Namespaces
Variants
Actions

Implicative normal form

From Encyclopedia of Mathematics
Revision as of 17:14, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

A propositional form of the type

where all the , , have the form

Here, each (; ) is either a variable or the negation of a variable, and is the logical symbol denoting falsehood. For each propositional formula one can construct an implicative normal form classically equivalent to it and containing the same variables as . Such a is called an implicative normal form of .

References

[1] A. Church, "Introduction to mathematical logic" , 1 , Princeton Univ. Press (1956)
How to Cite This Entry:
Implicative normal form. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Implicative_normal_form&oldid=31564
This article was adapted from an original article by S.K. Sobolev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article