Namespaces
Variants
Actions

Resolvent set

From Encyclopedia of Mathematics
Revision as of 17:26, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

The set of complex numbers , where is a linear operator in a Banach space, for which there is an operator which is bounded and has a dense domain of definition in . The set complementary to the resolvent set is the spectrum of the operator (cf. Spectrum of an operator).

References

[1] F. Riesz, B. Szökevalfi-Nagy, "Leçons d'analyse fonctionelle" , Akad. Kiado (1952)


Comments

I.e., is in the resolvent set of if the range of is dense and has a continuous inverse. This inverse is often denoted by , and it is called the resolvent (at ) of .

References

[a1] K. Yosida, "Functional analysis" , Springer (1978) pp. 209ff
[a2] M. Reed, B. Simon, "Methods of modern mathematical physics" , 1. Functional analysis , Acad. Press (1972) pp. 188, 253
How to Cite This Entry:
Resolvent set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Resolvent_set&oldid=33424
This article was adapted from an original article by M.I. Voitsekhovskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article