ) } ) +$$ ; confidence 0.981

1304. d03328018.png ; $$x d y$$ ; confidence 0.999

1305. d033340103.png ; $$\gamma$$ ; confidence 0.589

1306. d03334050.png ; $$c * x = \frac { 1 } { I J } \sum _ { i j } c _ { j } = \frac { 1 } { I } \sum _ { i } c _ { i } x = \frac { 1 } { J } \sum _ { j } c * j$$ ; confidence 0.068

1307. d033340195.png ; $$\lambda _ { 3 } = K \sum _ { i j } \frac { \delta _ { i j } ^ { 2 } } { \sigma ^ { 2 } }$$ ; confidence 0.991

1308. d12023063.png ; $$R = \sum _ { i = 0 } ^ { n - 1 } Z ^ { i } G J G ^ { * } Z ^ { * i } =$$ ; confidence 0.906

1309. d120230125.png ; $$T _ { 1 } T _ { 2 } ^ { - 1 } T _ { 3 }$$ ; confidence 0.997

1310. d12023076.png ; $$Z ^ { * }$$ ; confidence 0.508

1311. d12023093.png ; $$| f _ { i } | < 1$$ ; confidence 0.997

1312. d12023095.png ; $$R - F R F ^ { * } = G J G ^ { * }$$ ; confidence 0.996

1313. d03342015.png ; $$\sigma _ { k }$$ ; confidence 0.198

1314. d03343022.png ; $$x \in D _ { B }$$ ; confidence 0.620

1315. d03346020.png ; $$| w - \beta _ { 0 } | = | \zeta _ { 0 } |$$ ; confidence 0.997

1316. d033460124.png ; $$| F _ { 0 } ^ { \prime } ( \zeta _ { 0 } ) | \leq | F ^ { \prime } ( \zeta _ { 0 } ) | \leq | F _ { \pi / 2 } ^ { \prime } ( \zeta _ { 0 } ) |$$ ; confidence 0.854

1317. d03346022.png ; $$\operatorname { ln } F ^ { \prime } ( \zeta _ { 0 } ) | \leq - \operatorname { ln } ( 1 - \frac { 1 } { | \zeta _ { 0 } | ^ { 2 } } )$$ ; confidence 0.488

1318. d033530372.png ; $$d _ { n } \ll p _ { n } ^ { \theta }$$ ; confidence 0.957

1319. d03353095.png ; $$\psi ( x ) = x - \sum _ { | \gamma | \leq T } \frac { x ^ { \rho } } { \rho } + O ( \frac { X } { T } \operatorname { log } ^ { 2 } x T + \operatorname { log } 2 x )$$ ; confidence 0.429

1320. d03353048.png ; $$\pi ( y ) - \operatorname { li } y > - M y \operatorname { log } ^ { - m } y$$ ; confidence 0.899

1321. d033530133.png ; $$\zeta ( \sigma + i t ) \neq 0$$ ; confidence 0.991

1322. d0335708.png ; $$\sum _ { i \in I } \prod _ { j \in J ( i ) } \alpha _ { i j } = \prod _ { \phi \in \Phi } \sum _ { i \in I } \alpha _ { i \phi ( i ) }$$ ; confidence 0.170

1323. d0335707.png ; $$\prod _ { i \in I } \sum _ { j \in J ( i ) } \alpha _ { i j } = \sum _ { \phi \in \Phi } \prod _ { i \in I } \alpha _ { i \phi ( i ) }$$ ; confidence 0.076

1324. d0335705.png ; $$\alpha \sum _ { i \in I } b _ { i } = \sum _ { i \in I } a b _ { i }$$ ; confidence 0.661

1325. d13018035.png ; $$\| \hat { f } \| = \| f \| _ { 1 }$$ ; confidence 0.870

1326. d13018075.png ; $$A ( \vec { G } )$$ ; confidence 0.484

1327. d13018088.png ; $$\operatorname { lim } _ { n \rightarrow \infty } f g _ { n } = f$$ ; confidence 0.784

1328. d03363020.png ; $$\operatorname { lim } _ { x \rightarrow \infty } e ^ { - x } \sum _ { n = 0 } ^ { \infty } \frac { s _ { n } x ^ { n } } { n ! }$$ ; confidence 0.659

1329. d03368022.png ; $$[ A : F ] = [ L : F ] ^ { 2 }$$ ; confidence 0.997

1330. d03372075.png ; $$\sigma > 1 / 2$$ ; confidence 0.999

1331. d03372050.png ; $$\gamma _ { k } < \sigma < 1$$ ; confidence 0.998

1332. d03379044.png ; $$\Delta _ { D } ( z )$$ ; confidence 0.999

1333. d03379012.png ; $$D \backslash K$$ ; confidence 0.979

1334. d0338502.png ; $$x \square ^ { j }$$ ; confidence 0.818

1335. d0339309.png ; $$p _ { 1 } / p _ { 2 }$$ ; confidence 0.981

1336. d03399055.png ; $$y ^ { \prime } ( b ) + v ( b ) y ( b ) = \gamma ( b )$$ ; confidence 0.998

1337. d03399034.png ; $$y ^ { \prime } ( b ) + \psi y ( b ) = \beta$$ ; confidence 0.993

1338. d03398025.png ; $$\sum _ { m = 1 } ^ { \infty } u _ { m n n }$$ ; confidence 0.852

1339. d034120342.png ; $$O \subset A _ { R }$$ ; confidence 0.132

1340. d034120272.png ; $$A _ { 0 } ( G )$$ ; confidence 0.996

1341. d034120271.png ; $$\infty \in G$$ ; confidence 0.992

1342. d120280147.png ; $$\overline { U }$$ ; confidence 0.299

1343. d120280152.png ; $$A ( D ) ^ { * } \simeq A / B$$ ; confidence 0.981

1344. d12029018.png ; $$f ( q ) = 1 / ( \sqrt { 5 } q ^ { 2 } )$$ ; confidence 1.000

1345. d1203009.png ; $$Y ( t ) \in R ^ { m }$$ ; confidence 0.934

1346. d1203201.png ; $$T : L ^ { 1 } \rightarrow X$$ ; confidence 0.986

1347. d03426025.png ; $$\delta ( t )$$ ; confidence 1.000

1348. d03428088.png ; $$S _ { g } ( w _ { 0 } )$$ ; confidence 0.921

1349. e1200103.png ; $$A \stackrel { f } { \rightarrow } B = A \stackrel { é } { \rightarrow } f [ A ] \stackrel { m } { \rightarrow } B$$ ; confidence 0.193

1350. e12012065.png ; $$\propto \| \Sigma \| ^ { - 1 / 2 } [ \nu + ( y - \mu ) ^ { T } \Sigma ^ { - 1 } ( y - \mu ) ] ^ { - ( \nu + p ) / 2 }$$ ; confidence 0.904

1351. e12002045.png ; $$T$$ ; confidence 0.914

1352. e12002093.png ; $$\Sigma \Omega X \rightarrow X$$ ; confidence 0.748

1353. e12002023.png ; $$74$$ ; confidence 0.496

1354. e120020102.png ; $$V \not \equiv W$$ ; confidence 0.489

1355. e13002010.png ; $$\varphi$$ ; confidence 0.858

1356. e03511022.png ; $$\Sigma - 1$$ ; confidence 0.852

1357. e12005039.png ; $$h ^ { i } ( w ) = g ^ { i } ( w )$$ ; confidence 0.992

1358. e12006018.png ; $$T p ( A _ { y } ) = A$$ ; confidence 0.900

1359. e12006038.png ; $$Y \rightarrow J ^ { 1 } Y$$ ; confidence 0.987

1360. e12007012.png ; $$\Gamma _ { q }$$ ; confidence 0.846

1361. e0351605.png ; $$L ( u ) + \lambda u = 0$$ ; confidence 0.993

1362. e03516059.png ; $$\frac { \partial } { \partial x } ( k _ { 1 } \frac { \partial u } { \partial x } ) + \frac { \partial } { \partial y } ( k _ { 2 } \frac { \partial u } { \partial y } ) + \lambda n = 0$$ ; confidence 0.519

1363. e03517056.png ; $$\| \hat { A } - A \| \leq \delta$$ ; confidence 0.245

1364. e03517077.png ; $$\overline { U _ { n } \in N A _ { n } ( B ) }$$ ; confidence 0.452

1365. e1300308.png ; $$\gamma = \left( \begin{array} { l l } { \alpha } & { b } \\ { c } & { d } \end{array} \right) \in GL _ { 2 } ( Q )$$ ; confidence 0.088

1366. e13003029.png ; $$K _ { \infty }$$ ; confidence 0.984

1367. e11003020.png ; $$f ( x _ { 0 } ) < \operatorname { inf } _ { x \in X } f ( x ) + \epsilon$$ ; confidence 0.738

1368. e035250110.png ; $$f = u _ { 1 } + i u _ { 2 }$$ ; confidence 0.994

1369. e03525048.png ; $$0 < \sigma < 0.5$$ ; confidence 0.996

1370. e03525091.png ; $$z _ { k } \in L$$ ; confidence 0.875

1371. e035250143.png ; $$\Delta \Delta w _ { 0 } = 0$$ ; confidence 0.903

1372. e12010015.png ; $$f ^ { em } = q _ { f } E + \frac { 1 } { c } J \times B + ( \nabla E ) P + ( \nabla B ) M +$$ ; confidence 0.640

1373. e12010035.png ; $$f ^ { em } = 0 = \operatorname { div } t ^ { em } f - \frac { \partial G ^ { em f } } { \partial t }$$ ; confidence 0.071

1374. e12010055.png ; $$E ^ { \prime } = 0$$ ; confidence 0.985

1375. e0353202.png ; $$\tau _ { i + 1 } - \tau _ { i }$$ ; confidence 0.970

1376. e03536067.png ; $$\langle P ^ { ( 2 ) } \rangle$$ ; confidence 0.899

1377. e03536090.png ; $$\operatorname { Th } ( K _ { 1 } )$$ ; confidence 0.733

1378. e11006015.png ; $$\Omega _ { * } ^ { SO }$$ ; confidence 0.644

1379. e03547029.png ; $$f ( z _ { 1 } + z _ { 2 } )$$ ; confidence 0.999

1380. e11007046.png ; $$C x ^ { - 1 }$$ ; confidence 0.834

1381. e110070191.png ; $$f ^ { \prime } ( 1 ) = \prod _ { n > 0 } ( \frac { 1 - q ^ { 2 n } } { 1 + q ^ { 2 n } } ) ^ { 2 }$$ ; confidence 0.893

1382. e11007067.png ; $$y ^ { 2 } = R ( x )$$ ; confidence 0.993

1383. e03549042.png ; $$u = - \int _ { z } ^ { \infty } \frac { d z } { w }$$ ; confidence 0.983

1384. e03550031.png ; $$T ^ { * } X \backslash 0$$ ; confidence 0.997

1385. e0355309.png ; $$\int \int _ { \Omega } ( \frac { \partial u } { \partial x } \frac { \partial v } { \partial x } + \frac { \partial u } { \partial y } \frac { \partial v } { \partial y } ) d x d y = - \int _ { \Omega } f v d x d y$$ ; confidence 0.732

1386. e035550163.png ; $$b _ { 2 } = 0$$ ; confidence 1.000

1387. e035550128.png ; $$\alpha ( X ) = \operatorname { tr } \operatorname { deg } M ( X )$$ ; confidence 0.949

1388. e03555010.png ; $$X _ { t } = m F$$ ; confidence 0.993

1389. e03555028.png ; $$y ^ { 2 } = x ^ { 3 } - g x - g$$ ; confidence 0.962

1390. e03556014.png ; $$y ^ { \prime } ( 0 ) = 0$$ ; confidence 0.990

1391. e11008028.png ; $$P _ { n } ( f ) = \int _ { S } f d P _ { n } = \frac { 1 } { n } \sum _ { i = 1 } ^ { n } f ( X _ { i } )$$ ; confidence 0.394

1392. e11008048.png ; $$B \circ F$$ ; confidence 0.974

1393. e03566053.png ; $$c ( n ) \| \mu \| _ { e } = \| U _ { \mu } \|$$ ; confidence 0.789

1394. e0356605.png ; $$U _ { \mu } ( x ) = \int H ( | x - y | ) d \mu ( y )$$ ; confidence 0.999

1395. e1300407.png ; $$U _ { 0 } ( t )$$ ; confidence 0.998

1396. e13004044.png ; $$( \Omega _ { + } - 1 ) ( g - g ) \psi ( t )$$ ; confidence 0.766

1397. e13004035.png ; $$( \Omega _ { + } - 1 ) \psi ( t ) = ( \Omega _ { + } - 1 ) g \psi ( t ) =$$ ; confidence 0.997

1398. e0357202.png ; $$\operatorname { lim } _ { k \rightarrow \infty } | \alpha _ { k } | ^ { 1 / k } = 0$$ ; confidence 0.823

1399. e0357604.png ; $$f : W \rightarrow R$$ ; confidence 0.920

1400. e03579057.png ; $$\sum _ { n } ^ { - 1 }$$ ; confidence 0.820

1401. e0358008.png ; $$\nu ( n ) = \alpha$$ ; confidence 0.430

1402. e03581038.png ; $$\Phi \Psi$$ ; confidence 0.943

1403. e03581047.png ; $$\Psi ( A ) = A$$ ; confidence 0.999

1404. e12015019.png ; $$\frac { D \xi ^ { i } } { d t } = \frac { d \xi ^ { i } } { d t } + \frac { 1 } { 2 } g ^ { i } r \xi ^ { r }$$ ; confidence 0.338

1405. e12015070.png ; $$\lambda _ { 1 } = \lambda _ { 2 }$$ ; confidence 1.000

1406. e12015064.png ; $$P _ { 1 } ^ { 1 } = \frac { 1 } { 4 } p ^ { 2 } + \frac { 1 } { 2 } \dot { p } - q = I$$ ; confidence 0.914

1407. e03607020.png ; $$\tau _ { n } ^ { ( B ) }$$ ; confidence 0.845

1408. e11010022.png ; $$o ( G )$$ ; confidence 0.990

1409. e03612012.png ; $$m ( M )$$ ; confidence 0.999

1410. e03623076.png ; $$2 d \geq n$$ ; confidence 0.758

1411. e036230210.png ; $$R ( \delta ) = 1 - H ( \delta )$$ ; confidence 1.000

1412. e036230124.png ; $$k \geq n - i t$$ ; confidence 0.558

1413. e03624043.png ; $$\sigma \approx s$$ ; confidence 0.994

1414. e12019037.png ; $$l _ { x }$$ ; confidence 0.196

1415. e03640030.png ; $$2 - 2 g - l$$ ; confidence 0.741

1416. e03640033.png ; $$2 - m - 1$$ ; confidence 0.994

1417. e03653023.png ; $$t h$$ ; confidence 0.989

1418. e12023072.png ; $$E ^ { \alpha } ( L ) ( \sigma ^ { 2 } ( x ) ) = 0$$ ; confidence 0.682

1419. e12023094.png ; $$\sigma ^ { k } : M \rightarrow E ^ { k }$$ ; confidence 0.958

1420. e12023045.png ; $$\therefore M \rightarrow F$$ ; confidence 0.313

1421. e1202308.png ; $$M = \overline { U }$$ ; confidence 0.999

1422. e120230115.png ; $$E ( L ) = E ^ { d } ( L ) \omega ^ { \alpha } \bigotimes \Delta$$ ; confidence 0.101

1423. e120230111.png ; $$E ( L )$$ ; confidence 0.960

1424. e12023058.png ; $$E ( L ) = \frac { \partial L } { \partial y } - D ( \frac { \partial L } { \partial y ^ { \prime } } )$$ ; confidence 0.989

1425. e12023061.png ; $$L \mapsto E ( L )$$ ; confidence 0.892

1426. e12024025.png ; $$K ( L )$$ ; confidence 0.907

1427. e03662025.png ; $$Q _ { n - j } ( z ) \equiv 0$$ ; confidence 0.981

1428. e11013060.png ; $$p _ { x } ^ { * } = \lambda \operatorname { exp } ( - \lambda x )$$ ; confidence 0.974

1429. e03677085.png ; $$A + 2$$ ; confidence 0.997

1430. e03677073.png ; $$B = f ( A )$$ ; confidence 0.999

1431. e03677067.png ; $$\phi ^ { - 1 } ( b ) \cong P ^ { \prime } ( C )$$ ; confidence 0.866

1432. e03677058.png ; $$P ^ { \prime } ( C )$$ ; confidence 0.802

1433. e03677051.png ; $$f | _ { A } = \phi$$ ; confidence 0.668

1434. e03682019.png ; $$B _ { \mu } ^ { 1 } \subset B \subset B _ { \mu } ^ { 2 }$$ ; confidence 0.646

1435. e03682038.png ; $$\tau \geq \zeta$$ ; confidence 0.994

1436. e03684025.png ; $$A = \operatorname { lim } _ { n \rightarrow \infty } C _ { n } = ( 1 + \frac { 1 } { 4 } + \frac { 1 } { 16 } + \ldots ) C _ { 1 } = \frac { 4 } { 3 } C _ { 1 }$$ ; confidence 0.919

1437. e03684018.png ; $$K ( B - C _ { N } ) > K ( B - A ) > D$$ ; confidence 0.579

1438. e03684024.png ; $$C _ { n } = C _ { 1 } + \frac { 1 } { 4 } C _ { 1 } + \ldots + \frac { 1 } { 4 ^ { n - 1 } } C _ { 1 }$$ ; confidence 0.974

1439. e03685016.png ; $$\overline { \Pi } _ { k } \subset \Pi _ { k + 1 }$$ ; confidence 0.606

1440. e12026092.png ; $$( L _ { \mu } ) ^ { p }$$ ; confidence 0.998

1441. e03691052.png ; $$z = \operatorname { ln } \alpha = \operatorname { ln } | \alpha | + i \operatorname { Arg } \alpha$$ ; confidence 0.857

1442. e03691064.png ; $$( e ^ { z } 1 ) ^ { z } = e ^ { z } 1 ^ { z _ { 2 } }$$ ; confidence 0.053

1443. e03691017.png ; $$a ^ { X } = e ^ { X \operatorname { ln } \alpha }$$ ; confidence 0.301

1444. e13006023.png ; $$z \in Z$$ ; confidence 0.973

1445. e1300704.png ; $$S = o ( \# A )$$ ; confidence 0.908

1446. e03694044.png ; $$p f$$ ; confidence 0.602

1447. e03696065.png ; $$y _ { j } \delta \theta$$ ; confidence 0.866

1448. e036960205.png ; $$\nu - 1 / 2 \in Z$$ ; confidence 0.954

1449. e036960198.png ; $$y ^ { \prime } + \alpha _ { 1 } y = 0$$ ; confidence 0.639

1450. e03698026.png ; $$\alpha : G \rightarrow \operatorname { Aut } A$$ ; confidence 0.856

1451. e03704050.png ; $$n + = n - = n$$ ; confidence 0.228

1452. e037040161.png ; $$A = A _ { 0 } ^ { * }$$ ; confidence 0.706

1453. e03704077.png ; $$\lambda < \alpha$$ ; confidence 0.600

1454. e03708021.png ; $$r > n$$ ; confidence 0.953

1455. e03708073.png ; $$x _ { i } ^ { 2 } = 0$$ ; confidence 0.840

1456. e03716049.png ; $$\Delta J =$$ ; confidence 0.998

1457. e03717072.png ; $$r < | z | < 1$$ ; confidence 0.987

1458. e037200118.png ; $$\gamma \geq 0$$ ; confidence 0.994

1459. f1200101.png ; $$S h$$ ; confidence 0.739

1460. f03806015.png ; $$V$$ ; confidence 0.996

1461. f13001030.png ; $$R _ { i } = F _ { q } [ x ] / ( f _ { i } )$$ ; confidence 0.671

1462. f0381302.png ; $$G _ { i } = V _ { i } ( E + \Delta - V _ { i } ) ^ { - 1 }$$ ; confidence 0.998

1463. f0382203.png ; $$K _ { X } ^ { - 1 }$$ ; confidence 0.918

1464. f03822036.png ; $$Q \subset P ^ { 4 }$$ ; confidence 0.991

1465. f13004017.png ; $$d _ { k } = \operatorname { det } ( 1 - f _ { t } ^ { \prime } ( x _ { k } ) ) ^ { 1 / 2 }$$ ; confidence 0.976

1466. f11005019.png ; $$q ( 0 ) \neq 0$$ ; confidence 0.997

1467. f11005048.png ; $$w ( x ) = | f ( x ) | ^ { 2 }$$ ; confidence 1.000

1468. f03838022.png ; $$C _ { 0 }$$ ; confidence 0.800

1469. f1200408.png ; $$( + \infty ) - ( + \infty ) = - \infty - ( - \infty ) = - \infty$$ ; confidence 0.999

1470. f038390152.png ; $$\alpha ^ { \lambda } = 1$$ ; confidence 0.972

1471. f038390108.png ; $$q ( m ) = ( m ^ { p - 1 } - 1 ) / p$$ ; confidence 0.963

1472. f03847048.png ; $$\tau _ { 0 } = 0$$ ; confidence 0.955

1473. f03847049.png ; $$\tau _ { k + 1 } = t$$ ; confidence 0.410

1474. f13009060.png ; $$P ( N _ { k } = n ) = p ^ { n } F _ { n + 1 - k } ^ { ( k ) } ( \frac { q } { p } )$$ ; confidence 0.620

1475. f1300908.png ; $$U _ { n } ( x ) = \frac { \alpha ^ { n } ( x ) - \beta ^ { n } ( x ) } { \alpha ( x ) - \beta ( x ) }$$ ; confidence 0.947

1476. f04008051.png ; $$P ^ { * } = \{ P _ { X } ^ { * } : x \in X \}$$ ; confidence 0.505

1477. f04008010.png ; $$F ^ { * } ( \theta | x ) = 1 - F ( x | \theta )$$ ; confidence 0.940

1478. f130100140.png ; $$G = T$$ ; confidence 0.991

1479. f130100152.png ; $$v \in A _ { p } ( G )$$ ; confidence 0.412

1480. f13010016.png ; $$u \in C ^ { G }$$ ; confidence 0.438

1481. f13010077.png ; $$\lambda ^ { p } ( M ^ { 1 } ( G ) )$$ ; confidence 0.996

1482. f04019037.png ; $$V ( x _ { 0 } )$$ ; confidence 0.998

1483. f04021064.png ; $$\phi ( \mathfrak { A } )$$ ; confidence 0.445

1484. f040230100.png ; $$x _ { n } = n$$ ; confidence 0.849

1485. f040230157.png ; $$\Delta ^ { n } f ( x )$$ ; confidence 0.976

1486. f040230147.png ; $$\sum _ { \nu = 1 } ^ { k - 1 } \frac { B _ { \nu } } { \nu ! } \{ f ^ { \langle \nu - 1 \rangle } ( n ) - f ^ { \langle \nu - 1 \rangle } ( 0 ) \} + \frac { B _ { k } } { k ! } \sum _ { x = 0 } ^ { n - 1 } f ^ { ( k ) } ( x + \theta )$$ ; confidence 0.269

1487. f04033018.png ; $$f ^ { - 1 } ( f ( x ) ) \cap U$$ ; confidence 0.998

1488. f04029031.png ; $$G / G 1$$ ; confidence 0.622

1489. f04039064.png ; $$y ^ { i } C _ { i j k } = 0$$ ; confidence 0.942

1490. f04042034.png ; $$\Phi ( \Phi ( x ) ) = x$$ ; confidence 1.000

1491. f04052043.png ; $$| x - x _ { 0 } | \leq b$$ ; confidence 0.990

1492. f04058030.png ; $$| X$$ ; confidence 0.687

1493. f04058044.png ; $$\phi ( p )$$ ; confidence 0.999

1494. f04058066.png ; $$| A | = \int _ { R } | \alpha | 0$$ ; confidence 0.765

1495. f04058050.png ; $$\frac { | \sigma _ { i } | } { ( \operatorname { diam } \sigma _ { i } ) ^ { n } } \geq \eta$$ ; confidence 0.891

1496. f04061036.png ; $$C ^ { b r } ( E ^ { n } )$$ ; confidence 0.943

1497. f04069050.png ; $$\Omega \in ( H ^ { \otimes 0 } ) _ { \alpha } \subset \Gamma ^ { \alpha } ( H )$$ ; confidence 0.995

1498. f04069087.png ; $$\{ \xi _ { f } : f \in H \}$$ ; confidence 0.998

1499. f04069072.png ; $$\alpha _ { \alpha } ^ { * } ( f ) \Omega = f$$ ; confidence 0.962

1500. f11015067.png ; $$t \subset v$$ ; confidence 0.885

1501. f040820110.png ; $$f _ { i } ( X ) = X _ { i } + \ldots$$ ; confidence 0.733

1502. f040820173.png ; $$F ( \overline { m } )$$ ; confidence 0.760

1503. f0408302.png ; $$\omega = \alpha _ { 1 } \ldots \alpha _ { k }$$ ; confidence 0.633

1504. f040850279.png ; $$V _ { 1 } ^ { * }$$ ; confidence 0.750

1505. f040850143.png ; $$\{ \lambda \}$$ ; confidence 1.000

1506. f040850122.png ; $$A \rightarrow w$$ ; confidence 0.934

1507. f04085058.png ; $$\sigma ( \alpha ) = \{ w \}$$ ; confidence 0.997

1508. f04096043.png ; $$I V _ { 2 }$$ ; confidence 0.996

1509. f04096055.png ; $$x ^ { i } \in R$$ ; confidence 0.987

1510. f0410005.png ; $$J _ { \nu }$$ ; confidence 0.556

1511. f12009069.png ; $$F \mu$$ ; confidence 0.813

1512. f04114018.png ; $$P ( x ) = \frac { 1 } { \sqrt { 2 \pi } } F ( x )$$ ; confidence 1.000

1513. f120080162.png ; $$L _ { q } ( X )$$ ; confidence 0.846

1514. f120080135.png ; $$\Lambda _ { G } = 1$$ ; confidence 0.897

1515. f12010041.png ; $$( 8 \times 8 )$$ ; confidence 1.000

1516. f12011010.png ; $$| \varphi ( z ) | ^ { 2 } e ^ { \delta | z | }$$ ; confidence 0.840

1517. f120110126.png ; $$F ( z ) = - \frac { 1 } { 2 \pi i } \int \frac { \operatorname { exp } e ^ { \zeta ^ { 2 } } } { \zeta - z } d \zeta$$ ; confidence 0.622

1518. f04105039.png ; $$f \in L _ { 1 }$$ ; confidence 0.991

1519. f04106025.png ; $$\phi \in C _ { 0 } ^ { \infty } ( \Omega )$$ ; confidence 0.997

1520. f041060172.png ; $$X ^ { \prime } \subset X$$ ; confidence 0.988

1521. f041060187.png ; $$K _ { j } \times R ^ { N j }$$ ; confidence 0.562

1522. f041060205.png ; $$d _ { C } ^ { - 1 } = \operatorname { det } \left\| \begin{array} { c c } { \phi _ { \theta } \theta } & { \phi _ { \theta x } } \\ { \phi _ { y } \theta } & { \phi _ { y x } } \end{array} \right\|$$ ; confidence 0.370

1523. f04116031.png ; $$\alpha = - b$$ ; confidence 0.947

1524. f04117079.png ; $$f * g$$ ; confidence 0.637

1525. f04117026.png ; $$K = D$$ ; confidence 0.998

1526. f04117046.png ; $$F [ \delta ] = 1$$ ; confidence 0.999

1527. f041170108.png ; $$\eta \in \operatorname { ln } t \Gamma ^ { \prime }$$ ; confidence 0.642

1528. f04125082.png ; $$\xi _ { 1 } \neq \infty$$ ; confidence 0.999

1529. f0412503.png ; $$z \rightarrow w = L ( z ) = \frac { a z + b } { c z + d }$$ ; confidence 0.834

1530. f041250105.png ; $$L _ { k } ( z _ { k } )$$ ; confidence 0.991

1531. f0412506.png ; $$\infty \rightarrow \alpha / c$$ ; confidence 0.864

1532. f0412109.png ; $$A / \eta$$ ; confidence 0.702

1533. f04127048.png ; $$D ( B ) \supset D ( A )$$ ; confidence 0.993

1534. f04127030.png ; $$\alpha < \beta < \gamma$$ ; confidence 0.991

1535. f04127050.png ; $$x \in D ( A )$$ ; confidence 0.906

1536. f04131029.png ; $$\Lambda = \frac { \partial } { \partial x } + i \frac { \partial } { \partial y }$$ ; confidence 0.855

1537. f04131016.png ; $$\eta = \frac { ( \alpha ^ { 2 } - \rho ^ { 2 } ) ^ { 1 / 2 } ( \alpha ^ { 2 } - \rho _ { 0 } ^ { 2 } ) ^ { 1 / 2 } } { \alpha }$$ ; confidence 0.628

1538. f04132023.png ; $$v _ { 0 } ^ { k }$$ ; confidence 0.384

1539. f12013083.png ; $$| \Phi ( G )$$ ; confidence 0.956

1540. f110160161.png ; $$\mathfrak { A } \sim _ { l } \mathfrak { B }$$ ; confidence 0.922

1541. f04142082.png ; $$D ( \lambda ) \neq 0$$ ; confidence 0.997

1542. f041420175.png ; $$| \lambda | < B ^ { - 1 }$$ ; confidence 0.997

1543. f12015043.png ; $$\beta ( A ) < \infty$$ ; confidence 0.997

1544. f12015010.png ; $$R ( A )$$ ; confidence 1.000

1545. f120150156.png ; $$\beta ( A - K ) < \infty$$ ; confidence 0.999

1546. f120150202.png ; $$n \| < C$$ ; confidence 0.368

1547. f12015012.png ; $$\beta ( A ) : = \operatorname { codim } R ( A ) < \infty$$ ; confidence 0.981

1548. f04151086.png ; $$( r \geq 1 )$$ ; confidence 1.000

1549. f04157048.png ; $$x _ { 1 } ( t ) + x _ { 2 } ( t ) = A ( t ) \operatorname { cos } ( \omega _ { 1 } t + \phi ( t ) )$$ ; confidence 0.965

1550. f04158014.png ; $$( x M ) ( M ^ { - 1 } y )$$ ; confidence 0.999

1551. f04162020.png ; $$X _ { i } \cap X _ { j } =$$ ; confidence 0.322

1552. f12019028.png ; $$C _ { G } ( n ) \leq N$$ ; confidence 0.972

1553. f12019010.png ; $$N = \{ G \backslash ( \cup _ { x \in G } x ^ { - 1 } H x ) \} \cup \{ 1 \}$$ ; confidence 0.269

1554. f12021089.png ; $$\pi ( \lambda ) = ( \lambda + 2 ) ( \lambda + 1 ) \alpha ^ { 2 } 0 + ( \lambda + 1 ) \alpha ^ { 1 } 0 + a ^ { 0 } =$$ ; confidence 0.071

1555. f1202105.png ; $$| z | < r$$ ; confidence 0.957

1556. f12021069.png ; $$= \frac { ( n _ { 1 } + l ) ! } { ! ! } ( \operatorname { log } z ) ^ { l } z ^ { \lambda _ { 2 } } + \ldots$$ ; confidence 0.665

1557. f12021085.png ; $$\lambda = \lambda _ { j }$$ ; confidence 0.911

1558. f04179028.png ; $$( n ! ) ^ { - 1 } n _ { D }$$ ; confidence 0.991

1559. f11018097.png ; $$\| x \| _ { p } = \int _ { 0 } ^ { 1 } | x ( t ) | ^ { p } d t$$ ; confidence 0.742

1560. f110180102.png ; $$0 < p _ { n } \rightarrow 0$$ ; confidence 0.998

1561. f120230136.png ; $$J : T M \rightarrow T M$$ ; confidence 0.972

1562. f04188062.png ; $$V _ { 0 } ( z )$$ ; confidence 0.971

1563. f041890119.png ; $$x \in R \cup \{ \infty \}$$ ; confidence 0.764

1564. f0418904.png ; $$D = \{ z \in C : | z | < 1 \}$$ ; confidence 0.972

1565. f04189063.png ; $$\chi ( \Delta ) = \chi ( \Gamma ) [ \Gamma : \Delta ]$$ ; confidence 0.999

1566. f041940314.png ; $$L _ { p } ( X )$$ ; confidence 0.970

1567. f041940175.png ; $$S \subset T$$ ; confidence 0.743

1568. f041940310.png ; $$A \in \mathfrak { S }$$ ; confidence 0.285

1569. f041950110.png ; $$f \in N ( \Delta )$$ ; confidence 0.997

1570. f1202409.png ; $$t \mapsto t + T$$ ; confidence 0.520

1571. f04203082.png ; $$T _ { \rightarrow } V ^ { - 1 } T V$$ ; confidence 0.437

1572. f04206038.png ; $$P ( C A )$$ ; confidence 0.999

1573. f04206074.png ; $$f ( - x ) = - f ( x )$$ ; confidence 1.000

1574. f042060121.png ; $$\mathfrak { g } \otimes \mathfrak { g } \rightarrow U \mathfrak { g } \otimes U \mathfrak { g } \otimes U _ { \mathfrak { g } }$$ ; confidence 0.207

1575. f04207074.png ; $$T _ { N } ( t )$$ ; confidence 0.993

1576. f04212073.png ; $$\frac { \partial w } { \partial z } + A ( z ) w + B ( z ) \overline { w } = F ( z )$$ ; confidence 0.777

1577. f04215011.png ; $$\left. \begin{array} { l l } { F _ { 1 } ( A ) } & { \frac { F _ { 1 } ( \alpha ) } { \rightarrow } } & { F _ { 1 } ( B ) } \\ { \phi _ { A } \downarrow } & { \square } & { \downarrow \phi _ { B } } \\ { F _ { 2 } ( A ) } & { \vec { F _ { 2 } ( \alpha ) } } & { F _ { 2 } ( B ) } \end{array} \right.$$ ; confidence 0.308

1578. f04221073.png ; $$\tilde { f } : Y \rightarrow X$$ ; confidence 0.494

1579. f04221056.png ; $$e _ { \lambda } ^ { 1 } \in X$$ ; confidence 0.877

1580. f11022029.png ; $$A ^ { p } \geq ( A ^ { p / 2 } B ^ { p } A ^ { p / 2 } ) ^ { 1 / 2 }$$ ; confidence 0.997

1581. f130290181.png ; $$LOC$$ ; confidence 0.417

1582. g04301029.png ; $$X \times F$$ ; confidence 0.480

1583. g043020138.png ; $$\pi : P \rightarrow G \backslash P$$ ; confidence 0.994

1584. g043020283.png ; $$S ( M ^ { \prime } ) \subset M ^ { \prime }$$ ; confidence 0.989

1585. g043020169.png ; $$H \mapsto C _ { A } ^ { \prime }$$ ; confidence 0.465

1586. g043020155.png ; $$V \oplus \mathfrak { g }$$ ; confidence 0.476

1587. g043020256.png ; $$C ^ { ( 0 ) }$$ ; confidence 0.988

1588. g043020187.png ; $$\delta : G ^ { \prime } \rightarrow W$$ ; confidence 0.965

1589. g0432806.png ; $$\mathfrak { x } \times x$$ ; confidence 0.416

1590. g04328069.png ; $$H _ { i } ( x ^ { \prime } ) > H _ { i } ( x ^ { \prime \prime } )$$ ; confidence 0.924

1591. g0432804.png ; $$\hat { K } _ { i }$$ ; confidence 0.180

1592. g0432802.png ; $$x$$ ; confidence 0.485

1593. g0432908.png ; $$\alpha _ { k } = \frac { \Gamma ( \gamma + k + 1 ) } { \Gamma ( \gamma + 1 ) } \sqrt { \frac { \Gamma ( \alpha _ { 1 } + 1 ) \Gamma ( \alpha _ { 2 } + 1 ) } { \Gamma ( \alpha _ { 1 } + k + 1 ) \Gamma ( \alpha _ { 2 } + k + 1 ) } }$$ ; confidence 0.904

1594. g11005015.png ; $$\nu < \kappa$$ ; confidence 0.992

1595. g04333080.png ; $$\omega = 1 / c ^ { 2 }$$ ; confidence 0.906

1596. g04334048.png ; $$\sum _ { \Sigma } ^ { 3 } \square ^ { i \alpha } \neq 0$$ ; confidence 0.180

1597. g04334058.png ; $$( \partial w / \partial t ) + ( \partial f / \partial x ) = ( h ^ { 2 } / 2 \tau ) ( \partial ^ { 2 } w / \partial x ^ { 2 } )$$ ; confidence 0.582

1598. g04335040.png ; $$\frac { \pi \psi } { Q } = - \theta - \sum _ { n = 1 } ^ { \infty } \frac { 1 } { n } ( \frac { \tau } { \tau _ { 0 } } ) ^ { n } \frac { y _ { n } ( \tau ) } { y _ { n } ( \tau _ { 0 } ) } \operatorname { sin } 2 n \theta$$ ; confidence 0.914

1599. g04335015.png ; $$\beta = \frac { 1 } { \gamma - 1 }$$ ; confidence 0.992

1600. g04335037.png ; $$+ \beta n ( 2 n + 1 ) y _ { n } = 0$$ ; confidence 0.975

1601. g12003011.png ; $$3 n + 2$$ ; confidence 1.000

1602. g1200302.png ; $$= \sum _ { \nu = 1 } ^ { n } \alpha _ { \nu } f ( x _ { \nu } ) + \sum _ { \mu = 1 } ^ { n + 1 } \beta _ { \mu } f ( \xi _ { \mu } )$$ ; confidence 0.992

1603. g0434707.png ; $$\nabla _ { \theta } : H _ { \delta R } ^ { 1 } ( X / K ) \rightarrow H _ { \partial R } ^ { 1 } ( X / K )$$ ; confidence 0.221

1604. g04347036.png ; $$0 \rightarrow \phi ^ { 1 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 2 } \rightarrow \phi ^ { 0 } / \phi ^ { 1 } \rightarrow 0$$ ; confidence 0.913

1605. g0434807.png ; $$\alpha _ { 31 } / \alpha _ { 11 }$$ ; confidence 0.405

1606. g0434801.png ; $$\quad f j ( x ) - \alpha j = \alpha _ { j 1 } x _ { 1 } + \ldots + \alpha _ { j n } x _ { n } - \alpha _ { j } = 0$$ ; confidence 0.057

1607. g04358023.png ; $$f _ { \zeta } ( \lambda )$$ ; confidence 0.821

1608. g0436207.png ; $$R [ F ( t ) ] = ( 1 - t ^ { 2 } ) F ^ { \prime \prime } - ( 2 \rho - 1 ) t F ^ { \prime \prime }$$ ; confidence 0.876

1609. g04364030.png ; $$K ( y ) = \operatorname { sgn } y . | y | ^ { \alpha }$$ ; confidence 0.655

1610. g043780250.png ; $$\hbar \square ^ { * } ( M )$$ ; confidence 0.620

1611. g043780168.png ; $$T _ { \nu }$$ ; confidence 0.336

1612. g04378073.png ; $$i : A \rightarrow X$$ ; confidence 0.995

1613. g043780134.png ; $$F = p t$$ ; confidence 0.143

1614. g043780157.png ; $$T \xi$$ ; confidence 0.994

1615. g043780231.png ; $$\overline { h } ( X ) = \operatorname { lim } _ { h } h ^ { * } ( X _ { \alpha } )$$ ; confidence 0.185

1616. g043810381.png ; $$C = \text { int } \Gamma$$ ; confidence 0.630

1617. g04381012.png ; $$\overline { O } _ { k }$$ ; confidence 0.968

1618. g043810261.png ; $$\delta ( x ) = \delta ( x _ { 1 } ) \times \ldots \times \delta ( x _ { N } )$$ ; confidence 0.411

1619. g043810179.png ; $$\alpha f \in D ^ { \prime } ( O )$$ ; confidence 0.895

1620. g043810238.png ; $$x u = 0$$ ; confidence 0.979

1621. g13003048.png ; $$I _ { U } = \{ ( u _ { \lambda } ) _ { \lambda \in \Lambda }$$ ; confidence 0.956

1622. g13003082.png ; $$\Gamma \subset \Omega$$ ; confidence 0.987

1623. g13003022.png ; $$w \mapsto ( w ^ { * } \varphi _ { \lambda } ) _ { \lambda \in \Lambda }$$ ; confidence 0.798

1624. g0439304.png ; $$m : A ^ { \prime } \rightarrow A$$ ; confidence 0.997

1625. g130040116.png ; $$v \wedge \wedge \ldots \wedge v _ { m }$$ ; confidence 0.124

1626. g044340202.png ; $$\xi _ { p } \in ( \nu F ^ { m } ) p$$ ; confidence 0.212

1627. g04434018.png ; $$d f ( X )$$ ; confidence 0.998

1628. g044340228.png ; $$\xi \in ( \nu F ^ { m } ) _ { p }$$ ; confidence 0.549

1629. g044350167.png ; $$\alpha ( F ) = 1$$ ; confidence 1.000

1630. g044350101.png ; $$D \Re \subset M$$ ; confidence 0.255

1631. g044350116.png ; $$V ( \Re ) > 2 ^ { n } d ( \Lambda )$$ ; confidence 0.792

1632. g04435074.png ; $$d ( \Lambda ) = \Delta ( \mathfrak { M } )$$ ; confidence 0.934

1633. g1300606.png ; $$p _ { n } ( z ) : = \operatorname { det } \{ z I - A \}$$ ; confidence 0.968

1634. g12004053.png ; $$| \tilde { \varphi } \mathfrak { u } ( \xi ) | \leq c ^ { - 1 } e ^ { - c | \xi | ^ { 1 / s } }$$ ; confidence 0.103

1635. g12004074.png ; $$D _ { x _ { k } } = - i \partial _ { x _ { k } }$$ ; confidence 0.982

1636. g04440061.png ; $$z$$ ; confidence 0.578

1637. g04440029.png ; $$\delta \varepsilon$$ ; confidence 0.600

1638. g04440032.png ; $$d E$$ ; confidence 0.607

1639. g0444106.png ; $$\alpha \equiv f ( x _ { 0 } - ) \leq f ( x _ { 0 } + ) \equiv b$$ ; confidence 0.692

1640. g0444109.png ; $$A < \alpha < b < B$$ ; confidence 0.686

1641. g04441010.png ; $$A = \underbrace { \operatorname { lim } _ { n } \frac { \operatorname { lim } } { x \nmid x _ { 0 } } } s _ { n } ( x )$$ ; confidence 0.055

1642. g044470103.png ; $$\psi \circ \phi = \phi ^ { \prime } \circ \psi$$ ; confidence 0.848

1643. g04447072.png ; $$q ^ { \prime } \in A ^ { \prime }$$ ; confidence 0.966

1644. g04465025.png ; $$a _ { y }$$ ; confidence 0.519

1645. g04466023.png ; $$A _ { 0 } = \mathfrak { A } _ { 0 }$$ ; confidence 0.968

1646. g04466018.png ; $$A = \sum _ { i \geq 0 } A$$ ; confidence 0.975

1647. g04468042.png ; $$\operatorname { grad } ( f g ) = g \operatorname { grad } f + f \operatorname { grad } g$$ ; confidence 0.981

1648. g04468049.png ; $$t \circ \in E$$ ; confidence 0.290

1649. g04473023.png ; $$f _ { B } ( x ) = \frac { \lambda ^ { x } } { x ! } e ^ { - \lambda } \{ 1 + \frac { \mu _ { 2 } - \lambda } { \lambda ^ { 2 } } [ \frac { x ^ { [ 2 ] } } { 2 } - \lambda x ^ { [ 1 ] } + \frac { \lambda ^ { 2 } } { 2 } ] +$$ ; confidence 0.569

1650. g04477022.png ; $$[ \Psi / \Phi ] \Phi$$ ; confidence 0.955

1651. g04478033.png ; $$\mu ( \alpha )$$ ; confidence 0.999

1652. g04482057.png ; $$x \in L ( \Gamma )$$ ; confidence 0.995

1653. g04484023.png ; $$B \rightarrow b B$$ ; confidence 0.994

1654. g11018025.png ; $$V _ { T } ^ { \prime } = \mu ( V _ { T } )$$ ; confidence 0.997

1655. g04491070.png ; $$\sum _ { d ( e ) = Q } f _ { e }$$ ; confidence 0.651

1656. g04500031.png ; $$( n \operatorname { ln } n ) / 2$$ ; confidence 0.978

1657. g04497028.png ; $$E ^ { n } \times R$$ ; confidence 0.937

1658. g0450402.png ; $$f _ { 12 }$$ ; confidence 0.974

1659. g045090279.png ; $$G _ { A B } ^ { ( c ) } ( t - t ^ { \prime } ) = \ll A ( t ) | B ( t ^ { \prime } ) \gg ( c ) \equiv \langle T _ { \eta } A ( t ) B ( t ^ { \prime } ) \rangle$$ ; confidence 0.272

1660. g045090122.png ; $$\psi _ { k } ( \xi )$$ ; confidence 0.998

1661. g04509046.png ; $$y ( \alpha ) = 0$$ ; confidence 0.954

1662. g04509054.png ; $$C = [ p ( \xi ) W ( \xi ) ] ^ { - 1 }$$ ; confidence 0.997

1663. g045090287.png ; $$G _ { A B } ^ { ( n ) } ( E )$$ ; confidence 0.976

1664. g12007022.png ; $$m \equiv 4$$ ; confidence 0.840

1665. g1102602.png ; $$B M$$ ; confidence 0.973

1666. g0453708.png ; $$f ( z ) = e ^ { ( \alpha - i b ) z ^ { \rho } }$$ ; confidence 0.743

1667. h046010125.png ; $$M _ { 2 } \times S ^ { N }$$ ; confidence 0.923

1668. h046010104.png ; $$m \geq 3$$ ; confidence 0.668

1669. h12001013.png ; $$X ^ { ( r ) } \rightarrow V$$ ; confidence 0.950

1670. h13009043.png ; $$g _ { i } \in A$$ ; confidence 0.960

1671. h13009035.png ; $$g \rightarrow g$$ ; confidence 0.987

1672. h04608018.png ; $$| x _ { \mathfrak { j } } | \leq M$$ ; confidence 0.106

1673. h11005031.png ; $$w _ { 2 } = f ( r _ { 1 } ) \ldots f ( r _ { n } )$$ ; confidence 0.851

1674. h1100503.png ; $$\alpha _ { 1 } \ldots \alpha _ { m }$$ ; confidence 0.435

1675. h04628046.png ; $$\frac { d ^ { 2 } y } { d t ^ { 2 } } + P ( t ) y = 0$$ ; confidence 1.000

1676. h04628059.png ; $$x ^ { ( 1 ) } = x ^ { ( 1 ) } ( t )$$ ; confidence 0.898

1677. h046280124.png ; $$X = \| \left. \begin{array} { l l } { U _ { 1 } } & { U _ { 2 } } \\ { V _ { 1 } } & { V _ { 2 } } \end{array} \right. |$$ ; confidence 0.501

1678. h04630075.png ; $$M _ { 0 } \times I$$ ; confidence 0.798

1679. h046300124.png ; $$P _ { n - k }$$ ; confidence 0.990

1680. h120020104.png ; $$P _ { - } \phi \in B _ { p } ^ { 1 / p }$$ ; confidence 0.963

1681. h1200207.png ; $$\hat { \phi } ( j ) = \alpha$$ ; confidence 0.791

1682. h04637024.png ; $$M ( x ) = M _ { f } ( x ) = \operatorname { sup } _ { 0 < k | \leq \pi } \frac { 1 } { t } \int _ { x } ^ { x + t } | f ( u ) | d u$$ ; confidence 0.412

1683. h04637012.png ; $$\int _ { \alpha } ^ { b } \theta ^ { p } ( x ) d x \leq 2 ( \frac { p } { p - 1 } ) ^ { p } \int _ { a } ^ { b } f ^ { p } ( x ) d x$$ ; confidence 0.187

1684. h046320114.png ; $$H ^ { p } ( G )$$ ; confidence 0.998

1685. h046320200.png ; $$M _ { \delta } ( \phi ) \rightarrow 0$$ ; confidence 0.996

1686. h046420330.png ; $$B = B _ { E }$$ ; confidence 0.754

1687. h04642087.png ; $$L _ { \infty } ( \hat { G } )$$ ; confidence 0.973

1688. h046420200.png ; $$F ( \phi ) \in A ( \hat { G } )$$ ; confidence 0.909

1689. h046420189.png ; $$f = f _ { 1 } * f _ { 2 }$$ ; confidence 0.989

1690. h046420157.png ; $$d g = d h d k$$ ; confidence 0.955

1691. h04646046.png ; $$p + q \leq \operatorname { dim } _ { C } M$$ ; confidence 0.688

1692. h046470224.png ; $$d \sigma ( y )$$ ; confidence 0.992

1693. h12003026.png ; $$\operatorname { dim } M = 2$$ ; confidence 0.993

1694. h0466006.png ; $$\{ x : | x - y | < r \}$$ ; confidence 0.915

1695. h04702011.png ; $$F _ { n } ( x ) = ( x _ { 1 } ^ { 2 } + \ldots + x _ { y } ^ { 2 } ) ^ { 1 / 2 }$$ ; confidence 0.316

1696. h0470704.png ; $$\alpha _ { i k } = \overline { a _ { k i } }$$ ; confidence 0.235

1697. h04716013.png ; $$H ( z )$$ ; confidence 0.999

1698. h0471603.png ; $$H ( z ) = \sum _ { i = 1 } ^ { n } \sum _ { j = 1 } ^ { n } a _ { i j } z _ { i } z _ { j }$$ ; confidence 0.374

1699. h0472103.png ; $$C$$ ; confidence 0.952

1700. h04721080.png ; $$X _ { 1 } \cap Y _ { 1 } = \emptyset$$ ; confidence 0.988

1701. h04721043.png ; $$\Sigma _ { n } ^ { 0 }$$ ; confidence 0.998

1702. h04727012.png ; $$\lambda = p ^ { - 1 } + r ^ { - 1 } \leq 1$$ ; confidence 0.999

1703. h047380203.png ; $$\nu \in A$$ ; confidence 0.971

1704. h047380120.png ; $$\sum _ { i } | \alpha _ { i } | ^ { 2 } < \infty$$ ; confidence 0.995

1705. h047380204.png ; $$\sum _ { \nu \in A } \| x _ { \nu } \| ^ { 2 } < \infty$$ ; confidence 0.895

1706. h047390181.png ; $$V = V ^ { + } \oplus V ^ { - }$$ ; confidence 0.953

1707. h04744011.png ; $$\lambda _ { 4 n }$$ ; confidence 0.681

1708. h04744030.png ; $$f ( 0 ) = f ( 1 ) = 0$$ ; confidence 1.000

1709. h11020058.png ; $$\Psi ( y _ { n } ) \subseteq \Psi ( y _ { 0 } )$$ ; confidence 0.934

1710. h04747031.png ; $$F ^ { p }$$ ; confidence 0.768

1711. h1102204.png ; $$h : E ^ { m } \rightarrow R$$ ; confidence 0.941

1712. h04754045.png ; $$\Omega \frac { p } { x }$$ ; confidence 0.447

1713. h04756028.png ; $$f ^ { - 1 } \circ f ( z ) = z$$ ; confidence 0.986

1714. h04761062.png ; $$\mathfrak { M } ( M )$$ ; confidence 0.763

1715. h11024037.png ; $$\mu _ { 1 } < 0 < \lambda _ { 1 }$$ ; confidence 0.999

1716. h11024025.png ; $$n _ { s } + n _ { u } = n$$ ; confidence 0.172

1717. h04769040.png ; $$g x = y$$ ; confidence 0.997

1718. h047690116.png ; $$G = SU ( k )$$ ; confidence 0.645

1719. h04773077.png ; $$\beta ^ { s - k } z ^ { \prime }$$ ; confidence 0.907

1720. h047740112.png ; $$R ) = r . g \operatorname { lowdim } ( R ) = \operatorname { glowdim } ( R )$$ ; confidence 0.142

1721. h04774059.png ; $$0 \rightarrow A ^ { \prime } \rightarrow A \rightarrow A ^ { \prime \prime } \rightarrow 0$$ ; confidence 0.930

1722. h12012026.png ; $$f \phi = 0$$ ; confidence 0.993

1723. h120120117.png ; $$T ( H ( A ) )$$ ; confidence 0.997

1724. h047860136.png ; $$n = r \neq 0$$ ; confidence 0.966

1725. h047930317.png ; $$S X \rightarrow S X$$ ; confidence 0.972

1726. h047930299.png ; $$Z / p$$ ; confidence 0.808

1727. h04793027.png ; $$x = [ u ]$$ ; confidence 0.825

1728. h04794088.png ; $$e _ { i } : O ( \Delta _ { q - 1 } ) \rightarrow O ( \Delta _ { q } )$$ ; confidence 0.793

1729. h047940245.png ; $$\Delta _ { q }$$ ; confidence 0.971

1730. h047940319.png ; $$\eta : \pi _ { N } \otimes \pi _ { N } \rightarrow \pi _ { N } + 1$$ ; confidence 0.085

1731. h04797023.png ; $$\mu ^ { * } : A ^ { * } \rightarrow A ^ { * } \otimes A ^ { * }$$ ; confidence 0.991

1732. h11025012.png ; $$T ^ { \aleph } x \in A$$ ; confidence 0.469

1733. h04800018.png ; $$\Omega \in \Delta ^ { n } S$$ ; confidence 0.506

1734. h1103003.png ; $$\psi ( x ) = \sum x ^ { \prime } \otimes x ^ { \prime \prime }$$ ; confidence 0.991

1735. h04808011.png ; $$n - 1 \geq p$$ ; confidence 0.999

1736. h11033039.png ; $$n \leq s \leq 2 n - 2$$ ; confidence 0.997

1737. h11037062.png ; $$n \neq 0$$ ; confidence 0.999

1738. h0481908.png ; $$\nu = 0$$ ; confidence 0.923

1739. h0482005.png ; $$Z = 1$$ ; confidence 0.980

1740. h13012038.png ; $$| f ( x + y ) - f ( x ) f ( y ) | \leq \varepsilon$$ ; confidence 0.999

1741. h13013015.png ; $$e ^ { i k x }$$ ; confidence 0.648

1742. h04825025.png ; $$O A M$$ ; confidence 0.981

1743. h04827072.png ; $$f : \Omega \rightarrow B$$ ; confidence 0.997

1744. h04830032.png ; $$P _ { m } ( \xi + \tau N )$$ ; confidence 0.978

1745. h0483101.png ; $$\frac { \partial w } { \partial t } = A \frac { \partial w } { \partial x }$$ ; confidence 0.980

1746. h04831085.png ; $$\alpha = a ( x )$$ ; confidence 0.757

1747. h04833042.png ; $$W _ { X } ^ { S }$$ ; confidence 0.678

1748. h04833033.png ; $$E _ { X } ^ { N }$$ ; confidence 0.539

1749. h04839015.png ; $$U ^ { ( 2 ) }$$ ; confidence 0.956

1750. h11040046.png ; $$\int _ { X } | f ( x ) | ^ { 2 } \operatorname { ln } | f ( x ) | d \mu ( x ) \leq$$ ; confidence 0.990

1751. h11040065.png ; $$H _ { 1 } \otimes I + I \otimes H _ { 2 }$$ ; confidence 0.996

1752. h048420118.png ; $$F _ { j } ( z ) = \sum _ { k = 1 } ^ { N } G _ { j k } ( z )$$ ; confidence 0.944

1753. h0484203.png ; $$F _ { + } ( x + i 0 ) - F _ { - } ( x - i 0 )$$ ; confidence 0.881

1754. h04844022.png ; $$\alpha - \beta$$ ; confidence 1.000

1755. h0484406.png ; $$w = z ^ { - \gamma / 2 } ( z - 1 ) ^ { ( \gamma - \alpha - \beta - 1 ) / 2 } u$$ ; confidence 0.892

1756. h0484501.png ; $$z ( 1 - z ) w ^ { \prime \prime } + [ \gamma - ( \alpha + \beta + 1 ) z ] w ^ { \prime } - \alpha \beta w = 0$$ ; confidence 0.996

1757. h04852064.png ; $$| f | = 1$$ ; confidence 0.989

1758. h12015024.png ; $$\operatorname { log } | \phi ( h ) | = \int \operatorname { log } | h | d$$ ; confidence 0.751

1759. h1104304.png ; $$H _ { 1 } ( x ) < H _ { 2 } ( x )$$ ; confidence 0.999

1760. h04751218.png ; $$A = \operatorname { sup } _ { y \in E } A ( y ) < \infty$$ ; confidence 0.997

1761. i05003048.png ; $$I _ { X }$$ ; confidence 0.507

1762. i050030120.png ; $$A \backslash I$$ ; confidence 0.946

1763. i11002022.png ; $$0 = + \infty$$ ; confidence 0.667

1764. i11002068.png ; $$( \lambda \odot \mu ) \odot v = \lambda \odot ( \mu \odot v )$$ ; confidence 0.955

1765. i11002080.png ; $$( A )$$ ; confidence 1.000

1766. i11006080.png ; $$T$$ ; confidence 0.652

1767. i11006083.png ; $$H \equiv L \circ K$$ ; confidence 0.769

1768. i050230319.png ; $$f \in S _ { y } ^ { \prime }$$ ; confidence 0.307

1769. i050230164.png ; $$H _ { p } ^ { r } ( R ^ { n } ) \rightarrow H _ { p ^ { \prime } } ^ { \rho ^ { \prime } } ( R ^ { m } ) \rightarrow H _ { p l ^ { \prime \prime } } ^ { \rho ^ { \prime \prime } } ( R ^ { m ^ { \prime \prime } } )$$ ; confidence 0.143

1770. i05023059.png ; $$1 < m \leq n$$ ; confidence 0.737

1771. i050230379.png ; $$\| f \| _ { \Lambda _ { p } ^ { r } ( R ^ { n } ) } \leq K$$ ; confidence 0.335

1772. i050230228.png ; $$D _ { j } ^ { l } f \in L _ { p } ( R ^ { n } )$$ ; confidence 0.948

1773. i050230312.png ; $$- \infty < r < \infty$$ ; confidence 0.842

1774. i05031036.png ; $$\delta _ { 0 } > 0$$ ; confidence 1.000

1775. i05040021.png ; $$[ t ^ { n } : t ^ { n - 1 } ] = 0$$ ; confidence 0.989

1776. i13002074.png ; $$+ \frac { n } { p _ { 1 } p _ { 2 } } + \ldots + \frac { n } { p _ { k - 1 } p _ { k } } + - \frac { n } { p _ { 1 } p _ { 2 } p _ { 3 } } - \ldots + ( - 1 ) ^ { k } \frac { n } { p _ { 1 } \ldots p _ { k } }$$ ; confidence 0.552

1777. i05064012.png ; $$\gamma = \operatorname { ind } _ { g } a$$ ; confidence 0.608

1778. i0506506.png ; $$D = L _ { 1 } / D ( L _ { 0 } )$$ ; confidence 0.998

1779. i050650145.png ; $$\phi * : H ^ { * } ( B / S ) = H ^ { * } ( T M ) \rightarrow H ^ { * } ( M )$$ ; confidence 0.867

1780. i050650302.png ; $$D$$ ; confidence 0.996

1781. i05065016.png ; $$B ( M )$$ ; confidence 1.000

1782. i050650148.png ; $$\therefore M \rightarrow E$$ ; confidence 0.524

1783. i050650137.png ; $$K ( B / S )$$ ; confidence 0.995

1784. i050650262.png ; $$K ( T M ^ { g } ) \otimes C \rightarrow C$$ ; confidence 0.882

1785. i050650350.png ; $$i _ { \alpha } ( D ) \in K ( Y )$$ ; confidence 0.971

1786. i050650103.png ; $$\Sigma ( M ) = B ^ { + } \cup _ { S ( M ) } B ^ { - }$$ ; confidence 0.500

1787. i130030178.png ; $$h ( [ a ] )$$ ; confidence 0.265

1788. i130030142.png ; $$\pi$$ ; confidence 0.507

1789. i13003026.png ; $$[ T ^ { * } M ]$$ ; confidence 0.990

1790. i05072015.png ; $$\eta : Y \rightarrow B$$ ; confidence 0.984

1791. i050730155.png ; $$\nu _ { S }$$ ; confidence 0.758

1792. i05073063.png ; $$K \subset H$$ ; confidence 0.959

1793. i05073087.png ; $$\chi _ { \pi } ( g ) = \sum _ { \{ \delta : \delta y \in H \delta \} } \chi _ { \rho } ( \delta g \delta ^ { - 1 } )$$ ; confidence 0.903

1794. i05077013.png ; $$\phi _ { \alpha \alpha } = 1 _ { A _ { \alpha } }$$ ; confidence 0.624

1795. i05077064.png ; $$A = \operatorname { lim } _ { \rightarrow } F ( D )$$ ; confidence 0.939

1796. i05079039.png ; $$| \alpha _ { 1 } + \ldots + \alpha _ { n } | \leq | \alpha _ { 1 } | + \ldots + | \alpha _ { n } |$$ ; confidence 0.160

1797. i05085060.png ; $$A < \operatorname { ln } d X$$ ; confidence 0.106

1798. i05085011.png ; $$1 ^ { \circ }$$ ; confidence 0.592

1799. i05091079.png ; $$Y _ { n k }$$ ; confidence 0.813

1800. i05095025.png ; $$= 2 \pi ^ { 3 } a ^ { 2 } \frac { ( n + 1 ) ( 2 n + 1 ) } { 3 n ^ { 2 } }$$ ; confidence 0.781

1801. i05095033.png ; $$S = \frac { K } { 3 }$$ ; confidence 0.850

1802. i05097047.png ; $$F ( M ^ { k } ) \subset \nabla \square ^ { n }$$ ; confidence 0.382

1803. i05100028.png ; $$- \infty < a < + \infty$$ ; confidence 0.959

1804. i05104010.png ; $$3 a$$ ; confidence 0.497

1805. i05113068.png ; $$\overline { \rho } _ { L }$$ ; confidence 0.896

1806. i051150191.png ; $$p ^ { t } ( . )$$ ; confidence 0.817

1807. i05107042.png ; $$c ( I ) = \frac { 1 } { 2 }$$ ; confidence 0.667

1808. i05109035.png ; $$\Theta$$ ; confidence 0.952

1809. i1300404.png ; $$\sum _ { k = 1 } ^ { \infty } b _ { k } \operatorname { sin } k x$$ ; confidence 0.946

1810. i0513609.png ; $$\int f _ { 1 } ( x ) d x \quad \text { and } \quad \int f _ { 2 } ( x ) d x$$ ; confidence 0.921

1811. i051410114.png ; $$\alpha ( \lambda ) = \alpha _ { - } ( \lambda ) \alpha _ { + } ( \lambda )$$ ; confidence 0.598

1812. i05141058.png ; $$0 < \alpha < a$$ ; confidence 0.971

1813. i05141060.png ; $$h ( \lambda )$$ ; confidence 1.000

1814. i05143058.png ; $$| \lambda | < 1 / M ( b - \alpha )$$ ; confidence 0.952

1815. i05143039.png ; $$\hat { \phi } ( x ) = \lambda \sum _ { i = 1 } ^ { n } C _ { i } \alpha _ { i } ( x ) + f ( x )$$ ; confidence 0.810

1816. i05143036.png ; $$\{ \alpha _ { i } ( x ) \}$$ ; confidence 0.971

1817. i05156047.png ; $$| t - \tau |$$ ; confidence 0.984

1818. i051620138.png ; $$\Gamma = \partial D _ { 1 } \times \square \ldots \times \partial D _ { n }$$ ; confidence 0.954

1819. i05162045.png ; $$\Gamma ( z ) = \frac { 1 } { e ^ { 2 i \pi z } - 1 } \int _ { L _ { 1 } } \zeta ^ { z - 1 } e ^ { - \zeta } d \zeta$$ ; confidence 0.895

1820. i05162064.png ; $$\frac { \partial } { \partial z } = \frac { 1 } { 2 } ( \frac { \partial } { \partial x } + i \frac { \partial } { \partial y } )$$ ; confidence 0.997

1821. i12004046.png ; $$\partial D \times D$$ ; confidence 0.998

1822. i11008014.png ; $$g \in E$$ ; confidence 0.988

1823. i11008077.png ; $$T f _ { n } \rightarrow 0$$ ; confidence 0.976

1824. i05177061.png ; $$\psi = \sum \psi _ { i } \partial / \partial x _ { i }$$ ; confidence 0.981

1825. i05187033.png ; $$T _ { W } ^ { 2 k + 1 } ( X )$$ ; confidence 0.984

1826. i05188051.png ; $$\mathfrak { M } \in S _ { 1 }$$ ; confidence 0.842

1827. i051930181.png ; $$Y = C$$ ; confidence 0.871

1828. i051930154.png ; $$\{ f _ { \alpha } : \alpha \in \mathfrak { A } \}$$ ; confidence 0.968

1829. i05194058.png ; $$m \times ( n + 1 )$$ ; confidence 1.000

1830. i05195031.png ; $$\frac { ( x - x _ { k } - 1 ) ( x - x _ { k + 1 } ) } { ( x _ { k } - x _ { k - 1 } ) ( x _ { k } - x _ { k + 1 } ) } f ( x _ { k } ) + \frac { ( x - x _ { k - 1 } ) ( x - x _ { k } ) } { ( x _ { k } + 1 - x _ { k - 1 } ) ( x _ { k + 1 } - x _ { k } ) } f ( x _ { k + 1 } )$$ ; confidence 0.069

1831. i051950193.png ; $$\{ \psi _ { i } ( x ) \} _ { i = 0 } ^ { n }$$ ; confidence 0.981

1832. i051970120.png ; $$\omega _ { n - 1 } ( z ) = ( z - b _ { 0 } ) \ldots ( z - b _ { n } - 1 )$$ ; confidence 0.462

1833. i05200039.png ; $$\Delta ^ { i }$$ ; confidence 0.491

1834. i05202038.png ; $$B = Y \backslash 0$$ ; confidence 0.999

1835. i12006014.png ; $$x < \varrho y$$ ; confidence 0.723

1836. i05211013.png ; $$T \subset R ^ { 1 }$$ ; confidence 0.989

1837. i05213037.png ; $$\forall y \exists z ( \gamma ( y ) + 1 = \alpha ( g * \overline { \beta } ( z ) ) )$$ ; confidence 0.288

1838. i0521507.png ; $$\forall x ( P ( x ) \vee \neg P ( x ) ) \wedge \neg \neg \neg x P ( x ) \supset \exists x P ( x )$$ ; confidence 0.397

1839. i0522303.png ; $$x \leq z \leq y$$ ; confidence 0.995

1840. i05226072.png ; $$Z \in G$$ ; confidence 0.401

1841. i05237019.png ; $$\operatorname { inh } ^ { - 1 } z = - i \operatorname { arcsin } i z$$ ; confidence 0.766

1842. i13005074.png ; $$| r _ { + } ( k ) | \leq 1 - c k ^ { 2 } ( 1 + k ^ { 2 } ) ^ { - 1 }$$ ; confidence 0.554

1843. i13005080.png ; $$s > - \infty$$ ; confidence 0.985

1844. i130060185.png ; $$< 2 a$$ ; confidence 0.500

1845. i13006049.png ; $$y \geq x \geq 0$$ ; confidence 0.999

1846. i13007010.png ; $$q ( x ) \in L ^ { 2 } \operatorname { loc } ( R ^ { 3 } )$$ ; confidence 0.953

1847. i05241032.png ; $$y = Arc$$ ; confidence 0.482

1848. i05241017.png ; $$\operatorname { cos } ^ { - 1 } x$$ ; confidence 1.000

1849. i0524507.png ; $$F [ \phi ( w ) ]$$ ; confidence 0.983

1850. i0524504.png ; $$b = f ( a ) = b _ { 0 }$$ ; confidence 0.455

1851. i05250047.png ; $$P ^ { N } ( k )$$ ; confidence 0.999

1852. i05250054.png ; $$L ^ { \prime }$$ ; confidence 0.256

1853. i05250023.png ; $$O _ { X } ( 1 ) = O ( 1 )$$ ; confidence 0.996

1854. i05252091.png ; $$f ( x ^ { * } x ) \leq f ( 1 ) r ( x ^ { * } x )$$ ; confidence 0.984

1855. i05255041.png ; $$\omega ^ { \beta }$$ ; confidence 0.626

1856. i05266017.png ; $$0 \in R ^ { 3 }$$ ; confidence 0.983

1857. i12008061.png ; $$H = 0$$ ; confidence 0.999

1858. i12008047.png ; $$m s$$ ; confidence 0.683

1859. i120080116.png ; $$\gamma = 7 / 4$$ ; confidence 0.659

1860. i05273034.png ; $$p : G \rightarrow G$$ ; confidence 0.995

1861. i13008028.png ; $$X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$$ ; confidence 0.831

1862. i05280027.png ; $$x = \{ x ^ { \alpha } ( u ^ { s } ) \}$$ ; confidence 0.775

1863. i052800127.png ; $$E ^ { 2 k + 1 }$$ ; confidence 0.996

1864. i052860119.png ; $$( = 2 / \pi )$$ ; confidence 0.994

1865. i05294039.png ; $$F _ { t } : M ^ { n } \rightarrow M ^ { n }$$ ; confidence 0.989

1866. i05294012.png ; $$Y \times t$$ ; confidence 0.546

1867. i05298049.png ; $$L ^ { \prime } ( T _ { x } M )$$ ; confidence 0.252

1868. i05302031.png ; $$\kappa _ { k } = a _ { n n } ^ { ( k ) }$$ ; confidence 0.556

1869. i05302096.png ; $$\beta _ { k } q _ { k + 1 } = A q _ { k } - \beta _ { k - 1 } q _ { k - 1 } - \alpha _ { k } q _ { k k }$$ ; confidence 0.371

1870. i05304033.png ; $$F _ { 0 }$$ ; confidence 0.994

1871. i13009013.png ; $$k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$$ ; confidence 0.434

1872. i130090151.png ; $$p < 12000000$$ ; confidence 1.000

1873. i130090126.png ; $$\lambda _ { p } ( K / k ) = \lambda ( X )$$ ; confidence 0.997

1874. i130090231.png ; $$( X ^ { \omega } \chi ^ { - 1 } ) = \pi ^ { \mu _ { \chi } ^ { * } } g _ { \chi } ^ { * } ( T )$$ ; confidence 0.875

1875. i130090155.png ; $$\overline { Q } _ { p }$$ ; confidence 0.689

1876. i13009026.png ; $$\mu _ { m }$$ ; confidence 0.969

1877. j05405048.png ; $$\theta _ { 3 } ( v \pm \frac { 1 } { 2 } \tau ) = e ^ { - i \pi \tau / 4 } \cdot e ^ { - i \pi v } \cdot \theta _ { 2 } ( v )$$ ; confidence 0.312

1878. j054050109.png ; $$dn ^ { 2 } u + k ^ { 2 } sn ^ { 2 } u = 1$$ ; confidence 0.565

1879. j05405038.png ; $$\theta _ { 2 } ( v \pm \tau ) = e ^ { - i \pi \tau } \cdot e ^ { - 2 i \pi v } \cdot \theta _ { 2 } ( v )$$ ; confidence 0.234

1880. j054050155.png ; $$e _ { 1 } = ( 2 - k ^ { 2 } ) / 3$$ ; confidence 0.995

1881. j05405060.png ; $$H _ { 2 } = \prod _ { m = 1 } ^ { \infty } ( 1 + e ^ { ( 2 m - 1 ) i \pi \tau } )$$ ; confidence 0.836

1882. j05407010.png ; $$w _ { 1 } = w _ { 1 } ( z _ { 1 } )$$ ; confidence 0.916

1883. j05409038.png ; $$x = B x + g$$ ; confidence 0.998

1884. j12001037.png ; $$\operatorname { log } F \leq 100$$ ; confidence 0.843

1885. j05420048.png ; $$f _ { 0 } ( \Delta )$$ ; confidence 0.998

1886. j05420029.png ; $$f _ { 0 } ( z _ { j } ) = \left\{ \begin{array} { l l } { \alpha ^ { ( j ) } z _ { j } + \text { non-positive powers of } z _ { j } } & { \text { if } j \leq r } \\ { z _ { j } + \sum _ { s = x _ { j } } ^ { \infty } a _ { s } ^ { ( j ) } z _ { j } ^ { - s } } & { \text { if } j > r } \end{array} \right.$$ ; confidence 0.051

1887. j120020198.png ; $$k _ { \vartheta } ( z ) = \frac { 1 - | z | ^ { 2 } } { | z - e ^ { i \vartheta | ^ { 2 } } }$$ ; confidence 0.753

1888. j120020240.png ; $$B M O$$ ; confidence 0.973

1889. j05425028.png ; $$K ^ { * }$$ ; confidence 0.718

1890. j13004062.png ; $$\operatorname { cr } ( K )$$ ; confidence 0.995

1891. j13004079.png ; $$s ( L ) \geq ( E - e ) / 2$$ ; confidence 0.952

1892. j130040145.png ; $$M ^ { ( 2 ) }$$ ; confidence 0.998

1893. j13004075.png ; $$( n _ { + } - n _ { - } ) - ( s ( D _ { L } ) - 1 ) \leq e \leq E \leq ( n _ { + } - n _ { - } ) + ( s ( D _ { L } ) - 1 )$$ ; confidence 0.972

1894. j0543403.png ; $$J = \left| \begin{array} { c c c c } { J _ { n _ { 1 } } ( \lambda _ { 1 } ) } & { \square } & { \square } & { \square } \\ { \square } & { \ldots } & { \square } & { 0 } \\ { 0 } & { \square } & { \ldots } & { \square } \\ { \square } & { \square } & { \square } & { J _ { n _ { S } } ( \lambda _ { s } ) } \end{array} \right|$$ ; confidence 0.072

1895. j13007031.png ; $$L = \angle \operatorname { lim } _ { z \rightarrow \omega } f ( z )$$ ; confidence 0.923

1896. j13007082.png ; $$\phi _ { \omega } ( F ( z ) ) \leq \phi _ { \omega } ( z )$$ ; confidence 0.994

1897. k055030100.png ; $$t = [ \xi _ { E } ]$$ ; confidence 0.983

1898. k05503063.png ; $$T ( X )$$ ; confidence 0.996

1899. k05504059.png ; $$x _ { 0 } ^ { 4 } + x _ { 1 } ^ { 4 } + x _ { 2 } ^ { 4 } + x _ { 3 } ^ { 4 } = 0$$ ; confidence 0.998

1900. k05510011.png ; $$h = K \eta \leq 1 / 2$$ ; confidence 0.997

1901. k11003029.png ; $$\frac { x ^ { \rho + 1 } f ( x ) } { \int _ { x } ^ { x } t ^ { \sigma } f ( t ) d t } \rightarrow \sigma + \rho + 1 \quad ( x \rightarrow \infty )$$ ; confidence 0.320

1902. k13001035.png ; $$f ( \vec { D } ( A ) ) = ( - A ^ { 3 } ) ^ { - \operatorname { Tait } ( \vec { D } ) } \langle D \rangle$$ ; confidence 0.497

1903. k13001041.png ; $$A | D _ { + } \rangle - A ^ { - 1 } \langle D _ { - } \} = ( A ^ { 2 } - A ^ { - 2 } ) \langle D _ { 0 } \}$$ ; confidence 0.230

1904. k13001019.png ; $$T ( s )$$ ; confidence 1.000

1905. k12004019.png ; $$\overline { 9 } _ { 42 }$$ ; confidence 0.683

1906. k12006031.png ; $$h ^ { 0 } ( K _ { X } \otimes L ^ { * } )$$ ; confidence 0.989

1907. k1200504.png ; $$B = \sum _ { j = 1 } ^ { t } b _ { j } B _ { j }$$ ; confidence 0.961

1908. k12005074.png ; $$m \geq m _ { 0 }$$ ; confidence 0.997

1909. k05518015.png ; $$z ^ { 2 } y ^ { \prime \prime } + z y ^ { \prime } - ( i z ^ { 2 } + \nu ^ { 2 } ) y = 0$$ ; confidence 0.967

1910. k11007019.png ; $$- w _ { 0 } ( \chi )$$ ; confidence 0.944

1911. k1100801.png ; $$W _ { C }$$ ; confidence 0.473

1912. k12008015.png ; $$K _ { p } ( f ) ( p _ { i } ) = f ( p _ { i } )$$ ; confidence 0.995

1913. k0553405.png ; $$K _ { \mu }$$ ; confidence 0.997

1914. k05535065.png ; $$K _ { 0 } ^ { 4 k + 2 }$$ ; confidence 0.990

1915. k05544031.png ; $$\Delta u = - f ( x )$$ ; confidence 0.986

1916. k0554502.png ; $$u | _ { \Sigma } = 0$$ ; confidence 0.837

1917. k05548037.png ; $$R \phi / 6$$ ; confidence 0.994

1918. k0554806.png ; $$\mu = m c / \hbar$$ ; confidence 0.999

1919. k05548036.png ; $$\| g _ { \alpha \beta } \|$$ ; confidence 0.862

1920. k05548012.png ; $$\partial / \partial x ^ { \alpha } \rightarrow ( \partial / \partial x ^ { \alpha } ) - i e A _ { \alpha } / \hbar$$ ; confidence 0.973

1921. k05552076.png ; $$\Omega ( \Gamma )$$ ; confidence 1.000

1922. k05552082.png ; $$\Gamma 20$$ ; confidence 0.310

1923. k05552062.png ; $$D _ { 1 } / \Gamma$$ ; confidence 0.999

1924. k055520124.png ; $$\frac { 1 } { 2 \pi } \{ \text { hyperbolic area of } \Omega \backslash \Gamma \} \leq 2 ( N - 1 )$$ ; confidence 0.926

1925. k055580126.png ; $$\hat { M } _ { 0 }$$ ; confidence 0.537

1926. k055610105.png ; $$Q _ { 1 } : A \rightarrow T ^ { \prime } A T$$ ; confidence 0.990

1927. k0556303.png ; $$| m K _ { V ^ { \prime } } | ^ { J }$$ ; confidence 0.246

1928. k0556604.png ; $$f ( z ) = z + \ldots$$ ; confidence 0.768

1929. k0557001.png ; $$\frac { \partial f } { \partial s } = - A _ { S } f$$ ; confidence 0.702

1930. k05570014.png ; $$I _ { \Gamma } ( x )$$ ; confidence 0.999

1931. k05570017.png ; $$A _ { t } ^ { * }$$ ; confidence 0.985

1932. k12009012.png ; $$= \frac { 2 } { \pi ^ { 2 } x _ { 0 } } \int _ { 0 } ^ { \infty } K _ { i \tau } ( x _ { 0 } ) \tau \operatorname { sinh } ( \pi \tau ) F ( \tau ) d \tau$$ ; confidence 0.890

1933. k11013020.png ; $$( \alpha _ { i } ) _ { i \in I }$$ ; confidence 0.480

1934. k05580079.png ; $$( \partial ^ { 2 } / \partial x \partial t ) u = \operatorname { sin } u$$ ; confidence 0.562

1935. k0558203.png ; $$\square ^ { 1 } S _ { 2 } ( i )$$ ; confidence 0.950

1936. k055840272.png ; $$E ( \Delta ) K \subset D ( A )$$ ; confidence 0.947

1937. k055840256.png ; $$c ( A ) \subset R \cup \{ \infty \}$$ ; confidence 0.588

1938. k055840354.png ; $$C = C ^ { * }$$ ; confidence 0.990

1939. k05585032.png ; $$W _ { \alpha } ( P ) \subseteq ( D _ { \alpha } ) ^ { n }$$ ; confidence 0.991

1940. k055850103.png ; $$D _ { \alpha }$$ ; confidence 0.374

1941. k05585059.png ; $$W _ { \alpha } ( B \supset C ) = T \leftrightarrows$$ ; confidence 0.637

1942. k05591019.png ; $$\sum _ { j = 1 } ^ { n } b _ { j } r j \in Z$$ ; confidence 0.479

1943. k05594036.png ; $$\eta ( \epsilon ) \rightarrow 0$$ ; confidence 0.993

1944. k05594016.png ; $$\frac { d \xi } { d t } = \epsilon X _ { 0 } ( \xi ) + \epsilon ^ { 2 } P _ { 2 } ( \xi ) + \ldots + \epsilon ^ { m } P _ { m } ( \xi )$$ ; confidence 0.966

1945. k05594047.png ; $$\xi = \xi _ { 0 } ( \phi )$$ ; confidence 0.999

1946. k11019034.png ; $$\mu _ { n } ( P \| Q ) =$$ ; confidence 0.972

1947. k11019069.png ; $$P = Q$$ ; confidence 0.998

1948. k12003033.png ; $$E \neq \emptyset$$ ; confidence 0.475

1949. k12003040.png ; $$E = \emptyset$$ ; confidence 0.977

1950. k12003036.png ; $$F _ { M } : G \rightarrow C ^ { * }$$ ; confidence 0.933

1951. k05507045.png ; $$g = \sum g _ { \alpha \overline { \beta } } d z ^ { \alpha } \otimes d z \square ^ { \beta }$$ ; confidence 0.694

1952. k05508019.png ; $$\nu _ { 0 } \in C ^ { n }$$ ; confidence 0.245

1953. k056010135.png ; $$p : X \rightarrow S$$ ; confidence 0.998

1954. k056010160.png ; $$R ^ { k } p \times ( F )$$ ; confidence 0.519

1955. l11002085.png ; $$x \preceq y$$ ; confidence 0.956

1956. l11003082.png ; $$M ( E ) = \vec { X }$$ ; confidence 0.493

1957. l057050123.png ; $$c \rightarrow N$$ ; confidence 0.335

1958. l057050113.png ; $$\overline { B } \rightarrow \overline { B }$$ ; confidence 0.985

1959. l057050165.png ; $$a \rightarrow a b d ^ { 6 }$$ ; confidence 0.569

1960. l11016049.png ; $$n ^ { O ( n ) } M ^ { O ( 1 ) }$$ ; confidence 0.921

1961. l0571105.png ; $$\{ \phi _ { n } \} _ { n = 1 } ^ { \infty }$$ ; confidence 0.817

1962. l0571208.png ; $$1 \leq p < + \infty$$ ; confidence 0.999

1963. l05715028.png ; $$3 N + k + m$$ ; confidence 0.919

1964. l05715026.png ; $$\ddot { x } \square _ { \nu } = d \dot { x } \square _ { \nu } / d t$$ ; confidence 0.944

1965. l05715031.png ; $$\mu$$ ; confidence 0.335

1966. l05718018.png ; $$x g$$ ; confidence 0.734

1967. l0572001.png ; $$T + V = h$$ ; confidence 0.994

1968. l11005048.png ; $$v ( P ) - v ( D )$$ ; confidence 0.999

1969. l1100603.png ; $$x ^ { ( 0 ) } = 1$$ ; confidence 0.976

1970. l05700011.png ; $$M N$$ ; confidence 0.867

1971. l057000153.png ; $$+ ( \lambda x y \cdot y ) : ( \sigma \rightarrow ( \tau \rightarrow \tau ) )$$ ; confidence 0.262

1972. l0570007.png ; $$( M N ) \in \Lambda$$ ; confidence 0.998

1973. l05700094.png ; $$\equiv \lambda x y \cdot x$$ ; confidence 0.709

1974. l05700010.png ; $$( \lambda x M ) \in \Lambda$$ ; confidence 0.756

1975. l05743029.png ; $$k ^ { 2 } ( \tau ) = \lambda$$ ; confidence 0.999

1976. l05744010.png ; $$D = 2 \gamma k T / M$$ ; confidence 0.990

1977. l12003069.png ; $$T _ { F }$$ ; confidence 0.455

1978. l12003046.png ; $$T _ { E } : U \rightarrow U$$ ; confidence 0.704

1979. l05745021.png ; $$v \in C ( \overline { G } )$$ ; confidence 0.795

1980. l05751032.png ; $$\Delta ( \alpha _ { 1 } \ldots i _ { p } d x ^ { i _ { 1 } } \wedge \ldots \wedge d x ^ { i p } ) =$$ ; confidence 0.331

1981. l05754082.png ; $$| t | ^ { - 1 }$$ ; confidence 1.000

1982. l05756010.png ; $$E = \frac { m } { 2 } ( \dot { x } \square _ { 1 } ^ { 2 } + \dot { x } \square _ { 2 } ^ { 2 } + \dot { x } \square _ { 3 } ^ { 2 } ) + \frac { \kappa } { r }$$ ; confidence 0.586

1983. l05759015.png ; $$\sqrt { 2 }$$ ; confidence 0.155

1984. l05761045.png ; $$m < n ^ { ( 1 / 3 ) - \delta }$$ ; confidence 0.883

1985. l05761040.png ; $$U _ { 0 } = 1$$ ; confidence 0.997

1986. l0576408.png ; $$\alpha _ { 1 } + n h _ { 1 }$$ ; confidence 0.738

1987. l05772024.png ; $$E ( \mu _ { n } / n )$$ ; confidence 0.725

1988. l05774010.png ; $$\operatorname { lim } _ { n \rightarrow \infty } \operatorname { sup } \frac { S _ { n } } { c _ { n } } = 1 \quad ( \alpha . s . )$$ ; confidence 0.299

1989. l057780212.png ; $$31$$ ; confidence 0.915

1990. l057780113.png ; $$\mu \approx 18.431$$ ; confidence 0.997

1991. l05778086.png ; $$4.60$$ ; confidence 0.967

1992. l057780230.png ; $$E Y _ { i } = ( \alpha + \beta \overline { t } ) + \beta ( t _ { i } - \overline { t } )$$ ; confidence 0.681

1993. l057780185.png ; $$\alpha _ { 2 } ( t ) = t$$ ; confidence 0.461

1994. l12005018.png ; $$f ( x ) = \operatorname { lim } _ { N \rightarrow \infty } \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { N } \operatorname { cosh } ( \pi \tau ) \operatorname { Im } K _ { 1 / 2 + i \tau } ( x ) F ( \tau ) d \tau$$ ; confidence 0.580

1995. l05787021.png ; $$\lambda ( I ) = \lambda ^ { * } ( A \cap I ) + \lambda ^ { * } ( I \backslash A )$$ ; confidence 0.776

1996. l12006098.png ; $$H \phi$$ ; confidence 0.878

1997. l12006043.png ; $$\int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle ^ { 2 } } { \lambda } _ { d } \lambda < E _ { 0 }$$ ; confidence 0.248

1998. l12006027.png ; $$\phi \in H$$ ; confidence 0.981

1999. l0580808.png ; $$B \subset X ^ { * }$$ ; confidence 0.699

2000. l05814017.png ; $$v = v ( t )$$ ; confidence 0.987

2001. l0581405.png ; $$s = \int _ { a } ^ { b } \sqrt { 1 + [ f ^ { \prime } ( x ) ] ^ { 2 } } d x$$ ; confidence 0.961

2002. l05817023.png ; $$\{ i _ { k } \}$$ ; confidence 0.773

2003. l05821011.png ; $$\zeta = 0$$ ; confidence 0.999

2004. l05821012.png ; $$- \operatorname { log } | \zeta |$$ ; confidence 0.998

2005. l05821045.png ; $$0 < r < \operatorname { tanh } \pi / 4$$ ; confidence 0.998

2006. l0582408.png ; $$\operatorname { grad } \phi ( \zeta ) \neq 0$$ ; confidence 0.967

2007. l05836041.png ; $$x \# y = x y + y x - \frac { 2 } { n + 1 } ( \operatorname { Tr } x y ) l$$ ; confidence 0.625

2008. l05836011.png ; $$( x y ) x = y ( y x )$$ ; confidence 1.000

2009. l058360172.png ; $$\mathfrak { A } ^ { - }$$ ; confidence 0.906

2010. l05836089.png ; $$S ^ { i j } = \Omega ^ { i j } + T ^ { i j }$$ ; confidence 0.980

2011. l058360168.png ; $$x$$ ; confidence 0.899

2012. l058360142.png ; $$P _ { 8 }$$ ; confidence 0.799

2013. l058430107.png ; $$g ^ { \prime } / ( 1 - u ) g ^ { \prime } = \overline { g }$$ ; confidence 0.215

2014. l05847082.png ; $$\mathfrak { g } = \mathfrak { a } + \mathfrak { n }$$ ; confidence 0.634

2015. l058510198.png ; $$0 \leq p \leq n / 2$$ ; confidence 0.998

2016. l058510173.png ; $$A _ { I l }$$ ; confidence 0.608

2017. l05848075.png ; $$L ( H )$$ ; confidence 0.995

2018. l12009013.png ; $$Q _ { A }$$ ; confidence 0.136

2019. l058590134.png ; $$S \cap R ( G ) = ( e )$$ ; confidence 0.872

2020. l05859076.png ; $$x ( 1 )$$ ; confidence 1.000

2021. l05861031.png ; $$Z \times T$$ ; confidence 0.994

2022. l05861083.png ; $$C ^ { n } / \Gamma _ { 1 }$$ ; confidence 0.708

2023. l05866027.png ; $$G \subset N ( F )$$ ; confidence 0.979

2024. l05868041.png ; $$\pi _ { 1 } ( G ) \cong \Gamma ( G ) / \Gamma _ { 0 }$$ ; confidence 0.992

2025. l05872090.png ; $$l _ { k } ( A )$$ ; confidence 0.348

2026. l11014038.png ; $$\epsilon$$ ; confidence 0.882

2027. l11014014.png ; $$\tilde { y } ( x ) = \operatorname { exp } ( - \epsilon ) f ( x \operatorname { exp } ( - \epsilon ) )$$ ; confidence 0.405

2028. l05877073.png ; $$\operatorname { lm } A _ { * } = \mathfrak { g }$$ ; confidence 0.711

2029. l120100122.png ; $$R ^ { n } \times R ^ { n }$$ ; confidence 0.554

2030. l12010011.png ; $$\left\{ \begin{array} { l l } { \gamma \geq \frac { 1 } { 2 } } & { \text { forn } = 1 } \\ { \gamma > 0 } & { \text { forn } = 2 } \\ { \gamma \geq 0 } & { \text { forn } \geq 3 } \end{array} \right.$$ ; confidence 0.191

2031. l12010023.png ; $$\approx ( 2 \pi ) ^ { - n } \int _ { R ^ { n } \times R ^ { n } } [ p ^ { 2 } + V ( x ) ] _ { - } ^ { \gamma } d p d x =$$ ; confidence 0.680

2032. l058820245.png ; $$\operatorname { lim } _ { x \rightarrow x _ { 0 } } ( f _ { 1 } ( x ) / f _ { 2 } ( x ) )$$ ; confidence 0.857

2033. l058820138.png ; $$\operatorname { lim } _ { x \rightarrow x _ { 0 } } f ( x ) = \alpha$$ ; confidence 0.845

2034. l058820374.png ; $$\tau = \{ t _ { i } \} _ { i = 0 } ^ { i = n }$$ ; confidence 0.875

2035. l05883068.png ; $$- \Delta u + c u$$ ; confidence 0.993

2036. l05892067.png ; $$Z y \rightarrow \infty$$ ; confidence 0.270

2037. l05902046.png ; $$y = \operatorname { sin } ( 1 / x )$$ ; confidence 1.000

2038. l059110158.png ; $$f _ { h } \in F _ { k }$$ ; confidence 0.549

2039. l05911037.png ; $$p i n$$ ; confidence 0.132

2040. l05911071.png ; $$+ \sum _ { i = 1 } ^ { s } \| k _ { i k } [ u ] _ { k } - \{ l _ { i } u \} _ { i k } \| _ { \Phi _ { i k } } + \| p _ { i k } \phi _ { i } - \{ \phi _ { i } \} _ { i k } \| _ { \Phi _ { i k } }$$ ; confidence 0.263

2041. l059110155.png ; $$L _ { h } u _ { k } = f _ { k }$$ ; confidence 0.508

2042. l05911046.png ; $$\{ \phi _ { i } \} _ { i k }$$ ; confidence 0.712

2043. l05911087.png ; $$l _ { 2 } u = \phi _ { 2 } ( t )$$ ; confidence 0.851

2044. l13006070.png ; $$\frac { 1 } { 4 n } \operatorname { max } \{ \alpha _ { i } : 0 \leq i \leq t \} \leq \Delta _ { 2 } \leq \frac { 1 } { 4 n } ( \sum _ { i = 0 } ^ { t } \alpha _ { i } + 2 )$$ ; confidence 0.363

2045. l05914024.png ; $$\nabla _ { Y } ( f X ) = ( Y f ) X + f \nabla _ { Y } X$$ ; confidence 0.681

2046. l0591406.png ; $$T _ { x _ { 1 } } ( M ) \rightarrow T _ { x _ { 0 } } ( M )$$ ; confidence 0.821

2047. l05916065.png ; $$A ^ { ( 0 ) }$$ ; confidence 0.506

2048. l059160187.png ; $$\dot { u } = A _ { n } u$$ ; confidence 0.195

2049. l05916072.png ; $$\operatorname { ln } t$$ ; confidence 0.999

2050. l059160335.png ; $$T _ { \Delta }$$ ; confidence 0.636

2051. l059160231.png ; $$\lambda \geq \gamma$$ ; confidence 0.474

2052. l05917055.png ; $$\Gamma _ { 0 } ( . )$$ ; confidence 0.995

2053. l059170161.png ; $$H ^ { k }$$ ; confidence 0.998

2054. l05925090.png ; $$v \in ( 1 - t ) V$$ ; confidence 0.837

2055. l059340144.png ; $$C _ { 0 } ( R )$$ ; confidence 0.976

2056. l059340213.png ; $$A -$$ ; confidence 0.967

2057. l05935016.png ; $$x ( t ) \equiv 0$$ ; confidence 0.999

2058. l05935013.png ; $$x ^ { ( n ) } + \alpha _ { 1 } ( t ) x ^ { ( n - 1 ) } + \ldots + \alpha _ { n } ( t ) x = 0$$ ; confidence 0.867

2059. l059350101.png ; $$X ( t ) = \operatorname { exp } ( \int _ { t _ { 0 } } ^ { t } A ( \tau ) d \tau )$$ ; confidence 0.977

2060. l05935092.png ; $$Y ( t ) = X ( t ) C$$ ; confidence 0.998

2061. l05935079.png ; $$W ( t ) \neq 0$$ ; confidence 0.995

2062. l059350157.png ; $$x ( 0 ) \in R ^ { n }$$ ; confidence 0.473

2063. l059350126.png ; $$\dot { y } = - A ^ { T } ( t ) y$$ ; confidence 0.993

2064. l05941048.png ; $$Q _ { 3 } ( b )$$ ; confidence 0.962

2065. l05949079.png ; $$x = F ( t ) y$$ ; confidence 0.992

2066. l059490217.png ; $$\rho ^ { ( j ) }$$ ; confidence 0.828

2067. l05949032.png ; $$\alpha ^ { ( 0 ) }$$ ; confidence 0.892

2068. l059490155.png ; $$| \epsilon | < \epsilon$$ ; confidence 0.461

2069. l059490127.png ; $$\frac { d z } { d t } = - A ( t ) ^ { * } Z$$ ; confidence 0.495

2070. l0595404.png ; $$L ( 0 ) = 0$$ ; confidence 1.000

2071. l05961011.png ; $$\frac { d w _ { N } } { d t } = \frac { \partial w _ { N } } { \partial t } + \sum _ { i = 1 } ^ { N } ( \frac { \partial w _ { N } } { \partial r _ { i } } \frac { d r _ { i } } { d t } + \frac { \partial w _ { N } } { \partial p _ { i } } \frac { d p _ { i } } { d t } ) = 0$$ ; confidence 0.716

2072. l05971012.png ; $$f \in H _ { p } ^ { \alpha }$$ ; confidence 0.996

2073. l120120208.png ; $$G ( K _ { p ^ { \prime } } )$$ ; confidence 0.801

2074. l120120133.png ; $$( K _ { p } ) _ { i n s }$$ ; confidence 0.851

2075. l12012087.png ; $$Z _ { \text { tot } S } = Z$$ ; confidence 0.066

2076. l060090100.png ; $$\operatorname { dim } Z \cap \overline { S _ { k + q + 1 } } ( F | _ { X \backslash Z } ) \leq k$$ ; confidence 0.399

2077. l06016034.png ; $$\alpha = E X _ { 1 }$$ ; confidence 0.670

2078. l06019071.png ; $$d ( A )$$ ; confidence 0.998

2079. l0602207.png ; $$\in \Theta$$ ; confidence 0.953

2080. l06025052.png ; $$m = n = 1$$ ; confidence 0.998

2081. l06029012.png ; $$\left. \begin{array} { c c c } { R } & { \stackrel { \pi _ { 2 } \mu } { \rightarrow } } & { B } \\ { \pi _ { 1 } \mu \downarrow } & { \square } & { \downarrow \beta } \\ { A } & { \vec { \alpha } } & { C } \end{array} \right.$$ ; confidence 0.590

2082. l06031040.png ; $$R = \{ \alpha \in K : \operatorname { mod } _ { K } ( \alpha ) \leq 1 \}$$ ; confidence 0.342

2083. l0605309.png ; $$h _ { U } = \phi _ { U } ^ { - 1 }$$ ; confidence 0.912

2084. l12015025.png ; $$w \in T V$$ ; confidence 0.524

2085. l06060022.png ; $$\int \frac { d x } { x } = \operatorname { ln } | x | + C$$ ; confidence 0.986

2086. l06060030.png ; $$\pi < \operatorname { arg } z \leq \pi$$ ; confidence 0.972

2087. l0606404.png ; $$\operatorname { res } _ { \mathscr { d } } \frac { f ^ { \prime } ( z ) } { f ( z ) }$$ ; confidence 0.129

2088. l110170115.png ; $$Q \alpha = Q \beta \gamma$$ ; confidence 0.989

2089. l0607706.png ; $$\operatorname { inv } ( x )$$ ; confidence 0.875

2090. l06082028.png ; $$\Delta ^ { r + 1 } v _ { j } = \Delta ^ { r } v _ { j + 1 } - \Delta ^ { r } v _ { j }$$ ; confidence 0.659

2091. l06083045.png ; $$b \in Q$$ ; confidence 0.934

2092. l06083024.png ; $$Q _ { i - 1 } / Q _ { i }$$ ; confidence 0.640

2093. l12016033.png ; $$( S ^ { 1 } )$$ ; confidence 0.472

2094. l1201604.png ; $$z = e ^ { i \theta }$$ ; confidence 0.999

2095. l0609706.png ; $$\alpha = R \operatorname { ln } \operatorname { tan } ( \frac { \pi } { 4 } + \frac { u } { 2 R } )$$ ; confidence 0.905

2096. l0610509.png ; $$f ^ { \prime } ( x ) = 0$$ ; confidence 1.000

2097. l06113042.png ; $$\| \alpha _ { j } ^ { i } \|$$ ; confidence 0.148

2098. l12019039.png ; $$x = - \sum _ { k = 0 } ^ { \infty } ( A ^ { * } ) ^ { k } C ( A ) ^ { k }$$ ; confidence 0.953

2099. l12019010.png ; $$\lambda _ { j } + \overline { \lambda } _ { k } = 0$$ ; confidence 0.991

2100. l06116099.png ; $$V _ { 0 } \subset E$$ ; confidence 0.979

2101. l061160114.png ; $$x _ { 0 } ( . ) : t _ { 0 } + R ^ { + } \rightarrow U$$ ; confidence 0.802

2102. l06120026.png ; $$E ( T ) = \int \int _ { T } \frac { d x d y } { | x - y | }$$ ; confidence 0.572

2103. l05831065.png ; $$F _ { n } ( - \infty ) \rightarrow F ( - \infty )$$ ; confidence 0.972

2104. m1200304.png ; $$f _ { \theta } ( x )$$ ; confidence 0.998

2105. m12003057.png ; $$\varepsilon ^ { * } ( M A D ) = 1 / 2$$ ; confidence 0.731

2106. m06207013.png ; $$H _ { 2 } \times H _ { 1 }$$ ; confidence 0.537

2107. m11002071.png ; $$f \circ R _ { 1 } = R _ { 2 } \circ f$$ ; confidence 0.984

2108. m13002013.png ; $$F _ { A } = * D _ { A } \phi$$ ; confidence 0.738

2109. m13002029.png ; $$A = ( \frac { 1 } { \operatorname { sinh } r } - \frac { 1 } { r } ) \epsilon _ { i j k } \frac { x _ { j } } { r } \sigma _ { k } d x _ { i }$$ ; confidence 0.768

2110. m1300307.png ; $$f ( z ^ { d } ) = f ( z ) - z$$ ; confidence 0.796

2111. m06216027.png ; $$p < q$$ ; confidence 0.966

2112. m062160173.png ; $$E$$ ; confidence 0.975

2113. m062160147.png ; $$\kappa = \mu ^ { * }$$ ; confidence 0.985

2114. m12009011.png ; $$- i \partial / \partial x _ { j }$$ ; confidence 0.526

2115. m12009064.png ; $$P ^ { * } ( D )$$ ; confidence 0.999

2116. m11005068.png ; $$q ^ { - 1 } = 1 - p ^ { - 1 }$$ ; confidence 1.000

2117. m06222011.png ; $$\Delta \lambda _ { i } ^ { \alpha }$$ ; confidence 0.329

2118. m12011020.png ; $$t ( h ) = T ( h ) \cup \partial T ( k ) \partial F \times D ^ { 2 }$$ ; confidence 0.532

2119. m12011054.png ; $$\pi _ { 1 } ( M ) \neq Z _ { 2 }$$ ; confidence 0.886

2120. m12011082.png ; $$\Phi ( M ) \in Wh ( \pi _ { 1 } ( M ) )$$ ; confidence 0.743

2121. m06233049.png ; $$M _ { \psi } ^ { 0 }$$ ; confidence 0.996

2122. m06235096.png ; $$\mu ^ { - 1 }$$ ; confidence 0.999

2123. m06236012.png ; $$T _ { i j }$$ ; confidence 0.337

2124. m0623907.png ; $$P \{ \xi ( 0 ) = j \} = p _ { j }$$ ; confidence 0.551

2125. m06249026.png ; $$\Lambda \in N ^ { t }$$ ; confidence 0.838

2126. m062490165.png ; $$\Lambda = \{ \omega : x _ { S } \in B \}$$ ; confidence 0.703

2127. m06249054.png ; $$F _ { \infty } ^ { s }$$ ; confidence 0.520

2128. m06249090.png ; $$\alpha _ { \epsilon } ( h ) = o ( h )$$ ; confidence 0.989

2129. m06254054.png ; $$| \theta - \frac { p } { n } | \leq \frac { 1 } { \tau q ^ { 2 } }$$ ; confidence 0.999

2130. m06255040.png ; $$u ( y ) \geq 0$$ ; confidence 0.997

2131. m06255050.png ; $$0 \leq w \leq v$$ ; confidence 0.958

2132. m06256075.png ; $$K _ { y } ^ { \alpha }$$ ; confidence 0.924

2133. m120120128.png ; $$C = Z ( Q )$$ ; confidence 0.941

2134. m06257039.png ; $$\xi _ { k } = + 1$$ ; confidence 0.992

2135. m06259044.png ; $$V _ { [ r ] }$$ ; confidence 0.977

2136. m06259032.png ; $$B = 0$$ ; confidence 0.833

2137. m06259061.png ; $$\alpha = \beta _ { 1 } \vee \ldots \vee \beta _ { r }$$ ; confidence 0.964

2138. m06261017.png ; $$\operatorname { lim } _ { \Delta x \rightarrow 0 } \Delta y = \operatorname { lim } _ { \Delta x \rightarrow 0 } [ f ( x + \Delta x ) - f ( x ) ] = 0$$ ; confidence 0.996

2139. m06261090.png ; $$F ^ { \prime } = f$$ ; confidence 0.997

2140. m12013051.png ; $$\left. \begin{array}{l}{ \frac { d N ^ { 1 } } { d t } = \lambda _ { ( 1 ) } N ^ { 1 } ( 1 - \frac { N ^ { 1 } } { K _ { ( 1 ) } } - \delta _ { ( 1 ) } \frac { N ^ { 2 } } { K _ { ( 1 ) } } ) }\\{ \frac { d N ^ { 2 } } { d t } = \lambda _ { ( 2 ) } N ^ { 2 } ( 1 - \frac { N ^ { 2 } } { K _ { ( 2 ) } } - \delta _ { ( 2 ) } \frac { N ^ { 1 } } { K _ { ( 2 ) } } ) }\end{array} \right.$$ ; confidence 0.089

2141. m12013029.png ; $$= f ( N _ { * } ) + f ^ { \prime } ( N _ { * } ) n + \frac { f ^ { \prime \prime } ( N _ { * } ) } { 2 } n ^ { 2 } + \ldots$$ ; confidence 0.619

2142. m062620207.png ; $$R _ { + } ^ { l }$$ ; confidence 0.977

2143. m06262012.png ; $$b \in R ^ { l - 1 }$$ ; confidence 0.980

2144. m062620198.png ; $$z \square ^ { ( s ) }$$ ; confidence 0.776

2145. m062620248.png ; $$x > y > z$$ ; confidence 0.999

2146. m06262048.png ; $$c ( t ) \geq 0$$ ; confidence 1.000

2147. m06263022.png ; $$\int _ { - \infty } ^ { \infty } x d F ( x )$$ ; confidence 1.000

2148. m06269073.png ; $$k \frac { \partial u } { \partial n } + h u | _ { S } = v ( x )$$ ; confidence 0.973

2149. m12016065.png ; $$\Omega _ { p _ { 1 } n _ { 1 } } ( t ^ { \prime } t ^ { \prime } )$$ ; confidence 0.868

2150. m06306029.png ; $$x _ { i + 1 } = x _ { i } - ( \alpha _ { i } \nabla \nabla f ( x _ { j } ) + \beta _ { i } I ) ^ { - 1 } \nabla f ( x _ { i } )$$ ; confidence 0.559

2151. m06309023.png ; $$r _ { 0 } ^ { * } + \sum _ { j = 1 } ^ { q } \beta _ { j } r _ { j } ^ { * } = \sigma ^ { 2 }$$ ; confidence 0.822

2152. m06310035.png ; $$\hat { \theta } = X$$ ; confidence 0.545

2153. m06308045.png ; $$f ^ { ( m ) } ( x _ { 0 } ) < 0$$ ; confidence 0.978

2154. m06314076.png ; $$x _ { 3 } = z$$ ; confidence 0.989

2155. m06314012.png ; $$- \frac { \partial D } { \partial t } + \operatorname { rot } H = J$$ ; confidence 0.887

2156. m0631709.png ; $$d \sigma ( t )$$ ; confidence 0.999

2157. m063240572.png ; $$\Lambda ( f ) \geq 0$$ ; confidence 0.995

2158. m063240457.png ; $$\mu _ { i } ( X _ { i } ) = 1$$ ; confidence 0.990

2159. m063240678.png ; $$E = E ^ { \prime }$$ ; confidence 0.996

2160. m063240428.png ; $$S _ { 1 } \times S _ { 2 }$$ ; confidence 0.981

2161. m063240221.png ; $$E \in S ( R )$$ ; confidence 0.988

2162. m063240749.png ; $$\prod x$$ ; confidence 0.487

2163. m0633503.png ; $$\int _ { - 1 } ^ { 1 } \frac { 1 } { \sqrt { 1 - x ^ { 2 } } } f ( x ) d x \approx \frac { \pi } { N } \sum _ { k = 1 } ^ { N } f ( \operatorname { cos } \frac { 2 k - 1 } { 2 N } \pi )$$ ; confidence 0.978

2164. m11011038.png ; $$\square _ { q } F _ { p - 1 }$$ ; confidence 0.930

2165. m06337017.png ; $$t = t _ { 0 } > 0$$ ; confidence 0.996

2166. m063460143.png ; $$p \in P \backslash N$$ ; confidence 0.997

2167. m063460237.png ; $$( f ) = D$$ ; confidence 0.999

2168. m06346056.png ; $$D ( z ) \neq 0$$ ; confidence 0.995

2169. m063460176.png ; $$\psi _ { z } \neq 0$$ ; confidence 0.993

2170. m063460182.png ; $$z \in N$$ ; confidence 0.568

2171. m06359074.png ; $$F \mapsto F ( P )$$ ; confidence 0.864

2172. m06371076.png ; $$\int _ { c } ^ { \infty } f ( x ) d x$$ ; confidence 0.991

2173. m06371091.png ; $$n _ { 1 } < n _ { 2 } .$$ ; confidence 0.222

2174. m11013041.png ; $$\beta + \gamma \simeq \alpha . S ( t )$$ ; confidence 0.822

2175. m11013015.png ; $$E S$$ ; confidence 0.930

2176. m063760111.png ; $$0 \rightarrow A \rightarrow B \stackrel { sp } { \rightarrow } \pi * C \rightarrow 0$$ ; confidence 0.355

2177. m06380058.png ; $$\partial W _ { 1 } = M$$ ; confidence 0.996

2178. m06380081.png ; $$\sigma ( W )$$ ; confidence 0.989

2179. m06380038.png ; $$\theta _ { n } ( \partial \pi )$$ ; confidence 0.997

2180. m06391025.png ; $$\{ p _ { \theta } ( \omega ) = \frac { d p } { d \mu } ( \omega ) : \theta \in \Theta \}$$ ; confidence 0.987

2181. m063920117.png ; $$\int \int K d S \leq 2 \pi ( \chi - k )$$ ; confidence 0.858

2182. m06392082.png ; $$n \geq 9$$ ; confidence 0.998

2183. m063920116.png ; $$\int \int K d S$$ ; confidence 0.865

2184. m06398045.png ; $$\| x _ { k } - x ^ { * } \| \leq C q ^ { k }$$ ; confidence 0.985

2185. m06399032.png ; $$A = \pi r ^ { 2 }$$ ; confidence 0.999

2186. m064000100.png ; $$\| u \| _ { H ^ { \prime } } \leq R$$ ; confidence 0.473

2187. m06400065.png ; $$W ( N )$$ ; confidence 0.988

2188. m0640004.png ; $$\epsilon > 0$$ ; confidence 0.971

2189. m064000127.png ; $$F = W _ { 2 } ^ { - 1 } ( \Omega )$$ ; confidence 0.999

2190. m12021026.png ; $$\lambda K + t$$ ; confidence 0.994

2191. m064250151.png ; $$\tau \cup A C \cup B C$$ ; confidence 0.892

2192. m064250142.png ; $$d y / d s \geq 0$$ ; confidence 0.997

2193. m064180110.png ; $$\mathfrak { k } _ { n } | _ { 0 } = 0$$ ; confidence 0.128

2194. m064190102.png ; $$u | _ { \Gamma } = \psi$$ ; confidence 0.930

2195. m06442050.png ; $$k = m / 2$$ ; confidence 0.948

2196. m064430169.png ; $$GL _ { 2 } ( R )$$ ; confidence 0.691

2197. m064430225.png ; $$\operatorname { lm } A ( \tau )$$ ; confidence 0.945

2198. m06443090.png ; $$B O$$ ; confidence 0.877

2199. m064430134.png ; $$w = \lambda ( z )$$ ; confidence 0.985

2200. m06444056.png ; $$c = 0$$ ; confidence 0.874

2201. m11018050.png ; $$J ( F G / I ) = 0$$ ; confidence 0.991

2202. m0644606.png ; $$d ( x + y ) + d ( x y ) = d ( x ) + d ( y )$$ ; confidence 0.999

2203. m0645406.png ; $$m _ { G } = D ( u ) / 2 \pi$$ ; confidence 0.811

2204. m06455029.png ; $$G \rightarrow R _ { + } ^ { * }$$ ; confidence 0.778

2205. m06458025.png ; $$k _ { 1 } + \ldots + k _ { n } = k$$ ; confidence 0.849

2206. m064590192.png ; $$\alpha p$$ ; confidence 0.503

2207. m06466019.png ; $$C _ { \gamma } = C _ { \gamma _ { 1 } } C _ { \gamma _ { 2 } }$$ ; confidence 0.997

2208. m064700127.png ; $$t \in P ^ { 1 }$$ ; confidence 0.984

2209. m06470068.png ; $$\partial V _ { t }$$ ; confidence 0.996

2210. m0647004.png ; $$\alpha = \gamma ( 0 )$$ ; confidence 0.961

2211. m06471081.png ; $$f ( z ) = f ( x + i y )$$ ; confidence 1.000

2212. m0647206.png ; $$f _ { E } ^ { \prime } ( \zeta )$$ ; confidence 0.845

2213. m06483029.png ; $$f ( x ^ { \prime } ) < t$$ ; confidence 1.000

2214. m06487010.png ; $$\xi = x _ { m }$$ ; confidence 0.952

2215. m13022071.png ; $$T$$ ; confidence 0.520

2216. m13022026.png ; $$T _ { e } = j - 744$$ ; confidence 0.742

2217. m06491014.png ; $$Y ( K )$$ ; confidence 0.999

2218. m12023042.png ; $$( ( \partial f ) ^ { - 1 } + t l ) ^ { - 1 }$$ ; confidence 0.971

2219. m130230103.png ; $$- ( K _ { X } + B )$$ ; confidence 0.752

2220. m130230127.png ; $$\phi : X ^ { \prime } \rightarrow Y$$ ; confidence 0.951

2221. m06499012.png ; $$f : M \rightarrow R$$ ; confidence 0.936

2222. m06499028.png ; $$\sum _ { j = 0 } ^ { i } ( - 1 ) ^ { j } m _ { i - j } \geq \sum _ { j = 0 } ^ { i } ( - 1 ) ^ { j } b _ { i - j }$$ ; confidence 0.973

2223. m06495010.png ; $$V _ { 1 } = \emptyset$$ ; confidence 0.731

2224. m11021026.png ; $$\alpha = 4 \pi$$ ; confidence 1.000

2225. m11021064.png ; $$f \in L ^ { p } ( R ^ { n } ) \rightarrow \int _ { R ^ { n } } | x - y | ^ { - \lambda } f ( y ) d y \in L ^ { p ^ { \prime } } ( R ^ { n } )$$ ; confidence 0.413

2226. m06503013.png ; $$\tilde { y } = \alpha _ { 21 } x + \alpha _ { 22 } y + \alpha _ { 23 } z + b$$ ; confidence 0.163

2227. m0650309.png ; $$x = x \operatorname { cos } \phi + y \operatorname { sin } \phi + \alpha$$ ; confidence 0.056

2228. m12025047.png ; $$L C ^ { k - 1 }$$ ; confidence 0.734

2229. m065140117.png ; $$p _ { 1 } + \ldots + p _ { m } = p$$ ; confidence 0.769

2230. m06514041.png ; $$S _ { n }$$ ; confidence 0.963

2231. m06516021.png ; $$\operatorname { ess } \operatorname { sup } _ { X } | f ( x ) | = \operatorname { lim } _ { n \rightarrow \infty } ( \frac { \int | f ( x ) | ^ { n } d M _ { X } } { \int _ { X } d M _ { x } } )$$ ; confidence 0.229

2232. m06518046.png ; $$\alpha : A \rightarrow A _ { 1 }$$ ; confidence 0.999

2233. m11022016.png ; $$\lambda ^ { * } \in R ^ { m }$$ ; confidence 0.957

2234. m06525013.png ; $$G _ { 1 } / N$$ ; confidence 0.991

2235. m06530022.png ; $$\otimes _ { i = 1 } ^ { n } E _ { i } \rightarrow F$$ ; confidence 0.927

2236. m13025061.png ; $$\int | \rho _ { \varepsilon } ( x ) | d x$$ ; confidence 0.965

2237. m130250103.png ; $$s > n / 2$$ ; confidence 0.999

2238. m13025065.png ; $$M _ { 3 } ( R ^ { n } ) = \{$$ ; confidence 0.724

2239. m06544062.png ; $$d _ { é } ^ { l } < \ldots < d _ { e } ^ { 1 } = d$$ ; confidence 0.489

2240. m06544031.png ; $$\Phi _ { t } = id$$ ; confidence 0.507

2241. m06544030.png ; $$E = \{ e \}$$ ; confidence 0.981

2242. m06546014.png ; $$( \alpha \vee ( b . e ) ) : e = ( \alpha : e ) \vee b$$ ; confidence 0.351

2243. m06550014.png ; $$P ( \mathfrak { m } / \mathfrak { m } ^ { 2 } )$$ ; confidence 0.523

2244. m06551020.png ; $$n _ { \Delta } = 1$$ ; confidence 0.532

2245. m13026036.png ; $$x \lambda ( y ) = \rho ( x ) y$$ ; confidence 0.966

2246. m130260171.png ; $$\overline { \alpha } : P \rightarrow X$$ ; confidence 0.421

2247. m06556075.png ; $$\frac { | z | ^ { p } } { ( 1 + | z | ) ^ { 2 p } } \leq | f ( z ) | \leq \frac { | z | ^ { p } } { ( 1 - | z | ) ^ { 2 p } }$$ ; confidence 0.972

2248. m06557014.png ; $$L _ { \cap } \Gamma = 0$$ ; confidence 0.870

2249. m130180141.png ; $$H _ { n - 2 }$$ ; confidence 0.883

2250. m0655809.png ; $$P ( x ) = \sum _ { k = 1 } ^ { n } \alpha _ { k } x ^ { \lambda _ { k } }$$ ; confidence 0.795

2251. n13003066.png ; $$\operatorname { Re } ( \lambda )$$ ; confidence 0.992

2252. n1200405.png ; $$A _ { i \psi }$$ ; confidence 0.179

2253. n1100102.png ; $$f \in L _ { \infty } ( T )$$ ; confidence 0.971

2254. n11001011.png ; $$L _ { \infty } ( T )$$ ; confidence 0.979

2255. n06634043.png ; $$\Sigma _ { n - 1 } ( x )$$ ; confidence 0.905

2256. n06634090.png ; $$x \in V _ { n }$$ ; confidence 0.777

2257. n06634047.png ; $$X _ { i } \subset \Delta _ { 1 } ^ { i }$$ ; confidence 0.988

2258. n06636034.png ; $$\{ x _ { \alpha } \} _ { \alpha \in \Sigma }$$ ; confidence 0.994

2259. n06641020.png ; $$x \in b M$$ ; confidence 0.705

2260. n06641023.png ; $$\overline { \partial } f = \phi$$ ; confidence 0.995

2261. n06644040.png ; $$\sum _ { n = 0 } ^ { \infty } A ^ { n } f$$ ; confidence 0.994

2262. n06648031.png ; $$\phi _ { \alpha } ( f ) = w _ { \alpha }$$ ; confidence 0.945

2263. n06649018.png ; $$f ^ { - 1 } ( \alpha ) \cap \{ z : | z | \leq t \}$$ ; confidence 0.806

2264. n06652019.png ; $$\epsilon < \epsilon ^ { \prime } < \ldots$$ ; confidence 0.860

2265. n06656013.png ; $$A ( u ) = 0$$ ; confidence 1.000

2266. n06663069.png ; $$\Delta _ { k } ^ { k } f ^ { ( s ) }$$ ; confidence 0.968

2267. n066630108.png ; $$M _ { i } ^ { * } = c _ { i } \sum _ { j = 1 } ^ { n } M _ { j }$$ ; confidence 0.662

2268. n06663062.png ; $$0 < r - s < k$$ ; confidence 0.996

2269. n06679025.png ; $$D \cap \{ x ^ { 1 } = c \}$$ ; confidence 0.983

2270. n06684017.png ; $$\{ \psi _ { i } \} _ { 0 } ^ { m }$$ ; confidence 0.581

2271. n06689067.png ; $$v = 1.1 m / sec$$ ; confidence 0.848

2272. n06689035.png ; $$b = 7$$ ; confidence 0.999

2273. n06690064.png ; $$G \rightarrow A$$ ; confidence 0.998

2274. n13007025.png ; $$m ( B ) = 0$$ ; confidence 1.000

2275. n06698028.png ; $$Q ^ { \prime } \subset Q$$ ; confidence 0.984

2276. n06708019.png ; $$y ( 0 ) = y ^ { \prime }$$ ; confidence 0.740

2277. n06708029.png ; $$\left. \begin{array} { c } { B _ { n } ( y _ { n + 1 } ( 0 ) - y _ { n } ( 0 ) ) + B ( y _ { n } ( 0 ) ) = 0 } \\ { D _ { n } ( y _ { n + 1 } ( X ) - y _ { n } ( X ) ) + D ( y _ { n } ( X ) ) = 0 } \end{array} \right\}$$ ; confidence 0.711

2278. n06708018.png ; $$y ^ { * } = \alpha ( g ^ { * } )$$ ; confidence 0.950

2279. n06711026.png ; $$\| z ^ { n } \| \leq q ^ { n } ( 1 - q ) ^ { - 1 } \| u ^ { 0 } - u ^ { 1 } \|$$ ; confidence 0.538

2280. n06711048.png ; $$\phi _ { i } / \partial x _ { Y }$$ ; confidence 0.338

2281. n067150173.png ; $$x + h \in G$$ ; confidence 0.992

2282. n067150152.png ; $$A : G \rightarrow Y$$ ; confidence 0.991

2283. n12011031.png ; $$x \in K$$ ; confidence 0.658

2284. n12011011.png ; $$\xi ( x ) = 1$$ ; confidence 0.999

2285. n06728058.png ; $$\pi / \rho$$ ; confidence 0.416

2286. n06728084.png ; $$y ^ { \prime \prime \prime } = \lambda y$$ ; confidence 0.979

2287. n06731043.png ; $$B O$$ ; confidence 0.799

2288. n0673605.png ; $$\phi ( x ) \geq 0$$ ; confidence 0.999

2289. n06740041.png ; $$U$$ ; confidence 0.698

2290. n06743015.png ; $$\sum _ { k = 1 } ^ { \infty } \| u _ { k } \| = \sum _ { k = 1 } ^ { \infty } 1 / k$$ ; confidence 0.925

2291. n067520368.png ; $$\phi _ { i } ( 0 ) = 0$$ ; confidence 1.000

2292. n067520122.png ; $$j \geq q + 1$$ ; confidence 0.999

2293. n067520141.png ; $$N _ { 2 } = \left| \begin{array} { c c c c c } { . } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { L ( e _ { j } ^ { n _ { i j } } ) } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } \\ { \square } & { \square } & { \square } & { \square } & { \square } \\ { 0 } & { \square } & { \square } & { \square } & { . } \end{array} \right|$$ ; confidence 0.323

2294. n067520250.png ; $$d j \neq 0$$ ; confidence 0.877

2295. n067520303.png ; $$A \simeq K$$ ; confidence 0.550

2296. n06758032.png ; $$N _ { G } ( H )$$ ; confidence 0.982

2297. n06761056.png ; $$( d \nu ) ( x _ { i } ) ( T _ { i } )$$ ; confidence 0.993

2298. n06764043.png ; $$\Omega _ { X }$$ ; confidence 0.976

2299. n06776016.png ; $$N ( A ^ { * } ) = \{ 0 \}$$ ; confidence 0.998

2300. n06784093.png ; $$A \in L _ { \infty } ( H )$$ ; confidence 0.994

2301. n067850200.png ; $$\operatorname { tr } _ { \sigma } A$$ ; confidence 0.814

2302. n067850111.png ; $$u \in E ^ { \prime } \otimes - E$$ ; confidence 0.540

2303. n067850131.png ; $$u = \operatorname { tr } \Gamma ( u )$$ ; confidence 0.766

2304. n067860258.png ; $$V \subset \rho U$$ ; confidence 0.940

2305. n0679002.png ; $$x y = 40$$ ; confidence 1.000

2306. n06790027.png ; $$\alpha + b = b + \alpha$$ ; confidence 0.739

2307. n06794014.png ; $$N > 5$$ ; confidence 0.901

2308. n06796016.png ; $$q 2 = 6$$ ; confidence 0.507

2309. n0679601.png ; $$12$$ ; confidence 0.490

2310. n06796020.png ; $$q 2 = 4$$ ; confidence 0.504

2311. o12001037.png ; $$\left. \begin{array} { l } { \nabla p _ { 1 } = \nabla p _ { 2 } = 0 } \\ { \frac { \partial v _ { 0 } } { \partial t } + [ \nabla v _ { 0 } ] v _ { 0 } = \frac { 1 } { Re } \Delta v _ { 0 } + \operatorname { Re } \nabla p _ { 3 } + \theta _ { 0 } b } \end{array} \right.$$ ; confidence 0.316

2312. o13001044.png ; $$F : L ^ { 2 } ( D ^ { \prime } ) \rightarrow L ^ { 2 } ( R ^ { 3 } )$$ ; confidence 0.936

2313. o11003071.png ; $$I _ { p } ( L )$$ ; confidence 0.985

2314. o11003037.png ; $$K _ { \omega }$$ ; confidence 0.958

2315. o13003024.png ; $$\overline { P _ { 8 } }$$ ; confidence 0.610

2316. o1200204.png ; $$\alpha = 1 / 2$$ ; confidence 0.933

2317. o11007085.png ; $$K _ { 10 }$$ ; confidence 0.993

2318. o11007062.png ; $$K$$ ; confidence 0.967

2319. o0681907.png ; $$T ( t ) x$$ ; confidence 0.794

2320. o06821028.png ; $$X = \sum _ { i } X ^ { i } \partial / \partial x ^ { i }$$ ; confidence 0.987

2321. o06825018.png ; $$\operatorname { lim } _ { x \rightarrow x _ { 0 } } + 0$$ ; confidence 0.628

2322. o06833067.png ; $$e ^ { - \lambda s }$$ ; confidence 0.999

2323. o068350148.png ; $$\phi \in D ( A )$$ ; confidence 0.998

2324. o13005095.png ; $$v \in G$$ ; confidence 0.413

2325. o13005087.png ; $$v _ { n } \in G$$ ; confidence 0.357

2326. o06837057.png ; $$x _ { C }$$ ; confidence 0.256

2327. o06837017.png ; $$( \alpha b ) \sigma = \alpha \sigma b \sigma$$ ; confidence 0.467

2328. o130060187.png ; $$( \sigma _ { 2 } \frac { \partial } { \partial t _ { 1 } } - \sigma _ { 1 } \frac { \partial } { \partial t _ { 2 } } + \gamma ) u = 0$$ ; confidence 0.449

2329. o13006047.png ; $$\frac { 1 } { i } ( A _ { k } - A _ { k } ^ { * } ) = \Phi ^ { * } \sigma _ { k } \Phi$$ ; confidence 0.897

2330. o13006052.png ; $$\overline { \gamma } = \tilde { \gamma } ^ { \prime \prime }$$ ; confidence 0.147

2331. o0684606.png ; $$x ( t _ { 1 } ) = x ^ { 1 } \in R ^ { n }$$ ; confidence 0.985

2332. o06849072.png ; $$2 \leq t \leq 3$$ ; confidence 0.999

2333. o06850051.png ; $$\sigma \leq t \leq \theta$$ ; confidence 0.947

2334. o070010110.png ; $$X = \cup _ { \alpha } X _ { \alpha }$$ ; confidence 0.245

2335. o07001011.png ; $$G / G _ { X }$$ ; confidence 0.936

2336. o0700104.png ; $$G ( x ) = \{ g ( x ) : g \in G \}$$ ; confidence 0.999

2337. o07004017.png ; $$\operatorname { lim } \alpha / \beta = 0$$ ; confidence 0.903

2338. o07006030.png ; $$\beta ( x ) \neq 0$$ ; confidence 0.999

2339. o070070117.png ; $$\{ Z _ { n } \}$$ ; confidence 0.984

2340. o070070118.png ; $$Y _ { n } = \frac { 1 } { 2 } ( X _ { ( n 1 ) } + X _ { ( n n ) } ) \quad \text { and } \quad Z _ { n } = \frac { n + 1 } { 2 } ( n - 1 ) ( X _ { ( n n ) } - X _ { ( n 1 ) } )$$ ; confidence 0.491

2341. o07007051.png ; $$W _ { n } = X _ { ( n n ) } - X _ { ( n 1 ) }$$ ; confidence 0.738

2342. o07015054.png ; $$\alpha ^ { n } < b ^ { n + 1 }$$ ; confidence 0.291

2343. o13008026.png ; $$C _ { \psi }$$ ; confidence 0.409

2344. o13008035.png ; $$C _ { \varphi }$$ ; confidence 0.982

2345. o07022036.png ; $$E$$ ; confidence 0.845

2346. o07022045.png ; $$\int _ { G } x ( t ) y ( t ) d t \leq \| x \| _ { ( M ) } \| y \| _ { ( N ) }$$ ; confidence 0.491

2347. o07024025.png ; $$- \beta V$$ ; confidence 0.966

2348. o07024014.png ; $$6 \pi \eta \alpha$$ ; confidence 0.422

2349. o0702405.png ; $$d W ( t ) / d t = W ^ { \prime } ( t )$$ ; confidence 0.993

2350. o07031053.png ; $$N ( n ) \rightarrow \infty$$ ; confidence 0.992

2351. o070310119.png ; $$A \perp A ^ { T }$$ ; confidence 0.994

2352. o07029017.png ; $$\Delta = \alpha _ { 2 } c ( b ) - \beta _ { 2 } s ( b ) \neq 0$$ ; confidence 0.937

2353. o07034097.png ; $$y = K _ { n } ( x )$$ ; confidence 0.826

2354. o07037028.png ; $$\sum _ { n = 0 } ^ { \infty } a _ { \tilde { m } } ^ { 2 } ( f ) = \int _ { \mathscr { x } } ^ { b } f ^ { 2 } ( x ) d x$$ ; confidence 0.076

2355. p07221037.png ; $$F ^ { k }$$ ; confidence 0.862

2356. p0723004.png ; $$F ( H )$$ ; confidence 0.998

2357. p07235016.png ; $$h > 1$$ ; confidence 0.985

2358. p07237060.png ; $$\overline { \Omega } _ { k } \subset \Omega _ { k + 1 }$$ ; confidence 0.887

2359. p07237025.png ; $$\underline { H } \square _ { f }$$ ; confidence 0.812

2360. p0724304.png ; $$B \operatorname { ccos } ( \omega t + \psi )$$ ; confidence 0.580

2361. p072430105.png ; $$\phi _ { im }$$ ; confidence 0.294

2362. p0724307.png ; $$\epsilon \ll 1$$ ; confidence 0.957

2363. p07243078.png ; $$| V _ { m n } | \ll | E _ { n } ^ { ( 0 ) } - E _ { m } ^ { ( 0 ) } |$$ ; confidence 0.535

2364. p110120321.png ; $$4 x$$ ; confidence 0.375

2365. p110120376.png ; $$E _ { i } ( x )$$ ; confidence 0.976

2366. p110120339.png ; $$\eta ( x ) \in \eta$$ ; confidence 0.999

2367. p110120247.png ; $$A _ { i } = \{ w \in W _ { i } \cap V ^ { s } ( z ) : z \in \Lambda _ { l } \cap U ( x ) \}$$ ; confidence 0.414

2368. p11012025.png ; $$\lambda < \mu$$ ; confidence 1.000

2369. p110120432.png ; $$\operatorname { limsup } _ { n \rightarrow + \infty } \frac { 1 } { n } \operatorname { log } + P _ { N } ( f ) \geq h ( f )$$ ; confidence 0.191

2370. p110120214.png ; $$D _ { 0 } f _ { x } = \left( \begin{array} { c c c } { A _ { 1 } ( x ) } & { \square } & { \square } \\ { \square } & { \ddots } & { \square } \\ { \square } & { \square } & { A _ { \xi } ( x ) ( x ) } \end{array} \right)$$ ; confidence 0.131

2371. p110120428.png ; $$P _ { n } ( f )$$ ; confidence 0.919

2372. p07246025.png ; $$S \square ^ { * }$$ ; confidence 0.590

2373. p07251086.png ; $$T ^ { * } U$$ ; confidence 0.999

2374. p07251047.png ; $$d y _ { 0 } - \sum _ { j = 1 } ^ { p } z _ { j } d y _ { j } = 0$$ ; confidence 0.905

2375. p072530183.png ; $$I ( G _ { p } )$$ ; confidence 0.801

2376. p07253081.png ; $$d f ^ { j }$$ ; confidence 0.726

2377. p07101037.png ; $$p _ { i }$$ ; confidence 0.459

2378. p0726706.png ; $$\operatorname { sch } / S$$ ; confidence 0.616

2379. p07267050.png ; $$f ^ { \prime } ( O _ { X ^ { \prime } } ) = O _ { S ^ { \prime } }$$ ; confidence 0.802

2380. p07270029.png ; $$f ( L )$$ ; confidence 0.999

2381. p07271076.png ; $$t ( P )$$ ; confidence 0.999

2382. p072710140.png ; $$\sigma A = x ^ { * } \partial \sigma ^ { * } \operatorname { lk } _ { A } \sigma + A _ { 1 }$$ ; confidence 0.541

2383. p1201308.png ; $$\theta$$ ; confidence 1.000

2384. p12013011.png ; $$n > 1$$ ; confidence 0.999

2385. p12014048.png ; $$E = E$$ ; confidence 0.907

2386. p12014039.png ; $$E _ { r } = S \cup T$$ ; confidence 0.755

2387. p0727608.png ; $$f ( x ) \mapsto \hat { f } ( y )$$ ; confidence 0.970

2388. p07283021.png ; $$\epsilon _ { i j } ^ { k }$$ ; confidence 0.400

2389. p072830109.png ; $$\sigma _ { i j } ( t )$$ ; confidence 0.998

2390. p072850130.png ; $$X \subset M ^ { n }$$ ; confidence 0.432

2391. p072850146.png ; $$H _ { k } ( M ^ { n } )$$ ; confidence 0.995

2392. p072850150.png ; $$\Omega _ { X } ( k ) \equiv \Omega ( k )$$ ; confidence 0.406

2393. p0728502.png ; $$_ { k }$$ ; confidence 0.179

2394. p07288011.png ; $$\{ z _ { k } \} \subset \Delta$$ ; confidence 0.994

2395. p072930169.png ; $$t _ { \gamma }$$ ; confidence 0.533

2396. p07293055.png ; $$\sigma _ { 2 n } = 2 \pi ^ { n } / ( n - 1 ) !$$ ; confidence 0.994

2397. p072930108.png ; $$u \in C ^ { 2 } ( D )$$ ; confidence 0.987

2398. p07289041.png ; $$p _ { 01 } p _ { 23 } + p _ { 02 } p _ { 31 } + p _ { 03 } p _ { 12 } = 0$$ ; confidence 0.676

2399. p1101505.png ; $$x \preceq y \Rightarrow z x t \preceq x y t$$ ; confidence 0.920

2400. p07295010.png ; $$w ( z ) = \int _ { \gamma } ( t - z ) ^ { \mu + n - 1 } u ( t ) d t$$ ; confidence 0.937

2401. p07298015.png ; $$\beta \in L _ { q }$$ ; confidence 0.972

2402. p07303077.png ; $$\mathfrak { g } = C$$ ; confidence 0.510

2403. p07302077.png ; $$L ( R ) \otimes _ { K } H _ { n } ( R ) = R$$ ; confidence 0.755

2404. p07309030.png ; $$V \cap L$$ ; confidence 0.905

2405. p07309060.png ; $$R \times D$$ ; confidence 0.945

2406. p07310032.png ; $$\mu A = m > 0$$ ; confidence 1.000

2407. p07327037.png ; $$q ^ { ( n ) } = d ^ { n } q / d x ^ { n }$$ ; confidence 0.958

2408. p07328015.png ; $$2 \lambda$$ ; confidence 1.000

2409. p07333012.png ; $$d S _ { n }$$ ; confidence 0.935

2410. p0733402.png ; $$X ( t _ { 2 } ) - X ( t _ { 1 } )$$ ; confidence 0.994

2411. p07334022.png ; $$/ t \rightarrow \lambda$$ ; confidence 0.669

2412. p07340055.png ; $$M ^ { 0 }$$ ; confidence 0.312

2413. p07346086.png ; $$P ^ { \perp } = \cap _ { v \in P } v ^ { \perp } = \emptyset$$ ; confidence 0.185

2414. p07346048.png ; $$W = M + U$$ ; confidence 0.972

2415. p07353041.png ; $$t ^ { i _ { 1 } } \cdots \dot { d p } = \operatorname { det } \| x _ { i } ^ { i _ { k } } \|$$ ; confidence 0.226

2416. p07370015.png ; $$f ( n ) \geq 0$$ ; confidence 1.000

2417. p07370045.png ; $$[ f _ { G } ]$$ ; confidence 0.256

2418. p073700205.png ; $$l _ { n } = \# \{ s \in S : d ( s ) = n \}$$ ; confidence 0.868

2419. p073700202.png ; $$d ( s ) = \operatorname { sup } \{ n : s \in F _ { n } \}$$ ; confidence 0.970

2420. p073700127.png ; $$m / m ^ { 2 }$$ ; confidence 0.612

2421. p07374027.png ; $$( \xi ) _ { R }$$ ; confidence 0.672

2422. p0737503.png ; $$p _ { i } ( \xi ) \in H ^ { 4 i } ( B )$$ ; confidence 0.998

2423. p073750105.png ; $$e ( \xi \otimes C )$$ ; confidence 0.997

2424. p0737605.png ; $$\omega _ { \mathscr { A } } : X ( G ) \rightarrow T$$ ; confidence 0.090

2425. p07383050.png ; $$E \subset X = R ^ { \prime }$$ ; confidence 0.250

2426. p0738407.png ; $$A \supset B$$ ; confidence 0.432

2427. p0738804.png ; $$x _ { 1 } = \ldots = x _ { n } = 0$$ ; confidence 0.697

2428. p07393024.png ; $$A / N _ { f }$$ ; confidence 0.994

2429. p0739603.png ; $$P ( x ) = a _ { 0 } + \alpha _ { 1 } x + \ldots + \alpha _ { n } x ^ { n }$$ ; confidence 0.639

2430. p07398067.png ; $$F \otimes S ^ { m } E$$ ; confidence 0.748

2431. p07401048.png ; $$O _ { 3 } = O _ { 6 } \cap O _ { 7 }$$ ; confidence 0.673

2432. p07401072.png ; $$F _ { 5 } ^ { \mu } = C _ { 4 } \cap F _ { 8 } ^ { \mu }$$ ; confidence 0.951

2433. p0740707.png ; $$\xi : F \rightarrow A$$ ; confidence 0.996

2434. p07410035.png ; $$v _ { i } = \partial f / \partial t ^ { i }$$ ; confidence 0.629

2435. p074140226.png ; $$\phi ^ { + } ( x )$$ ; confidence 0.999

2436. p074140115.png ; $$1 \leq p \leq n / 2$$ ; confidence 0.990

2437. p074140120.png ; $$p > n / 2$$ ; confidence 0.999

2438. p074150271.png ; $$- \infty \leq y < \infty$$ ; confidence 0.999

2439. p07415079.png ; $$\underline { \mathfrak { U } } \square _ { \phi } = - \overline { \mathfrak { U } } _ { \phi }$$ ; confidence 0.680

2440. p074150292.png ; $$f \in C$$ ; confidence 0.990

2441. p07416038.png ; $$\mu _ { 1 } = \mu _ { 2 } = \mu > 0$$ ; confidence 1.000

2442. p07416055.png ; $$\rho = | y |$$ ; confidence 0.958

2443. p07453019.png ; $$\phi ( n ) = n ( 1 - \frac { 1 } { p _ { 1 } } ) \dots ( 1 - \frac { 1 } { p _ { k } } )$$ ; confidence 0.456

2444. p07471055.png ; $$g _ { 0 } g ^ { \prime } \in G$$ ; confidence 0.189

2445. p074710106.png ; $$P \rightarrow e$$ ; confidence 0.910

2446. p0746603.png ; $$\left. \begin{array} { l l } { L - k E } & { M - k F } \\ { M - k F } & { N - k G } \end{array} \right| = 0$$ ; confidence 0.746

2447. p07469036.png ; $$G = G ^ { \prime }$$ ; confidence 1.000

2448. p07469030.png ; $$\pi G ( x ) = b$$ ; confidence 0.845

2449. p07472020.png ; $$\Gamma _ { F }$$ ; confidence 0.663

2450. p07472076.png ; $$\gamma \in G$$ ; confidence 0.994

2451. p07474069.png ; $$q _ { k } R = p _ { j } ^ { n _ { i } } R _ { R }$$ ; confidence 0.083

2452. p07474068.png ; $$q _ { i } R = 0$$ ; confidence 0.743

2453. p07486040.png ; $$0 \leq s _ { 0 } \leq l$$ ; confidence 0.979

2454. p110230174.png ; $$F _ { p q } \neq F _ { p q } ^ { * }$$ ; confidence 0.479

2455. p11023076.png ; $$x \in R ^ { + }$$ ; confidence 0.795

2456. p074970164.png ; $$E X _ { k } = a$$ ; confidence 0.520

2457. p074970165.png ; $$DX _ { k } = \sigma ^ { 2 }$$ ; confidence 0.511

2458. p07505047.png ; $$( K _ { i } / k )$$ ; confidence 0.490

2459. p07515035.png ; $$\alpha _ { 0 } \in A$$ ; confidence 0.998

2460. p07519074.png ; $$E _ { i j }$$ ; confidence 0.366

2461. p07519013.png ; $$x ^ { i } = y ^ { i } \lambda$$ ; confidence 0.985

2462. p07526038.png ; $$\pi _ { D } : X \rightarrow F ( D )$$ ; confidence 0.992

2463. p13013032.png ; $$\lambda _ { 1 } > \ldots > \lambda _ { n } ( \lambda ) > 0$$ ; confidence 0.786

2464. p07535038.png ; $$d ( S )$$ ; confidence 0.993

2465. p07535017.png ; $$q IL$$ ; confidence 0.843

2466. p075350108.png ; $$P _ { n } ( R )$$ ; confidence 0.886

2467. p07535088.png ; $$P _ { s } ^ { l } ( k )$$ ; confidence 0.866

2468. p0753601.png ; $$X = \operatorname { Proj } ( R )$$ ; confidence 0.994

2469. p07536031.png ; $$\operatorname { Proj } ( R )$$ ; confidence 0.995

2470. p07540018.png ; $$F \subset G$$ ; confidence 0.978

2471. p07545043.png ; $$U _ { i j } = \operatorname { Spec } ( A _ { i j } )$$ ; confidence 0.973

2472. p0754802.png ; $$( p \supset ( q \supset r ) ) \supset ( ( p \supset q ) \supset ( p \supset r ) )$$ ; confidence 0.827

2473. p075560134.png ; $$( P . Q ) ! = ( P \times Q ) ! = ( P ! \times Q ! ) !$$ ; confidence 0.823

2474. p075560136.png ; $$P Q = P \times Q$$ ; confidence 0.481

2475. p07580013.png ; $$\square ^ { n - 1 } R _ { n }$$ ; confidence 0.937

2476. p07565068.png ; $$X \cap U = \{ x \in U : \phi ( x ) > 0 \}$$ ; confidence 0.906

2477. p075660207.png ; $$\kappa : \Omega \rightarrow \Omega _ { 1 }$$ ; confidence 0.980

2478. p07566043.png ; $$\partial _ { x } = \partial / \partial x$$ ; confidence 0.368

2479. p075660284.png ; $$A : H ^ { S } ( X ) \rightarrow H ^ { S - m } ( X )$$ ; confidence 0.458

2480. p075660113.png ; $$| \xi | \leq 1 / 2$$ ; confidence 0.995

2481. p075700100.png ; $$q ^ { 1 }$$ ; confidence 0.419

2482. p13014049.png ; $$\gamma \in R$$ ; confidence 0.998

2483. p07578019.png ; $$D \rightarrow \overline { D }$$ ; confidence 0.992

2484. p0758301.png ; $$a \vee b$$ ; confidence 0.827

2485. p12017067.png ; $$I$$ ; confidence 0.923

2486. p07354050.png ; $$P \{ X _ { v + 1 } = k + 1 | X _ { k } = k \} = \frac { b + k c } { b + r + n c } = \frac { p + k \gamma } { 1 + n \gamma }$$ ; confidence 0.303

2487. q07604075.png ; $$\operatorname { arg } \operatorname { lim } _ { q \rightarrow r } Q _ { z } ( z ( q ) ) z ( q ) ^ { 2 }$$ ; confidence 0.802

2488. q076080314.png ; $$\mathfrak { F } \subset \mathfrak { P }$$ ; confidence 0.687

2489. q07609018.png ; $$( n = 4 )$$ ; confidence 1.000

2490. q07619068.png ; $$\alpha = - 1 / 2$$ ; confidence 1.000

2491. q076250144.png ; $$x \in E _ { + } ( s )$$ ; confidence 0.775

2492. q076310127.png ; $$R ^ { 12 } R ^ { 13 } R ^ { 23 } = R ^ { 23 } R ^ { 13 } R ^ { 12 }$$ ; confidence 0.998

2493. q07631095.png ; $$\left( \begin{array} { l } { n } \\ { k } \end{array} \right) _ { q } = \frac { ( q ^ { n } - 1 ) \ldots ( q ^ { n - k + 1 } - 1 ) } { ( q ^ { k } - 1 ) \ldots ( q - 1 ) }$$ ; confidence 0.443

2494. q076310117.png ; $$R ^ { 12 }$$ ; confidence 1.000

2495. q07631081.png ; $$H _ { i } \in \mathfrak { g }$$ ; confidence 0.955

2496. q12003027.png ; $$X ( Y . f ) = ( Y X ) . f$$ ; confidence 0.433

2497. q07632017.png ; $$j _ { X } : F ^ { \prime } \rightarrow F$$ ; confidence 0.809

2498. q07650033.png ; $$3 r ( L _ { 1 } \cap L _ { 2 } ) = 3 _ { r } ( L _ { 1 } ) + 3 r ( L _ { 2 } )$$ ; confidence 0.248

2499. q12005015.png ; $$D ^ { 2 } f ( x ^ { * } ) = D ( D ^ { T } f ( x ^ { * } ) )$$ ; confidence 0.975

2500. q12005052.png ; $$H _ { k + 1 } y ^ { k } = s ^ { k }$$ ; confidence 0.999

2501. q07643044.png ; $$f \in W _ { 2 } ^ { 1 }$$ ; confidence 0.943

2502. q076430127.png ; $$f : R _ { + } ^ { n } \rightarrow R _ { + } ^ { n }$$ ; confidence 0.970

2503. q07647062.png ; $$S _ { 2 m + 1 } ^ { m }$$ ; confidence 0.627

2504. q07653094.png ; $$\square ^ { 01 } S _ { 3 } ^ { 1 }$$ ; confidence 0.621

2505. q07653051.png ; $$x ^ { 1 } = 0$$ ; confidence 0.991

2506. q07661044.png ; $$\beta X = S \square x = \omega _ { \kappa } X$$ ; confidence 0.261

2507. q07661012.png ; $$N _ { A }$$ ; confidence 0.730

2508. q07663014.png ; $$\omega _ { 1 } / \omega _ { 2 }$$ ; confidence 0.996

2509. q13004038.png ; $$K > 1$$ ; confidence 0.997

2510. q13004026.png ; $$J _ { f } ( x ) \leq K l ( f ^ { \prime } ( x ) ) ^ { n }$$ ; confidence 0.794

2511. q07667033.png ; $$R [ x ]$$ ; confidence 0.996

2512. q12007060.png ; $$R _ { q ^ { 2 } }$$ ; confidence 0.811

2513. q07677043.png ; $$X = x _ { 0 } + V$$ ; confidence 0.644

2514. q11003019.png ; $$\alpha > a ^ { * }$$ ; confidence 0.575

2515. q07680042.png ; $$\nu _ { 1 } ^ { S }$$ ; confidence 0.641

2516. q07680082.png ; $$\{ \tau _ { j } ^ { e } \} \in G _ { I }$$ ; confidence 0.146

2517. q07680048.png ; $$\leq \nu _ { i } ^ { s }$$ ; confidence 0.802

2518. q07680012.png ; $$T ^ { S }$$ ; confidence 0.805

2519. q07680094.png ; $$\tau _ { 0 } ^ { e ^ { 3 } }$$ ; confidence 0.252

2520. q076820110.png ; $$\operatorname { lim } _ { t \rightarrow \infty } P \{ q ( t ) < x \sqrt { t } \} = \sqrt { \frac { 2 } { \pi } } \int _ { 0 } ^ { x / \sigma } e ^ { - u ^ { 2 } / 2 } d u$$ ; confidence 0.716

2521. q076820155.png ; $$\operatorname { lim } _ { t \rightarrow \infty } P \{ q ( t ) = k \} = \operatorname { lim } _ { t \rightarrow \infty } P \{ q _ { n } = k \} = \frac { ( \alpha \alpha ) ^ { k } } { k ! } e ^ { - \alpha ^ { \prime } \alpha }$$ ; confidence 0.087

2522. q076820199.png ; $$f ( \xi _ { T } ( t ) )$$ ; confidence 0.925

2523. q076820220.png ; $$E \theta ( t ) \theta ( t + u ) = \int _ { 0 } F ( t + u - v ) ( 1 - G ( t - v ) ) d m ( v )$$ ; confidence 0.887

2524. q07681026.png ; $$\alpha = \operatorname { lim } _ { t \rightarrow 0 } \frac { P ( e ( t ) \geq 1 ) } { t }$$ ; confidence 0.819

2525. q07683079.png ; $$\rho = E m \alpha \tau _ { j } ^ { e }$$ ; confidence 0.537

2526. q07683071.png ; $$p _ { m } = ( \sum _ { j = 0 } ^ { m } A _ { j } ) ^ { - 1 }$$ ; confidence 0.310

2527. q07683018.png ; $$Q _ { 0 } ^ { 0 } = Q ^ { 0 }$$ ; confidence 0.971

2528. q076840162.png ; $$P _ { k } ( x )$$ ; confidence 0.998

2529. q07684029.png ; $$P \{ X _ { n } \in \Delta \} \rightarrow 0$$ ; confidence 0.724

2530. q076840293.png ; $$G _ { l }$$ ; confidence 0.639

2531. q07684072.png ; $$w ^ { S } ( u ) = \operatorname { sup } _ { v \leq u } ( X ( u ) - X ( v ) )$$ ; confidence 0.601

2532. q07685043.png ; $$E [ \tau _ { j } ^ { S } - \tau _ { j } ^ { \dot { e } } ] ^ { 2 + \gamma }$$ ; confidence 0.250

2533. q07686069.png ; $$f _ { X } : V _ { X } \rightarrow V _ { X } ^ { \prime }$$ ; confidence 0.805

2534. r110010322.png ; $$j$$ ; confidence 0.784

2535. r110010167.png ; $$k ( \pi )$$ ; confidence 0.988

2536. r110010273.png ; $$e _ { 3 } = ( \alpha + d ) + ( b + c )$$ ; confidence 0.551

2537. r0770601.png ; $$\Delta u + k ^ { 2 } u = - f$$ ; confidence 0.985

2538. r07713084.png ; $$r _ { 1 } > r _ { 2 }$$ ; confidence 0.966

2539. r077130114.png ; $$\phi < \beta < L < K < J < T < \tau < F$$ ; confidence 0.970

2540. r11002077.png ; $$T w | K v$$ ; confidence 0.987

2541. r07725048.png ; $$( n - \mu _ { 1 } ) / 2$$ ; confidence 1.000

2542. r07726020.png ; $$\zeta _ { 2 n } = \sqrt { - 2 \operatorname { ln } \xi _ { 2 n } } \operatorname { sin } 2 \pi \xi _ { 2 n - 1 }$$ ; confidence 0.840

2543. r07737019.png ; $$P \{ Z _ { n } < x \} - \Phi ( x ) = O ( \frac { 1 } { n } )$$ ; confidence 0.432

2544. r07738071.png ; $$P \{ | \frac { K _ { n } } { n } - \frac { 1 } { 2 } | < \frac { 1 } { 4 } \} = 1 - 2 P \{ \frac { K _ { n } } { n } < \frac { 1 } { 4 } \} \approx 1 - \frac { 4 } { \pi } \frac { \pi } { 6 } = \frac { 1 } { 3 }$$ ; confidence 0.812

2545. r07738036.png ; $$u _ { 0 } = 1$$ ; confidence 0.716

2546. r0775103.png ; $$T = T ( R )$$ ; confidence 1.000

2547. r07759075.png ; $$R ( x )$$ ; confidence 1.000

2548. r07763050.png ; $$\delta _ { \phi }$$ ; confidence 0.541

2549. r07764046.png ; $$D _ { n - 2 }$$ ; confidence 0.996

2550. r13004063.png ; $$u _ { 1 } = | \frac { \partial u } { \partial n } | = 0$$ ; confidence 0.932

2551. r11004022.png ; $$k ^ { 2 } = k _ { c } ^ { 2 } + \frac { 3 } { 8 } \frac { \rho 2 g } { T \lambda _ { 0 } ^ { 2 } } ( 1 - \frac { \rho _ { 1 } } { \rho _ { 2 } } ) \epsilon ^ { 2 } + O ( \epsilon ^ { 3 } )$$ ; confidence 0.807

2552. r080020171.png ; $$P - N \equiv ( \frac { m _ { 1 } } { 2 } ) ^ { 2 } \pm 1 \operatorname { mod } 8$$ ; confidence 0.918

2553. r08002019.png ; $$\operatorname { dim } A = n = q - s$$ ; confidence 0.969

2554. r080060177.png ; $$\{ r _ { n } + r _ { n } ^ { \prime } \}$$ ; confidence 0.928

2555. r0801808.png ; $$t _ { k } \in R$$ ; confidence 0.947

2556. r08019033.png ; $$U$$ ; confidence 0.987

2557. r08019038.png ; $$\{ f ^ { t } | \Sigma _ { X } \} _ { t \in R }$$ ; confidence 0.191

2558. r08021055.png ; $$F ( m ) = f _ { m } ( m )$$ ; confidence 0.639

2559. r08021025.png ; $$f ( x ) = x + 1$$ ; confidence 1.000

2560. r08061012.png ; $$E ( Y | x ) = m ( x )$$ ; confidence 0.542

2561. r08061050.png ; $$E ( Y - f ( x ) ) ^ { 2 }$$ ; confidence 0.547

2562. r08062076.png ; $$\beta$$ ; confidence 0.566

2563. r08062044.png ; $$X = \| x _ { i } \|$$ ; confidence 0.794

2564. r08064034.png ; $$y _ { t } = A x _ { t } + \epsilon _ { t }$$ ; confidence 0.979

2565. r08068010.png ; $$x \frac { \operatorname { lim } _ { x \rightarrow D } u ( x ) = f ( y _ { 0 } ) } { x \in D }$$ ; confidence 0.172

2566. r08068055.png ; $$x ( t ) \in D ^ { c }$$ ; confidence 0.992

2567. r0807408.png ; $$x _ { n m _ { n } } \rightarrow ( 0 )$$ ; confidence 0.220

2568. r08085028.png ; $$e \omega ^ { r } f$$ ; confidence 0.300

2569. r08093013.png ; $$\overline { A } z = \overline { u }$$ ; confidence 0.777

2570. r08093022.png ; $$R _ { 0 } \subset F$$ ; confidence 0.991

2571. r08094028.png ; $$\{ \alpha _ { n } ^ { ( e ) } \}$$ ; confidence 0.972

2572. r08094048.png ; $$\{ \alpha _ { n } \} _ { \aleph = 0 } ^ { \infty }$$ ; confidence 0.264

2573. r08111018.png ; $$g 00 = 1 - 2 \phi / c ^ { 2 }$$ ; confidence 0.483

2574. r08111011.png ; $$p \leq \epsilon / 3$$ ; confidence 0.998

2575. r0811301.png ; $$c \approx 3.10 ^ { 10 } cm / se$$ ; confidence 0.741

2576. r08113085.png ; $$c t ^ { \prime } = x ^ { \prime } \operatorname { sinh } \psi + c t \operatorname { cosh } \psi$$ ; confidence 0.906

2577. r0811504.png ; $$\frac { d ^ { 2 } x } { d \tau ^ { 2 } } - \lambda ( 1 - x ^ { 2 } ) \frac { d x } { d \tau } + x = 0$$ ; confidence 0.998

2578. r08116074.png ; $$t + \tau$$ ; confidence 0.811

2579. r08117020.png ; $$B = B _ { 1 } \cup B _ { 2 }$$ ; confidence 0.997

2580. r08125011.png ; $$H ( t ) = E N$$ ; confidence 0.783

2581. r08126015.png ; $$M _ { \gamma _ { i } } M _ { \gamma _ { j } }$$ ; confidence 0.992

2582. r08139031.png ; $$v _ { 2 } \in V _ { 2 }$$ ; confidence 0.962

2583. r08140012.png ; $$s < s ^ { \prime }$$ ; confidence 0.967

2584. r08142047.png ; $$\phi \in E ^ { \prime }$$ ; confidence 0.998

2585. r08143084.png ; $$A = A _ { 1 } \times A _ { 2 }$$ ; confidence 0.989

2586. r08143081.png ; $$e X$$ ; confidence 0.861

2587. r081430150.png ; $$g e = g$$ ; confidence 0.982

2588. r08143031.png ; $$E / E ^ { \prime }$$ ; confidence 0.807

2589. r08146090.png ; $$l _ { i } = \lambda _ { i } + n - i$$ ; confidence 0.990

2590. r081460129.png ; $$V _ { \lambda } ^ { 0 } \subset V _ { \lambda }$$ ; confidence 0.929

2591. r08146017.png ; $$g \mapsto ( \operatorname { det } g ) ^ { k } R ( g )$$ ; confidence 0.974

2592. r081470221.png ; $$\oplus R ( S _ { n } )$$ ; confidence 0.905

2593. r13007076.png ; $$\| f \| = 0$$ ; confidence 0.996

2594. r13008048.png ; $$\{ \phi j ( z ) \}$$ ; confidence 0.543

2595. r130080102.png ; $$\Lambda ^ { 2 } : = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } < \infty$$ ; confidence 0.996

2596. r08155085.png ; $$\psi d z$$ ; confidence 0.981

2597. r081560116.png ; $$R _ { V } = \frac { 1 } { ( 2 \pi i ) ^ { n } } \int _ { \sigma _ { V } } f ( z ) d z$$ ; confidence 0.396

2598. r08159047.png ; $$A = \int _ { - \infty } ^ { \infty } \lambda d E _ { \lambda }$$ ; confidence 1.000

2599. r08160033.png ; $$y _ { 2 } = ( x _ { 1 } + x _ { 3 } ) ( x _ { 2 } + x _ { 4 } )$$ ; confidence 0.881

2600. r08177046.png ; $$x ^ { T } ( t _ { 1 } ) \Phi x ( t _ { 1 } ) + \int _ { t _ { 0 } } ^ { t _ { 1 } } [ x ^ { T } ( t ) M ( t ) x ( t ) + u ^ { T } ( t ) N ( t ) u ( t ) ] d t$$ ; confidence 0.938

2601. r13009016.png ; $$\sum _ { i = 1 } ^ { r } \alpha _ { i } \sigma ( w ^ { i } x + \theta _ { i } )$$ ; confidence 0.982

2602. r13010034.png ; $$D _ { n }$$ ; confidence 0.956

2603. r08198090.png ; $$\operatorname { ch } ( f _ { 1 } ( x ) ) = f * ( \operatorname { ch } ( x ) \operatorname { td } ( T _ { f } ) )$$ ; confidence 0.130

2604. r08199034.png ; $$D \cup \gamma$$ ; confidence 0.997

2605. r08194033.png ; $$G ( K ) \rightarrow G ( Q )$$ ; confidence 0.817

2606. r08204012.png ; $$a _ { 0 } ( z ) \neq 0$$ ; confidence 0.937

2607. r08204062.png ; $$b \in \overline { C }$$ ; confidence 0.690

2608. r082050121.png ; $$AH _ { p }$$ ; confidence 0.775

2609. r08205056.png ; $$\partial \overline { R } _ { \nu }$$ ; confidence 0.821

2610. r082060128.png ; $$2 g - 1$$ ; confidence 0.999

2611. r082060102.png ; $$f ^ { \mu } | _ { K }$$ ; confidence 0.278

2612. r08207022.png ; $$R _ { i l k } ^ { q } = - R _ { k l } ^ { q }$$ ; confidence 0.210

2613. r08208036.png ; $$- \infty \leq \lambda < \mu \leq \infty$$ ; confidence 0.998

2614. r0821106.png ; $$d s ^ { 2 } = g _ { j } \omega ^ { i } \omega ^ { j }$$ ; confidence 0.914

2615. r08213015.png ; $$\partial x ^ { i } / \partial v$$ ; confidence 0.737

2616. r082150142.png ; $$\operatorname { exp } _ { q } X = r$$ ; confidence 0.511

2617. r082160280.png ; $$\gamma : M ^ { n } \rightarrow M ^ { n }$$ ; confidence 0.911

2618. r08216030.png ; $$n < 7$$ ; confidence 0.999

2619. r08216057.png ; $$N = 0$$ ; confidence 0.990

2620. r082160299.png ; $$\{ \operatorname { exp } _ { m } ( \text { Cutval } ( \xi ) \xi ) \} = \text { Cutloc } ( m )$$ ; confidence 0.291

2621. r082160294.png ; $$\gamma _ { \xi } ( t )$$ ; confidence 0.995

2622. r082200143.png ; $$V ^ { \prime } \subset R ^ { \prime }$$ ; confidence 0.979

2623. r082200111.png ; $$\gamma \geq \gamma _ { k }$$ ; confidence 0.999

2624. r082200148.png ; $$V ^ { \prime } = V ^ { \prime \prime } = R ^ { \prime } \cup R ^ { \prime \prime }$$ ; confidence 0.993

2625. r08221030.png ; $$o = e K$$ ; confidence 0.327

2626. r0822307.png ; $$| x _ { i } | \leq 1$$ ; confidence 0.845

2627. r13013012.png ; $$P _ { \sigma } = \frac { 1 } { 2 \pi i } \int _ { \Gamma } ( \lambda - A ) ^ { - 1 } d \lambda$$ ; confidence 0.932

2628. r13013019.png ; $$P _ { \sigma } ^ { 2 } = P _ { \sigma }$$ ; confidence 0.980

2629. r1301406.png ; $$\sigma ( R ) \backslash \lambda$$ ; confidence 0.997

2630. r0822904.png ; $$x + z < y + z$$ ; confidence 0.999

2631. r082290200.png ; $$p _ { \alpha } = e$$ ; confidence 0.518

2632. r082290135.png ; $$U : E \rightarrow M$$ ; confidence 0.994

2633. r08229026.png ; $$y _ { n } \leq x _ { n } \leq z _ { n }$$ ; confidence 0.841

2634. r08232050.png ; $$\operatorname { lim } _ { r \rightarrow 1 } \int _ { E } | f ( r e ^ { i \theta } ) | ^ { \delta } d \theta = \int _ { E } | f ( e ^ { i \theta } ) | ^ { \delta } d \theta$$ ; confidence 0.964

2635. r08235027.png ; $$s : M \rightarrow F ( M )$$ ; confidence 0.983

2636. r08243011.png ; $$\gamma _ { t } ( x + y ) = \sum _ { r = 0 } ^ { t } \gamma _ { r } ( x ) \gamma _ { t - r } ( y )$$ ; confidence 0.991

2637. r0824307.png ; $$I ( A ) = \operatorname { Ker } ( \epsilon )$$ ; confidence 0.898

2638. r08245049.png ; $$( \alpha b ) \alpha = \alpha ( b \alpha )$$ ; confidence 0.731

2639. r0824503.png ; $$( a + b ) \alpha = \alpha \alpha + b \alpha$$ ; confidence 0.463

2640. r08250032.png ; $$\| u - P _ { n } u \| _ { A } \rightarrow 0$$ ; confidence 0.332

2641. r08250029.png ; $$u _ { 0 } = A ^ { - 1 } f$$ ; confidence 0.941

2642. r12002013.png ; $$J ( q ) ^ { T }$$ ; confidence 0.999

2643. r08256054.png ; $$19$$ ; confidence 1.000

2644. r08256016.png ; $$1$$ ; confidence 0.430

2645. r0825605.png ; $$V = 5$$ ; confidence 0.985

2646. r08256041.png ; $$300$$ ; confidence 0.440

2647. r08257030.png ; $$j 2 ^ { - k - l }$$ ; confidence 0.858

2648. r082590243.png ; $$\lambda - \mu$$ ; confidence 1.000

2649. r082590135.png ; $$- 3$$ ; confidence 1.000

2650. r11015028.png ; $$M \dot { y } = f ( y )$$ ; confidence 0.805

2651. r13016036.png ; $$R ^ { \infty } \rightarrow \ldots \rightarrow R ^ { m } \rightarrow \ldots \rightarrow R ^ { 0 }$$ ; confidence 0.522

2652. r13016037.png ; $$c ^ { m } ( \Omega )$$ ; confidence 0.773

2653. r1301601.png ; $$c ^ { \infty } ( \Omega ) ^ { N }$$ ; confidence 0.774

2654. r0826403.png ; $$A _ { k } = U _ { k } ^ { * } A _ { k - 1 } U _ { k }$$ ; confidence 0.993

2655. r08269033.png ; $$| \chi | < \pi$$ ; confidence 0.998

2656. r08279064.png ; $$\operatorname { Pic } ( F ) \cong p ^ { * } \operatorname { Pic } ( C ) \oplus Z ^ { 5 }$$ ; confidence 0.304

2657. s08300044.png ; $$D _ { n } X _ { 1 }$$ ; confidence 0.828

2658. s08300037.png ; $$D _ { n } X \subset S ^ { n } \backslash X$$ ; confidence 0.497

2659. s08300055.png ; $$D _ { n } D _ { n } \theta = \theta$$ ; confidence 0.970

2660. s08317053.png ; $$m _ { i } = 0$$ ; confidence 0.997

2661. s08317062.png ; $$\tilde { D } = E \{ M | m = 0 \} = \frac { ( \sum _ { r = 1 } ^ { N - n } r \frac { C _ { N - r } ^ { n } } { C _ { N } ^ { n } } p _ { r } ) } { P \{ m = 0 \} }$$ ; confidence 0.234

2662. s13002040.png ; $$g _ { t } ( u )$$ ; confidence 0.987

2663. s11004082.png ; $$\phi ( T _ { X } N ) \subset T _ { X } N$$ ; confidence 0.941

2664. s110040107.png ; $$\phi ( D _ { X } ) = D _ { X }$$ ; confidence 0.531

2665. s13004056.png ; $$\overline { D } = \overline { D } _ { S }$$ ; confidence 0.978

2666. s13004069.png ; $$X ^ { * } = \Gamma \backslash D ^ { * }$$ ; confidence 0.822

2667. s0833306.png ; $$\phi _ { \mathscr { A } } ( . )$$ ; confidence 0.193

2668. s08338085.png ; $$d \in C$$ ; confidence 0.487

2669. s08338074.png ; $$\Phi ( r - b + c )$$ ; confidence 1.000

2670. s1300707.png ; $$\phi ( f ( x ) ) = g ( x ) \phi ( x ) + h ( x )$$ ; confidence 0.999

2671. s120040125.png ; $$\pi \Gamma$$ ; confidence 0.616

2672. s120040132.png ; $$\lambda ^ { s _ { \mu } } = \sum _ { \nu } c _ { \lambda \mu } ^ { \nu } s _ { \nu }$$ ; confidence 0.882

2673. s12004027.png ; $$s _ { \lambda } = \sum _ { T } x ^ { T }$$ ; confidence 0.998

2674. s12004026.png ; $$x ^ { T } = x _ { 1 } ^ { 3 } x _ { 2 } x _ { 3 } ^ { 2 } x _ { 4 }$$ ; confidence 0.977

2675. s12004016.png ; $$| \lambda | = \Sigma _ { i } \lambda$$ ; confidence 0.682

2676. s12005011.png ; $$S _ { B B } ( z ) \equiv 0$$ ; confidence 0.476

2677. s08346028.png ; $$\operatorname { Ccm } ( G )$$ ; confidence 0.094

2678. s08347010.png ; $$D ^ { - 1 } \in \pi$$ ; confidence 0.978

2679. s0851406.png ; $$\theta \in \Theta _ { 0 } \subseteq \Theta$$ ; confidence 0.992

2680. s08525014.png ; $$\sum _ { j = 1 } ^ { n } | b _ { j j } | \leq \rho$$ ; confidence 0.569

2681. s08521029.png ; $$q ^ { l } ( q ^ { 2 } - 1 ) \dots ( q ^ { 2 l } - 1 ) / d$$ ; confidence 0.450

2682. s08521047.png ; $$q ^ { 6 } ( q ^ { 2 } - 1 ) ( q ^ { 6 } - 1 )$$ ; confidence 0.814

2683. s08521071.png ; $$\square ^ { 2 } F _ { 4 } ( q ) ^ { \prime }$$ ; confidence 0.889

2684. s08530020.png ; $$c b = c$$ ; confidence 0.994

2685. s08533026.png ; $$18$$ ; confidence 0.479

2686. s0853408.png ; $$s _ { \alpha } \geq 1$$ ; confidence 0.984

2687. s0853606.png ; $$\operatorname { dim } K$$ ; confidence 0.982

2688. s085360140.png ; $$B d K$$ ; confidence 0.567

2689. s08538041.png ; $$s _ { i } : X _ { n } \rightarrow X _ { n } + 1$$ ; confidence 0.593

2690. s085400446.png ; $$X \rightarrow \Delta [ 0 ]$$ ; confidence 0.965

2691. s085400325.png ; $$\tilde { f } : \Delta ^ { n + 1 } \rightarrow E$$ ; confidence 0.333

2692. s08540076.png ; $$x _ { i } \in \pi$$ ; confidence 0.507

2693. s0855608.png ; $$| \sigma ^ { n } |$$ ; confidence 0.923

2694. s085580244.png ; $$M = \frac { a } { a ^ { 2 } - b ^ { 2 } } I - \frac { b } { a ^ { 2 } - b ^ { 2 } } S$$ ; confidence 0.440

2695. s085580113.png ; $$K = \nu - \nu$$ ; confidence 0.596

2696. s08558099.png ; $$\psi ( t ) = a * ( t ) g ( t ) +$$ ; confidence 0.645

2697. s085590585.png ; $$\| x \| = \rho$$ ; confidence 0.826

2698. s085590370.png ; $$x _ { 0 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$$ ; confidence 0.863

2699. s08559028.png ; $$L _ { 2 } : z = \phi _ { 2 } ( t )$$ ; confidence 0.995

2700. s08559026.png ; $$0 < \tau _ { 1 } \leq 1$$ ; confidence 0.993

2701. s085620184.png ; $$f _ { t } = h _ { t } \circ f _ { 0 } \circ k _ { t }$$ ; confidence 0.837

2702. s13036039.png ; $$\int _ { 0 } ^ { t } I _ { \partial D } ( Y _ { s } ) d l _ { s } = 1 _ { t }$$ ; confidence 0.676

2703. s120150139.png ; $$\varphi H G$$ ; confidence 0.652

2704. s08579085.png ; $$\sum _ { l = 1 } ^ { \infty } \frac { \operatorname { ln } q + 1 } { q l }$$ ; confidence 0.755

2705. s0858103.png ; $$\phi : U \rightarrow \sum _ { i \in I } U _ { l }$$ ; confidence 0.895

2706. s085820238.png ; $$b ( x ) < 0$$ ; confidence 1.000

2707. s08583016.png ; $$| w | = \rho < 1$$ ; confidence 0.874

2708. s08602026.png ; $$\overline { D ^ { + } } = D ^ { + } \cup \Gamma$$ ; confidence 0.709

2709. s12018056.png ; $$M = M ^ { \perp \perp }$$ ; confidence 0.970

2710. s0861605.png ; $$J _ { m + n + 1 } ( x ) =$$ ; confidence 0.892

2711. s086190182.png ; $$s \in E ^ { n }$$ ; confidence 0.570

2712. s086330106.png ; $$\| x \| ^ { 2 } = \int _ { \sigma ( A ) } | f _ { \lambda } ( x ) | ^ { 2 } d \rho ( \lambda )$$ ; confidence 0.635

2713. s08633021.png ; $$\sigma _ { d x } ( A )$$ ; confidence 0.138

2714. s08633098.png ; $$A \Phi \subset \Phi$$ ; confidence 0.973

2715. s086360102.png ; $$B ( r ) = \int _ { 0 } ^ { \infty } J _ { 0 } ( \lambda r ) d F ( \lambda )$$ ; confidence 0.998

2716. s0863808.png ; $$s _ { 1 } - t _ { 1 } = s _ { 2 } - t _ { 2 }$$ ; confidence 0.998

2717. s08645013.png ; $$A _ { \delta }$$ ; confidence 0.997

2718. s0864803.png ; $$E | X ( t ) | ^ { n } \leq C < \infty$$ ; confidence 0.578

2719. s086490118.png ; $$d ^ { \prime }$$ ; confidence 0.445

2720. s08652091.png ; $$| T | _ { p }$$ ; confidence 0.714

2721. s086520138.png ; $$\theta _ { T } = \theta$$ ; confidence 0.989

2722. s0865507.png ; $$B _ { N } A ( B _ { N } ( \lambda - \lambda _ { 0 } ) )$$ ; confidence 0.980

2723. s08659060.png ; $$\mathfrak { p } \not p \not \sum _ { n = 1 } ^ { \infty } A _ { n }$$ ; confidence 0.075

2724. s08662027.png ; $$\Sigma ( \Sigma ^ { n } X ) \rightarrow \Sigma ^ { n + 1 } X$$ ; confidence 0.992

2725. s08662031.png ; $$( \pi )$$ ; confidence 1.000

2726. s086650167.png ; $$Z _ { 24 }$$ ; confidence 0.663

2727. s08665020.png ; $$i > 2 n - 1$$ ; confidence 0.989

2728. s08670044.png ; $$e ^ { - k - s | / \mu } / \mu$$ ; confidence 0.763

2729. s086720108.png ; $$V ^ { 3 } = E ^ { 3 }$$ ; confidence 0.992

2730. s086720109.png ; $$K ( d s ) = K$$ ; confidence 0.996

2731. s08672038.png ; $$\pi = n \sqrt { 1 + \sum p ^ { 2 } }$$ ; confidence 0.678

2732. s1202309.png ; $$O ( r )$$ ; confidence 0.866

2733. s11024022.png ; $$\lambda _ { m } ( t )$$ ; confidence 0.691

2734. s08677096.png ; $$5 + 7 n$$ ; confidence 0.141

2735. s086810102.png ; $$f \in W _ { 2 } ^ { 3 } ( \Omega )$$ ; confidence 0.999

2736. s08681080.png ; $$( 2 m - 2 )$$ ; confidence 1.000

2737. s086810108.png ; $$W _ { p } ^ { m } ( I ^ { d } )$$ ; confidence 0.958

2738. s130510139.png ; $$L \subset Z ^ { 0 }$$ ; confidence 0.864

2739. s13051063.png ; $$\Gamma = \Gamma _ { 1 } + \ldots + \Gamma _ { m }$$ ; confidence 0.966

2740. s130510126.png ; $$\gamma ( u ) < \infty$$ ; confidence 0.997

2741. s086940114.png ; $$\operatorname { det } S \neq 0$$ ; confidence 0.896

2742. s086940100.png ; $$- \infty \leq w \leq + \infty$$ ; confidence 0.301

2743. s086940134.png ; $$0 \leq \omega \leq \infty$$ ; confidence 0.754

2744. s08694070.png ; $$\| \eta ( \cdot ) \| ^ { 2 } = \int _ { 0 } ^ { \infty } | \eta ( t ) | ^ { 2 } d t$$ ; confidence 0.669

2745. s08696030.png ; $$\| x _ { 0 } \| \leq \delta$$ ; confidence 0.966

2746. s08696076.png ; $$V < 0$$ ; confidence 0.854

2747. s08696095.png ; $$k \leq p \leq n$$ ; confidence 0.985

2748. s0870309.png ; $$f _ { h } \in U _ { k }$$ ; confidence 0.371

2749. s08703096.png ; $$\operatorname { max } _ { n \atop n } \| u ^ { n } \| _ { H } \leq e ^ { C _ { 1 } T } \{ \| \phi \| _ { H } + C _ { 0 } \sum _ { n } \tau \| f ^ { n + 1 } \| _ { H } \}$$ ; confidence 0.172

2750. s08711028.png ; $$\delta < \alpha$$ ; confidence 0.956

2751. s08713053.png ; $$m < \infty$$ ; confidence 0.973

2752. s08726044.png ; $$\eta _ { 0 } ( i )$$ ; confidence 0.979

2753. s08727063.png ; $$V _ { x } 0 ( \lambda ) \sim \operatorname { exp } [ i \lambda S ( x ^ { 0 } ) ] \sum _ { k = 0 } ^ { \infty } ( \sum _ { l = 0 } ^ { N } \alpha _ { k l } \lambda ^ { - r _ { k } } ( \operatorname { ln } \lambda ) ^ { l } \}$$ ; confidence 0.167

2754. s087280193.png ; $$m = E X ( s )$$ ; confidence 0.808

2755. s08730040.png ; $$Q _ { 1 }$$ ; confidence 0.060

2756. s08732031.png ; $$\Pi ^ { * } \in C$$ ; confidence 0.864

2757. s08732041.png ; $$\mathfrak { R } _ { \mu } ( \Pi _ { 0 } ) = \operatorname { inf } _ { \Pi } \Re _ { \mu } ( \Pi )$$ ; confidence 0.658

2758. s08733032.png ; $$H _ { i } ( \omega )$$ ; confidence 0.983

2759. s08735095.png ; $$I _ { n } ( \theta ) = n I ( \theta )$$ ; confidence 0.870

2760. s087360228.png ; $$P \{ s ^ { 2 } < \frac { \sigma ^ { 2 } x } { n - 1 } \} = G _ { n - 1 } ( x ) = D _ { n - 1 } \int _ { 0 } ^ { x } v ^ { ( n - 3 ) } / 2 e ^ { - v / 2 } d v$$ ; confidence 0.622

2761. s087360105.png ; $$\operatorname { lim } _ { n \rightarrow \infty } P \{ \frac { \alpha - \alpha } { \sigma _ { n } ( \alpha ) } < x \} = \frac { 1 } { \sqrt { 2 \pi } } \int _ { - \infty } ^ { x } e ^ { - t ^ { 2 } / 2 } d t \equiv \Phi ( x )$$ ; confidence 0.827

2762. s087400105.png ; $$\in \Theta _ { 0 } \beta _ { n } ( \theta ) \leq \alpha$$ ; confidence 0.815

2763. s11026022.png ; $$\eta \in R ^ { k }$$ ; confidence 0.999

2764. s08742011.png ; $$H = H _ { V } ( \omega )$$ ; confidence 0.988

2765. s087420178.png ; $$\mathfrak { A } _ { \infty } = \overline { U _ { V \subset R ^ { 3 } } } A ( \mathcal { H } _ { V } )$$ ; confidence 0.216

2766. s08742067.png ; $$\{ f \rangle _ { P } \sim | V |$$ ; confidence 0.071

2767. s087450224.png ; $$\frac { 1 } { 2 \pi } \sum _ { t = - T + 1 } ^ { T - 1 } e ^ { - i t \lambda } r ^ { * } ( t ) c T ( t )$$ ; confidence 0.607

2768. s087450112.png ; $$\xi = \sum b _ { j } x ( t _ { j } )$$ ; confidence 0.942

2769. s087450113.png ; $$\sum b _ { j } \phi _ { l } ( t _ { j } ) = 0$$ ; confidence 0.990

2770. s087450208.png ; $$I _ { T } ( \lambda ) = \frac { 1 } { 2 \pi T } | \int _ { 0 } ^ { T } e ^ { - i t \lambda } x ( t ) d t |$$ ; confidence 0.646

2771. s087450221.png ; $$a T \rightarrow \infty$$ ; confidence 0.506

2772. s087450204.png ; $$\theta _ { T } ^ { * }$$ ; confidence 0.481

2773. s08746026.png ; $$\{ \epsilon _ { t } \}$$ ; confidence 0.993

2774. s12024033.png ; $$h ^ { S * } ( . ) \approx \overline { E } \times ( . )$$ ; confidence 0.489

2775. s08755019.png ; $$\alpha < p b$$ ; confidence 0.578

2776. s08755022.png ; $$\alpha \leq p b$$ ; confidence 0.784

2777. s08764034.png ; $$g \neq 0$$ ; confidence 1.000

2778. s08764060.png ; $$I = \{ f \in O ( X ) : f ( x ) = 0 \}$$ ; confidence 0.993

2779. s08764057.png ; $$I \subset O ( X )$$ ; confidence 0.970

2780. s08764086.png ; $$n ( O _ { x } ) = 0$$ ; confidence 0.322

2781. s0876903.png ; $$f _ { h } ( t ) = \frac { 1 } { h } \int _ { t - k / 2 } ^ { t + k / 2 } f ( u ) d u = \frac { 1 } { h } \int _ { - k / 2 } ^ { k / 2 } f ( t + v ) d v$$ ; confidence 0.345

2782. s08771037.png ; $$\omega ( R )$$ ; confidence 0.999

2783. s11028060.png ; $$\sum _ { i = 1 } ^ { r } \alpha _ { i } \theta ( b _ { i } ) \in Z [ G ]$$ ; confidence 0.947

2784. s08779013.png ; $$RP ^ { \infty }$$ ; confidence 0.165

2785. s08777049.png ; $$V _ { k } ( H ^ { n } ) = \frac { Sp ( n ) } { Sp ( n - k ) }$$ ; confidence 0.259

2786. s08778069.png ; $$x [ M ^ { n } ] = \alpha ( x )$$ ; confidence 0.933

2787. s08778021.png ; $$w ^ { \prime }$$ ; confidence 0.380

2788. s08780026.png ; $$x + C$$ ; confidence 0.988

2789. s08780044.png ; $$| u ( x _ { 1 } ) - u ( x _ { 2 } ) | \leq C | x _ { 1 } - x _ { 2 }$$ ; confidence 0.995

2790. s1202506.png ; $$h _ { n } = \int _ { a } ^ { b } x ^ { n } h ( x ) d x$$ ; confidence 0.183

2791. s08782077.png ; $$| \frac { 1 } { 1 - H \lambda _ { i } } | < 1$$ ; confidence 0.997

2792. s087820210.png ; $$y _ { n + 1 } = y _ { n } + \int _ { 0 } ^ { H / 2 } e ^ { A \tau } d \tau \times$$ ; confidence 0.976

2793. s08782061.png ; $$\alpha _ { 1 } = - 3$$ ; confidence 0.753

2794. s087820182.png ; $$\| y \| = \operatorname { max } _ { i } | y _ { i } |$$ ; confidence 0.800

2795. s09013024.png ; $$H \mapsto \alpha ( H )$$ ; confidence 0.996

2796. s09013055.png ; $$K . ( H X ) = ( K H ) X$$ ; confidence 0.766

2797. s12026061.png ; $$\partial _ { s }$$ ; confidence 0.939

2798. s11029032.png ; $$t / \lambda ^ { 2 } \rightarrow + \infty$$ ; confidence 0.986

2799. s09017045.png ; $$E$$ ; confidence 0.923

2800. s09017090.png ; $$B \in \mathfrak { B } _ { 0 }$$ ; confidence 0.992

2801. s0901702.png ; $$\ldots < t _ { - 1 } < t _ { 0 } \leq 0 < t _ { 1 } < t _ { 2 } <$$ ; confidence 0.500

2802. s0901802.png ; $$\square \ldots < t _ { - 1 } < t _ { 0 } \leq 0 < t _ { 1 } < t _ { 2 } < \ldots$$ ; confidence 0.740

2803. s090190160.png ; $$X ( t _ { 1 } ) = x$$ ; confidence 0.980

2804. s09019043.png ; $$t = Z$$ ; confidence 0.971

2805. s09022010.png ; $$x ( \phi )$$ ; confidence 0.999

2806. s09023035.png ; $$\overline { w }$$ ; confidence 0.553

2807. s09026037.png ; $$d x = A ( t ) x d t + B ( t ) d w ( t )$$ ; confidence 0.986

2808. s09026014.png ; $$d X ( t ) = a ( t ) Z ( t ) d t + d Y ( t )$$ ; confidence 0.505

2809. s0902702.png ; $$\alpha < t < b$$ ; confidence 0.786

2810. s09045062.png ; $$\zeta ^ { \phi } \in C ^ { d }$$ ; confidence 0.837

2811. s09045037.png ; $$W ^ { ( n ) } ( s )$$ ; confidence 0.986

2812. s0905905.png ; $$J ( y ) \leq J ( y )$$ ; confidence 0.683

2813. s1202804.png ; $$\overline { f } : X \rightarrow Y$$ ; confidence 0.998

2814. s12028015.png ; $$\overline { E } * ( X )$$ ; confidence 0.554

2815. s09067035.png ; $$j _ { X } ^ { k } ( u )$$ ; confidence 0.362

2816. s09071014.png ; $$f = 1$$ ; confidence 1.000

2817. s09072010.png ; $$a \neq a _ { 0 }$$ ; confidence 0.773

2818. s09076059.png ; $$p ( \alpha )$$ ; confidence 0.904

2819. s09076071.png ; $$l [ f ] = 0$$ ; confidence 0.979

2820. s09076026.png ; $$L _ { 0 } ^ { * } = L _ { 1 }$$ ; confidence 0.957

2821. s090770137.png ; $$\lambda _ { 1 } < \lambda _ { 2 } < \ldots$$ ; confidence 0.830

2822. s09078074.png ; $$\Phi ^ { \prime \prime } ( + 0 ) = - h$$ ; confidence 0.997

2823. s13062062.png ; $$m _ { 0 } ( \lambda ) = A + \int _ { - \infty } ^ { \infty } ( \frac { 1 } { t - \lambda } - \frac { t } { t ^ { 2 } + 1 } ) d \rho _ { 0 } ( t )$$ ; confidence 0.926

2824. s0908209.png ; $$X ^ { * }$$ ; confidence 0.447

2825. s0908308.png ; $$m : B \rightarrow A$$ ; confidence 0.962

2826. s09090088.png ; $$\xi = \infty \in \partial D$$ ; confidence 0.998

2827. s09090090.png ; $$V = V ( \infty ) = \{ x \in R ^ { n } : | x | > R \}$$ ; confidence 0.624

2828. s09101020.png ; $$c = \operatorname { const } \neq 0$$ ; confidence 0.470

2829. s09107089.png ; $$P _ { \theta } ( A | B )$$ ; confidence 0.963

2830. s09108054.png ; $$\sum _ { n < x } f ( n ) = R ( x ) + O ( x ^ { \{ ( \alpha + 1 ) ( 2 \eta - 1 ) / ( 2 \eta + 1 ) \} + \epsilon } )$$ ; confidence 0.795

2831. s0911009.png ; $$\lambda _ { n } = 1 / ( n + 1 ) ^ { s }$$ ; confidence 0.931

2832. s09114035.png ; $$s _ { n } \rightarrow s$$ ; confidence 0.696

2833. s09114030.png ; $$\sum _ { k = 0 } ^ { \infty } \lambda _ { k } u _ { k }$$ ; confidence 0.542

2834. s09120056.png ; $$\operatorname { psq } ( n ) = \operatorname { sq } ( n ) / \{ c E : c \in C \}$$ ; confidence 0.425

2835. s12032058.png ; $$S ( L )$$ ; confidence 0.980

2836. s09139063.png ; $$x _ { 1 } ^ { 2 } = 0$$ ; confidence 0.997

2837. s0913909.png ; $$\frac { x ^ { 2 } } { p } - \frac { y ^ { 2 } } { q } = 2 z$$ ; confidence 0.932

2838. s09157097.png ; $$T ^ { * } Y \backslash 0$$ ; confidence 0.994

2839. s09158080.png ; $$\Phi ( f ( w ) ) = \sigma ( \Phi ( w ) )$$ ; confidence 0.999

2840. s09167062.png ; $$S ( B _ { n } ^ { m } )$$ ; confidence 0.719

2841. s09173026.png ; $$H ^ { n - k } \cap S ^ { k }$$ ; confidence 0.502

2842. s120340135.png ; $$\alpha _ { H } ( \tilde { x } _ { + } ) - \alpha _ { H } ( \tilde { x } _ { - } ) = 1$$ ; confidence 0.404

2843. s09191051.png ; $$\sim \frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n }$$ ; confidence 0.975

2844. s091910121.png ; $$T _ { i } = C A ^ { i } B ^ { i } B$$ ; confidence 0.233

2845. s11033016.png ; $$- 5 \rightarrow - 14 \rightarrow - 7 \rightarrow - 20 \rightarrow - 10 \rightarrow - 5$$ ; confidence 0.902

2846. s0919603.png ; $$R = \{ \pi ( i ) : \square i \in I \}$$ ; confidence 0.950

2847. s09196011.png ; $$\{ \pi ( i ) : \square i \in I _ { 0 } \}$$ ; confidence 0.752

2848. s13064057.png ; $$L ^ { 1 } ( R ) \cap L ^ { \infty } ( R )$$ ; confidence 0.831

2849. t12002014.png ; $$T ^ { + } = \cap _ { N > 0 } \sigma ( X _ { n } : n \geq N )$$ ; confidence 0.699

2850. t0922406.png ; $$k = R / m$$ ; confidence 0.483

2851. t09225012.png ; $$g ^ { ( i ) }$$ ; confidence 0.484

2852. t13004015.png ; $$( n + 1 ) a _ { n + 1 } + \alpha _ { n } = \tau$$ ; confidence 0.385

2853. t13004014.png ; $$\tau x ^ { n }$$ ; confidence 0.790

2854. t13005033.png ; $$D _ { A } ^ { 2 } = 0$$ ; confidence 0.998

2855. t13005053.png ; $$\sigma ^ { \prime } ( A )$$ ; confidence 0.999

2856. t12003042.png ; $$\psi = \Psi ^ { \prime }$$ ; confidence 0.559

2857. t09247071.png ; $$E _ { 1 } E _ { 2 } E _ { 3 }$$ ; confidence 0.997

2858. t092470182.png ; $$e _ { v } \leq \mathfrak { e } _ { v } + 1$$ ; confidence 0.197

2859. t092470133.png ; $$R _ { T ^ { \prime \prime } }$$ ; confidence 0.675

2860. t11002078.png ; $$M _ { \mathscr { C } } M _ { b } M _ { \alpha ^ { \prime } } M _ { \phi }$$ ; confidence 0.076

2861. t11002049.png ; $$e ^ { \prime }$$ ; confidence 0.559

2862. t09253011.png ; $$( \pi | \tau _ { 1 } | \tau _ { 2 } )$$ ; confidence 0.977

2863. t09260017.png ; $$\theta ( z + \tau ) = \operatorname { exp } ( - 2 \pi i k z ) . \theta ( z )$$ ; confidence 0.660

2864. t09260081.png ; $$\delta = 2$$ ; confidence 0.999

2865. t09260032.png ; $$\operatorname { lm } A = \| \operatorname { lm } \alpha _ { \mu \nu } |$$ ; confidence 0.510

2866. t092600123.png ; $$B = I _ { p }$$ ; confidence 0.852

2867. t12005046.png ; $$d f _ { x } : R ^ { n } \rightarrow R ^ { p }$$ ; confidence 0.932

2868. t13009023.png ; $$f ^ { - 1 } ( S )$$ ; confidence 0.998

2869. t09265044.png ; $$c < 2$$ ; confidence 0.987

2870. t09265019.png ; $$u x + v x ^ { 2 } + w x ^ { 3 } + t x ^ { 4 }$$ ; confidence 0.989

2871. t09265033.png ; $$\{ \partial f \rangle$$ ; confidence 0.295

2872. t09265012.png ; $$x ^ { 3 } + x y ^ { 2 }$$ ; confidence 1.000

2873. t120060116.png ; $$E ^ { Q } ( N )$$ ; confidence 0.962

2874. t12006058.png ; $$N \geq Z$$ ; confidence 0.919

2875. t09272013.png ; $$\Delta _ { i j } = \Delta _ { j i } = \sqrt { ( x _ { i } - x _ { j } ) ^ { 2 } + ( y _ { i } - y _ { j } ) ^ { 2 } + ( z _ { i } - z _ { j } ) ^ { 2 } }$$ ; confidence 0.489

2876. t09273032.png ; $$M = M _ { 1 } \# M _ { 2 }$$ ; confidence 0.954

2877. t12008015.png ; $$O _ { S } ^ { * }$$ ; confidence 0.936

2878. t12008049.png ; $$( 5 \times 10 ^ { 6 } r ) ^ { 3 }$$ ; confidence 0.525

2879. t09280017.png ; $$X _ { ( \tau _ { 1 } + \ldots + \tau _ { j - 1 } + 1 ) } = \ldots = X _ { ( \tau _ { 1 } + \ldots + \tau _ { j } ) }$$ ; confidence 0.575

2880. t092810186.png ; $$B s$$ ; confidence 0.576

2881. t092810205.png ; $$\beta ( M )$$ ; confidence 0.995

2882. t1301005.png ; $$\square _ { H } T$$ ; confidence 0.979

2883. t13014052.png ; $$( Q )$$ ; confidence 0.999

2884. t130140116.png ; $$q R$$ ; confidence 0.245

2885. t130140169.png ; $$q _ { A }$$ ; confidence 0.118

2886. t12013055.png ; $$M = M \Lambda ^ { t }$$ ; confidence 0.505

2887. t13015070.png ; $$C ^ { * } E ( S ) \otimes _ { \delta } C _ { 0 } ( S )$$ ; confidence 0.440

2888. t13015064.png ; $$K ( L ^ { 2 } ( S ) )$$ ; confidence 0.779

2889. t12015061.png ; $$( \Delta ^ { \alpha } \xi ) ^ { \# } = \Delta ^ { - \overline { \alpha } } \xi ^ { \# }$$ ; confidence 0.710

2890. t1201505.png ; $$\eta \in A \mapsto \xi \eta \in A$$ ; confidence 0.962

2891. t09298063.png ; $$f \in S ( R ^ { n } )$$ ; confidence 0.981

2892. t093150622.png ; $$( f _ { i } : B _ { i } \rightarrow B ) _ { i \in l }$$ ; confidence 0.575

2893. t093150169.png ; $$F \in \gamma$$ ; confidence 0.994

2894. t093150743.png ; $$\left. \begin{array} { c c c } { B _ { i } } & { \stackrel { h _ { i } } { \rightarrow } } & { A _ { i } } \\ { g _ { i } \downarrow } & { \square } & { \downarrow f _ { i } } \\ { B } & { \vec { f } } & { A } \end{array} \right.$$ ; confidence 0.342

2895. t093150395.png ; $$A \wedge B$$ ; confidence 0.923

2896. t093150306.png ; $$= C$$ ; confidence 0.931

2897. t093150450.png ; $$\operatorname { sin } 0$$ ; confidence 0.092

2898. t093150393.png ; $$\{ p _ { i } ^ { - 1 } U _ { i } : U _ { i } \in \mu _ { i \square } \text { and } i \in I \}$$ ; confidence 0.601

2899. t093150728.png ; $$A ^ { * } = A \cup \{ \infty _ { A } \}$$ ; confidence 0.980

2900. t09316047.png ; $$p _ { 1 } \otimes \sim p _ { 2 }$$ ; confidence 0.782

2901. t09316053.png ; $$\sum _ { k = 1 } ^ { \infty } p _ { 1 } ( x _ { k } ) p _ { 2 } ( y _ { k } ) \leq p _ { 1 } \overline { Q } p _ { 2 } ( u ) + \epsilon$$ ; confidence 0.229

2902. t093180434.png ; $$D ( R ^ { n + k } )$$ ; confidence 0.995

2903. t09323048.png ; $$H \rightarrow TOP$$ ; confidence 0.688

2904. t093230103.png ; $$\left. \begin{array} { c c c } { \square } & { \square } & { B P L } \\ { \square } & { \square } & { \downarrow } \\ { X } & { \vec { \tau } _ { X } } & { B G } \end{array} \right.$$ ; confidence 0.066

2905. t09323071.png ; $$X \rightarrow P L / O$$ ; confidence 0.928

2906. t09326056.png ; $$d \Phi$$ ; confidence 0.791

2907. t09326078.png ; $$d = 6$$ ; confidence 0.998

2908. t09326038.png ; $$( X ) \in M$$ ; confidence 0.998

2909. t09333059.png ; $$r _ { 2 } \in R$$ ; confidence 0.862

2910. t0933407.png ; $$S _ { j } ^ { k } = \Gamma _ { i j } ^ { k } - \Gamma _ { j i } ^ { k }$$ ; confidence 0.505

2911. t0935701.png ; $$x = \pm \alpha \operatorname { ln } \frac { \alpha + \sqrt { \alpha ^ { 2 } - y ^ { 2 } } } { y } - \sqrt { \alpha ^ { 2 } - y ^ { 2 } }$$ ; confidence 0.391

2912. t09367085.png ; $$r < | w | < 1$$ ; confidence 0.982

2913. t09367092.png ; $$d s _ { é } = \frac { | d z | } { 1 + | z | ^ { 2 } }$$ ; confidence 0.470

2914. t09367039.png ; $$\operatorname { lim } _ { \epsilon \rightarrow 0 } d ( E _ { \epsilon } ) = d ( E )$$ ; confidence 0.993

2915. t0937107.png ; $$x = f ( \alpha )$$ ; confidence 0.993

2916. t09377057.png ; $$\mathfrak { A } f ( x ) = \operatorname { lim } _ { U ! x } [ \frac { E _ { x } f ( x _ { \tau } ) - f ( x ) } { E _ { x } \tau } ]$$ ; confidence 0.104

2917. t09377067.png ; $$\mathfrak { A } f$$ ; confidence 0.742

2918. t09377043.png ; $$R ^ { 0 } f$$ ; confidence 0.999

2919. t09377039.png ; $$g = R ^ { \alpha } f$$ ; confidence 0.864

2920. t09386023.png ; $$P ( S )$$ ; confidence 0.765

2921. t09389045.png ; $$o ( N ) / N \rightarrow 0$$ ; confidence 0.792

2922. t093900196.png ; $$T _ { 23 } n ( \operatorname { cos } \pi \omega )$$ ; confidence 0.946

2923. t09390073.png ; $$g _ { n } ( \Omega )$$ ; confidence 0.875

2924. t093900115.png ; $$l \mu \frac { \partial W ^ { k } } { \partial x } + ( 1 - c ) W ^ { k } = c ( \Phi _ { 0 } ^ { k } - \phi _ { 0 } ^ { k } )$$ ; confidence 0.308

2925. t093900146.png ; $$Q _ { n } W ^ { k } = P _ { n } c ( W ^ { k } + \Phi _ { 0 } ^ { k } - \phi _ { 0 } ^ { k } )$$ ; confidence 0.976

2926. t093900154.png ; $$g _ { k } = ( 1 + y _ { k } ) / 2$$ ; confidence 0.953

2927. t0939808.png ; $$V = f ^ { - 1 } ( X )$$ ; confidence 1.000

2928. t09399044.png ; $$Q _ { 1 } \cup \square \ldots \cup Q _ { m }$$ ; confidence 0.878

2929. t09400030.png ; $$f ( x ) = g ( y )$$ ; confidence 1.000

2930. t13021052.png ; $$2 / ( 3 N / 2 )$$ ; confidence 0.990

2931. t09424015.png ; $$\frac { a _ { 0 } } { 4 } x ^ { 2 } - \sum _ { k = 1 } ^ { \infty } \frac { a _ { k } \operatorname { cos } k x + b _ { k } \operatorname { sin } k x } { k ^ { 2 } }$$ ; confidence 0.667

2932. t094300134.png ; $$\operatorname { Fix } ( T ) \subset \mathfrak { R }$$ ; confidence 0.710

2933. t09430077.png ; $$\left. \begin{array} { c c c } { T A } & { \stackrel { T f } { S } } & { T B } \\ { \alpha \downarrow } & { \square } & { \downarrow \beta } \\ { A } & { \vec { f } } & { B } \end{array} \right.$$ ; confidence 0.204

2934. t09442025.png ; $$\overline { U } / \partial \overline { U }$$ ; confidence 0.976

2935. t09444040.png ; $$u _ { m } = u ( M _ { m } )$$ ; confidence 0.360

2936. t120200142.png ; $$m > - 1$$ ; confidence 0.998

2937. t120200179.png ; $$\operatorname { Re } G _ { 1 } ( r ) \geq B$$ ; confidence 0.984

2938. t094530109.png ; $$\sum ( k _ { i } - 1 )$$ ; confidence 0.930

2939. t09454051.png ; $$\{ \omega _ { n } ^ { + } ( V ) \}$$ ; confidence 0.949

2940. t09460022.png ; $$f _ { 0 } \neq 0$$ ; confidence 0.997

2941. t0946003.png ; $$\alpha \geq A _ { 0 }$$ ; confidence 0.904

2942. t09465038.png ; $$\forall v \phi$$ ; confidence 0.989

2943. t09465066.png ; $$\in M$$ ; confidence 0.717

2944. t09465036.png ; $$( \phi \& \psi )$$ ; confidence 0.997

2945. t09466060.png ; $$\{ f ( z ) \}$$ ; confidence 1.000

2946. t09466020.png ; $$\phi ( z ) = \frac { 1 - z ^ { 2 } } { z } f ( z ) \in C$$ ; confidence 0.993

2947. u09507044.png ; $$T ( X ) = \left\{ \begin{array} { l l } { 1 } & { \text { if } X = 1 } \\ { 0 } & { \text { if } X \geq 2 } \end{array} \right.$$ ; confidence 0.976

2948. u0952109.png ; $$f _ { \alpha } ( x ) \geq - c$$ ; confidence 0.977

2949. u09523081.png ; $$\{ d f _ { n } / d x \}$$ ; confidence 0.954

2950. u09529039.png ; $$t \rightarrow t + w z$$ ; confidence 0.466

2951. u09529022.png ; $$w = \operatorname { sin }$$ ; confidence 0.905

2952. u09540011.png ; $$( g - 1 ) ^ { n } = 0$$ ; confidence 0.996

2953. u09541013.png ; $$U _ { n } ( K )$$ ; confidence 0.987

2954. u09541052.png ; $$g ^ { p } = e$$ ; confidence 0.978

2955. u09544022.png ; $$O ( \epsilon _ { N } )$$ ; confidence 0.478

2956. u09544020.png ; $$U ( \epsilon )$$ ; confidence 0.998

2957. u09562096.png ; $$\sum _ { k = 1 } ^ { \infty } | \alpha _ { k } | ^ { 2 } = \frac { 1 } { 2 \pi } \int _ { 0 } ^ { 2 \pi } | f ( e ^ { i t } ) | ^ { 2 } d t \leq 1$$ ; confidence 0.986

2958. u09563071.png ; $$U : B \rightarrow A$$ ; confidence 0.544

2959. u09568015.png ; $$( n \geq 0 )$$ ; confidence 1.000

2960. u09582023.png ; $$v ( x ) \geq f ( x )$$ ; confidence 0.996

2961. v096020116.png ; $$f ( z ) \in K$$ ; confidence 0.998

2962. v096020108.png ; $$\lambda \leq 0.5$$ ; confidence 0.968

2963. v096020147.png ; $$( f ) \subseteq V ( f )$$ ; confidence 0.998

2964. v0960408.png ; $$s ( r )$$ ; confidence 0.997

2965. v11002046.png ; $$x \in Y ( u )$$ ; confidence 0.570

2966. v0963509.png ; $$( a + b ) + c = a + ( b + c )$$ ; confidence 0.946

2967. v09635084.png ; $$a \perp b$$ ; confidence 0.521

2968. v09635060.png ; $$\left. \begin{array} { l l l } { \alpha _ { 1 } } & { \alpha _ { 2 } } & { \alpha _ { 3 } } \\ { b _ { 1 } } & { b _ { 2 } } & { b _ { 3 } } \\ { c _ { 1 } } & { c _ { 2 } } & { c _ { 3 } } \end{array} \right| = 0$$ ; confidence 0.378

2969. v09638081.png ; $$u ^ { * } ( \pi )$$ ; confidence 0.996

2970. v096380113.png ; $$\pi ^ { \prime } \oplus \theta ^ { \prime }$$ ; confidence 0.992

2971. v09638042.png ; $$G ^ { k } ( V ) \times V$$ ; confidence 0.950

2972. v096380128.png ; $$w : \xi \oplus \zeta \rightarrow \pi$$ ; confidence 0.996

2973. v09638089.png ; $$\pi : B \rightarrow G ^ { k } ( V )$$ ; confidence 0.258

2974. v09638020.png ; $$X ^ { \prime } \cap \pi ^ { - 1 } ( b )$$ ; confidence 0.999

2975. v09645016.png ; $$+ \frac { 1 } { N ! } \int _ { t _ { 0 } } ^ { t } ( t - \tau ) ^ { N _ { r } ( N + 1 ) } ( \tau ) d \tau$$ ; confidence 0.696

2976. v13006019.png ; $$j \in ( 1 / 2 ) Z$$ ; confidence 0.983

2977. v130050114.png ; $$1 _ { n } ( w ) = 0$$ ; confidence 0.957

2978. v1200207.png ; $$f ^ { * } : H ^ { * } ( Y ) \rightarrow H ^ { * } ( X )$$ ; confidence 0.997

2979. v120020197.png ; $$H ^ { n } ( S ^ { n } )$$ ; confidence 0.629

2980. v120020220.png ; $$\delta ^ { * } \circ ( t - r ) ^ { * } \beta _ { 1 } = k ( t ^ { * } \square ^ { - 1 } \beta _ { 3 } )$$ ; confidence 0.259

2981. v120020184.png ; $$F : S ^ { n } \rightarrow K ( E ^ { n + 1 } \backslash \theta )$$ ; confidence 0.783

2982. v120020188.png ; $$t ^ { * } : H ^ { N } ( S ^ { N } ) \rightarrow H ^ { N } ( \Gamma _ { S ^ { n } } )$$ ; confidence 0.119

2983. v12002064.png ; $$d _ { k } = rd _ { Y } M _ { k }$$ ; confidence 0.623

2984. v0966506.png ; $$n \geq 12$$ ; confidence 0.886

2985. v09667018.png ; $$P ^ { 2 r - k }$$ ; confidence 0.936

2986. v0967406.png ; $$v _ { \nu } ( t _ { 0 } ) = 0$$ ; confidence 0.996

2987. v0967704.png ; $$F : \Omega \times R ^ { n } \times R ^ { n } \times S ^ { n } \rightarrow R$$ ; confidence 0.909

2988. v13007046.png ; $$q e ^ { ( - i \theta ) }$$ ; confidence 0.903

2989. v1300709.png ; $$\vec { V }$$ ; confidence 0.987

2990. v09687032.png ; $$\tau _ { j } < 0$$ ; confidence 0.887

2991. v13011059.png ; $$2 i$$ ; confidence 0.747

2992. v13011069.png ; $$\theta = 2 \pi$$ ; confidence 0.999

2993. v13011064.png ; $$U = \frac { \Gamma } { 2 l } \operatorname { tanh } \frac { \pi b } { l } = \frac { \Gamma } { 2 l \sqrt { 2 } }$$ ; confidence 0.768

2994. v096900234.png ; $$\Pi I _ { \lambda }$$ ; confidence 0.300

2995. v09690074.png ; $$\phi ( U T U ^ { - 1 } ) = \phi ( T )$$ ; confidence 0.999

2996. v096900232.png ; $$III _ { 0 }$$ ; confidence 0.560

2997. v096900125.png ; $$P \sim P _ { 1 }$$ ; confidence 0.999

2998. v096900122.png ; $$Q = U U ^ { * }$$ ; confidence 0.977

2999. v096900124.png ; $$P _ { 1 } \in A$$ ; confidence 0.996

3000. w09703012.png ; $$\overline { \sum _ { g } n ( g ) g } = \sum w ( g ) n ( g ) g ^ { - 1 }$$ ; confidence 0.832

3001. w09703029.png ; $$U = \cup _ { i } \operatorname { Im } f$$ ; confidence 0.671

3002. w0970409.png ; $$\int _ { 0 } ^ { \pi / 2 } \operatorname { sin } ^ { 2 m + 1 } x d x$$ ; confidence 0.964

3003. w09706017.png ; $$2 ^ { m } \leq n \leq 2 ^ { m + 1 } - 1$$ ; confidence 0.976

3004. w0970903.png ; $$F ( x )$$ ; confidence 1.000

3005. w0971508.png ; $$\lambda = 2 \pi / | k |$$ ; confidence 0.980

3006. w09729017.png ; $$A _ { n } ( x _ { 0 } )$$ ; confidence 0.499

3007. w09731010.png ; $$\partial ^ { 2 } u / \partial x ^ { 2 } + \partial ^ { 2 } u / \partial y ^ { 2 } + k ^ { 2 } u = 0$$ ; confidence 0.997

3008. w0973508.png ; $$A = N \oplus s$$ ; confidence 0.521

3009. w0973509.png ; $$A = N \oplus S _ { 1 }$$ ; confidence 0.438

3010. w09745039.png ; $$j = g ^ { 3 } / g ^ { 2 }$$ ; confidence 0.799

3011. w09745010.png ; $$= \frac { 1 } { z ^ { 2 } } + c 2 z ^ { 2 } + c _ { 4 } z ^ { 4 } + \ldots$$ ; confidence 0.426

3012. w09747012.png ; $$x ( t _ { i } ) = x _ { 0 } ( t _ { i } )$$ ; confidence 0.980

3013. w13004043.png ; $$K = - ( \frac { 4 | d g | } { ( 1 + | g | ^ { 2 } ) ^ { 2 } | \eta | } \} ^ { 2 }$$ ; confidence 0.571

3014. w09751010.png ; $$m _ { k } = \dot { k }$$ ; confidence 0.352

3015. w097510202.png ; $$q \in T _ { n } ( k )$$ ; confidence 0.977

3016. w12005030.png ; $$D = \langle x ^ { 2 } \} \subset R [ x ]$$ ; confidence 0.413

3017. w12005029.png ; $$D = R [ x ] / D$$ ; confidence 0.968

3018. w09760044.png ; $$H ^ { i } ( X )$$ ; confidence 0.995

3019. w0976009.png ; $$H ^ { 2 n } ( X )$$ ; confidence 0.999

3020. w13007023.png ; $$\beta$$ ; confidence 0.911

3021. w12010028.png ; $$\nabla _ { i g j k } = \gamma _ { i } g _ { j k }$$ ; confidence 0.315

3022. w097670169.png ; $$\operatorname { gr } ( A _ { 1 } ( K ) )$$ ; confidence 0.860

3023. w097670151.png ; $$A _ { k + 1 } ( C )$$ ; confidence 0.634

3024. w097670153.png ; $$\oplus V _ { k } ( M ) / V _ { k - 1 } ( M )$$ ; confidence 0.970

3025. w12007015.png ; $$q$$ ; confidence 0.899

3026. w120070106.png ; $$C ^ { \prime } = 1$$ ; confidence 0.999

3027. w12008025.png ; $$W ( f \times g ) = W ( f ) . W ( g )$$ ; confidence 0.906

3028. w09771010.png ; $$Z _ { \zeta } ( T )$$ ; confidence 0.463

3029. w09771067.png ; $$N _ { G } ( T ) / Z _ { G } ( T )$$ ; confidence 0.990

3030. w0977109.png ; $$N _ { G } ( T )$$ ; confidence 0.970

3031. w0977202.png ; $$f ( x ) = \alpha _ { n } x ^ { n } + \ldots + \alpha _ { 1 } x$$ ; confidence 0.966

3032. w120090131.png ; $$\Delta ( \lambda ) ^ { \mu }$$ ; confidence 1.000

3033. w120090399.png ; $$L ( \mu )$$ ; confidence 0.993

3034. w120090342.png ; $$\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$$ ; confidence 0.487

3035. w12011033.png ; $$S ( R ^ { n } ) \times S ( R ^ { n } )$$ ; confidence 0.944

3036. w12011024.png ; $$\alpha ^ { \psi } = Op ( J ^ { 1 / 2 } \alpha )$$ ; confidence 0.058

3037. w120110153.png ; $$\alpha _ { 2 k + 1 } \in L ^ { 1 } ( \Phi )$$ ; confidence 0.712

3038. w12011079.png ; $$A ^ { * } \sigma A = \sigma$$ ; confidence 0.887

3039. w120110210.png ; $$G = G ^ { \sigma }$$ ; confidence 0.956

3040. w120110192.png ; $$X \in \Phi$$ ; confidence 0.895

3041. w120110269.png ; $$g _ { 1 } = | d x | ^ { 2 } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } } \leq g = \frac { | d x | ^ { 2 } } { | x | ^ { 2 } } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } }$$ ; confidence 0.357

3042. w09779041.png ; $$\pi _ { 4 n - 1 } ( S ^ { 2 n } ) \rightarrow \pi _ { 4 n } ( S ^ { 2 n + 1 } )$$ ; confidence 0.354

3043. w12014036.png ; $$S \square T$$ ; confidence 0.898

3044. w130080142.png ; $$T _ { n }$$ ; confidence 0.602

3045. w13008076.png ; $$N = 2$$ ; confidence 0.996

3046. w130080127.png ; $$S _ { n } = s _ { n } + \theta ^ { 2 } F _ { n }$$ ; confidence 0.942

3047. w130080124.png ; $$T _ { 1 } \sim \Lambda$$ ; confidence 0.998

3048. w09787060.png ; $$\prod _ { \nu } : \prod _ { i \in I _ { \nu } } f _ { i } : = \sum _ { G } \prod _ { e \in G } < f _ { e _ { 1 } } f _ { e _ { 2 } } > : \prod _ { i \notin [ G ] } f _ { i : }$$ ; confidence 0.238

3049. w12017064.png ; $$l \equiv 2 ( \operatorname { mod } 3 )$$ ; confidence 0.997

3050. w0979106.png ; $$B ( \lambda )$$ ; confidence 1.000

3051. w09791036.png ; $$L _ { - } ( \lambda ) C ( \lambda ) / B ( \lambda )$$ ; confidence 0.885

3052. w13009059.png ; $$\Gamma ( H ) = \sum _ { n = 0 } ^ { \infty } H ^ { \otimes n }$$ ; confidence 0.591

3053. w13009053.png ; $$\| \varphi \| _ { L ^ { 2 } ( \mu ) } = \sqrt { n ! } | f | _ { H ^ { \otimes n } }$$ ; confidence 0.909

3054. w13009083.png ; $$( g ) = g ^ { \prime }$$ ; confidence 1.000

3055. w12018046.png ; $$t _ { 1 } \in D ^ { - }$$ ; confidence 0.997

3056. w11007022.png ; $$\| x \| _ { 1 }$$ ; confidence 0.650

3057. w12019047.png ; $$P = - i \hbar \nabla _ { x }$$ ; confidence 0.929

3058. w13012027.png ; $$T _ { W \alpha } = T$$ ; confidence 0.134

3059. w12020038.png ; $$\int _ { a } ^ { b } ( f ^ { ( r ) } ( x ) ) ^ { 2 } d x \leq 1$$ ; confidence 0.515

3060. w12021059.png ; $$B _ { m } = R$$ ; confidence 0.993

3061. w09804013.png ; $$p ( n + 1 ) / 2$$ ; confidence 0.997

3062. w11012047.png ; $$( D ) \leq c \text { length } ( C )$$ ; confidence 0.985

3063. w09816057.png ; $$Y \times X$$ ; confidence 0.869

3064. x120010101.png ; $$\operatorname { Aut } ( R ) / \operatorname { ln } n ( R ) \cong H$$ ; confidence 0.228

3065. x12001022.png ; $$\sigma \in \operatorname { Aut } ( R )$$ ; confidence 0.958

3066. x12002033.png ; $$D ( R )$$ ; confidence 0.960

3067. y11001021.png ; $$J ( \phi )$$ ; confidence 0.976

3068. y11001038.png ; $$\| \phi _ { q } \| _ { q } = 1$$ ; confidence 0.797

3069. y11001031.png ; $$H _ { 1 } \subset L _ { N }$$ ; confidence 0.459

3070. y11001011.png ; $$g ^ { \prime } = \phi ^ { 4 / ( n - 2 ) } g$$ ; confidence 0.828

3071. y12001017.png ; $$R _ { 12 } R _ { 13 } R _ { 23 } = R _ { 23 } R _ { 13 } R _ { 12 }$$ ; confidence 0.996

3072. y120010139.png ; $$R : X \times X \rightarrow \operatorname { End } _ { k } ( V \otimes _ { k } V )$$ ; confidence 0.794

3073. y12001036.png ; $$R _ { V } : V \otimes _ { k } V \rightarrow V \otimes _ { k } V$$ ; confidence 0.786

3074. y09903095.png ; $$\sigma ( M ^ { 4 } )$$ ; confidence 1.000

3075. y099030101.png ; $$\pi _ { 1 } : P _ { 1 } \rightarrow S ^ { 4 }$$ ; confidence 0.998

3076. y09907014.png ; $$t _ { \lambda } ^ { \prime }$$ ; confidence 0.881

3077. z130100102.png ; $$\forall v \exists u ( \forall w \varphi \leftrightarrow u = w )$$ ; confidence 0.569

3078. z13010033.png ; $$\forall y ( \neg y \in x )$$ ; confidence 0.930

3079. z13005046.png ; $$I = ( f )$$ ; confidence 0.997

3080. z11001018.png ; $$( f g f h )$$ ; confidence 0.723

3081. z12002043.png ; $$1.609$$ ; confidence 0.997

3082. z09925023.png ; $$001 c 23 + c 02 c 31 + c 03 c 12 \neq 0$$ ; confidence 0.156

3083. z1301303.png ; $$x _ { 2 } = r \operatorname { sin } \theta$$ ; confidence 0.977

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/1. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/1&oldid=43808