Fabry theorem
From Encyclopedia of Mathematics
Fabry's gap theorem: If the exponents in the power series
with radius of convergence , , satisfy the condition
then all points of the circle are singular points for . The theorem can be generalized to Dirichlet series.
Fabry's quotient theorem: If the coefficients in the power series
with unit radius of convergence, satisfy the condition
then is a singular point of .
Theorems 1) and 2) were obtained by E. Fabry [1].
References
[1] | E. Fabry, "Sur les points singuliers d'une fonction donée par son développement en série et l'impossibilité du prolongement analytique dans des cas très généraux" Ann. Sci. Ecole Norm. Sup. , 13 (1896) pp. 367–399 |
[2] | L. Bieberbach, "Analytische Fortsetzung" , Springer (1955) |
[3] | A.F. Leont'ev, "Exponential series" , Moscow (1976) (In Russian) |
Comments
References
[a1] | E. Landau, "Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie" , Das Kontinuum und andere Monographien , Chelsea, reprint (1973) |
[a2] | P. Dienes, "The Taylor series" , Oxford Univ. Press & Dover (1957) |
How to Cite This Entry:
Fabry theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fabry_theorem&oldid=24999
Fabry theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fabry_theorem&oldid=24999
This article was adapted from an original article by A.F. Leont'ev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article