Namespaces
Variants
Actions

Quasi-regular ring

From Encyclopedia of Mathematics
Revision as of 17:24, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

A ring in which every element is quasi-regular. An element of an alternative (in particular, associative) ring is called quasi-regular if there is an element such that

The element is called the quasi-inverse of . If is a ring with identity 1, then an element is quasi-regular with quasi-inverse if and only if the element is invertible in with inverse . Every nilpotent element is quasi-regular. In an associative ring the set of all quasi-regular elements forms a group with respect to the operation of cyclic composition: . An important example of a quasi-regular ring is the ring of (non-commutative) formal power series without constant terms. There exist simple associative quasi-regular rings [2].

References

[1] N. Jacobson, "Structure of rings" , Amer. Math. Soc. (1956)
[2] E. Sasiada, P.M. Cohn, "An example of a simple radical ring" J. of Algebra , 5 : 3 (1967) pp. 373–377
How to Cite This Entry:
Quasi-regular ring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quasi-regular_ring&oldid=31927
This article was adapted from an original article by I.P. Shestakov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article