Namespaces
Variants
Actions

Raabe criterion

From Encyclopedia of Mathematics
Revision as of 16:57, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

on the convergence of a series of numbers

A series converges if for sufficiently large the inequality

is fulfilled. If from some onwards, then the series diverges.

Proved by J. Raabe


Comments

References

[a1] K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990)
How to Cite This Entry:
Raabe criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Raabe_criterion&oldid=29180
This article was adapted from an original article by E.G. Sobolevskaya (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article