Lipschitz function
From Encyclopedia of Mathematics
Let a function $f:[a,b]\to \mathbb R$ be such that for some constant M and for all $x,y\in [a,b]$ \begin{equation}\label{eq:1} |f(x)-f(y)| \leq M|x-y|. \end{equation} Then the function $f$ is called Lipschitz on $[a,b]$, and one writes $f\in \operatorname{Lip}_M[a,b]$.
How to Cite This Entry:
Lipschitz function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lipschitz_function&oldid=28876
Lipschitz function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Lipschitz_function&oldid=28876