Namespaces
Variants
Actions

Accumulation point

From Encyclopedia of Mathematics
Revision as of 17:26, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

of a set

A point in a topological space such that in any neighbourhood of there is a point of distinct from . A set can have many accumulation points; on the other hand, it can have none. For example, any real number is an accumulation point of the set of all rational numbers in the ordinary topology. In a discrete space, no set has an accumulation point. The set of all accumulation points of a set in a space is called the derived set (of ). In a -space, every neighbourhood of an accumulation point of a set contains infinitely many points of the set.

The concept just defined should be distinguished from the concepts of a proximate point and a complete accumulation point. In particular, any point of a set is a proximate point of the set, while it need not be an accumulation point (a counterexample: any point in a discrete space).

How to Cite This Entry:
Accumulation point. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Accumulation_point&oldid=30566
This article was adapted from an original article by A.V. Arkhangel'skii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article