Namespaces
Variants
Actions

Bendixson criterion

From Encyclopedia of Mathematics
Revision as of 17:15, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

A theorem that permits one to establish the absence of closed trajectories of dynamical systems in the plane, defined by the equation

(*)

The criterion was first formulated by I. Bendixson [1] as follows: If in a simply-connected domain the expression has constant sign (i.e. the sign remains unchanged and the expression vanishes only at isolated points or on a curve), then the system (*) has no closed trajectories in the domain . This criterion was generalized by H. Dulac [2] as follows: If is a simply-connected domain in the -plane, if the functions and , and if a function can be found such that

for any simply-connected subdomain , then the domain does not contain any simple rectifiable closed curve consisting of trajectories and singular points of the system (*). If the domain is an annulus, a similar theorem states that a closed trajectory of (*), if it exists, is unique. A generalization applying to the case of system (*) with cylindrical phase space [3] is also possible.

References

[1] I. Bendixson, "Sur les courbes définies par des équations différentielles" Acta Math. , 24 (1901) pp. 1–88
[2] H. Dulac, "Récherches des cycles limites" C.R. Acad. Sci. Paris Sér. I Math. , 204 (1937) pp. 1703–1706
[3] A.A. Andronov, A.A. Vitt, A.E. Khaikin, "Theory of oscillators" , Pergamon (1966) (Translated from Russian)


Comments

Bendixson's criterion is also called the Poincaré–Bendixson theorem.

References

[a1] A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, "Qualitative theory of second-order dynamic systems" , Wiley (1973) (Translated from Russian)
How to Cite This Entry:
Bendixson criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Bendixson_criterion&oldid=32809
This article was adapted from an original article by r equation','../w/w097310.htm','Whittaker equation','../w/w097840.htm','Wronskian','../w/w098180.htm')" style="background-color:yellow;">N.Kh. Rozov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article