Namespaces
Variants
Actions

Quasi-affine scheme

From Encyclopedia of Mathematics
Revision as of 17:22, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

A scheme isomorphic to an open compact subscheme of an affine scheme. A compact scheme is quasi-affine if and only if one of the following equivalent conditions holds: 1) the canonical morphism is an open imbedding; and 2) any quasi-coherent sheaf of -modules is generated by global sections. A morphism of schemes is called quasi-affine if for any open affine subscheme in the inverse image is a quasi-affine scheme.


Comments

A quasi-affine variety is an open subvariety of an affine algebraic variety. (As an open subspace of a Noetherian space it is automatically compact.) An example of a quasi-affine variety that is not affine is .

References

[a1] A. Grothendieck, "Étude globale élémentaire de quelques classes de morphismes" Publ. Math. IHES , 8 (1961) pp. Sect. 5.1
[a2] R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. 3, 21
How to Cite This Entry:
Quasi-affine scheme. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quasi-affine_scheme&oldid=23944
This article was adapted from an original article by V.I. Danilov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article