Namespaces
Variants
Actions

Kuratowski-Knaster fan

From Encyclopedia of Mathematics
Revision as of 17:22, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Knaster–Kuratowski fan

A totally disconnected set in the plane which becomes connected when just one point is added. Constructed by B. Knaster and C. Kuratowski [1] as follows. Let be the perfect Cantor set, the subset of consisting of the points such that, beginning from some , the numbers are either all zero or all equal to 2; and let be the set of all the other points. Now, let be the point on the plane with coordinates , and let be the segment joining a variable point of to the point . Finally, let be the set of all points of that have rational ordinates for , and let be the set of all points of that have irrational ordinates for . Then

is connected, although is totally disconnected, so that is a Knaster–Kuratowski fan.

References

[1] B. Knaster, C. Kuratowski, "Sur les ensembles connexes" Fund. Math. , 2 (1921) pp. 206–255
How to Cite This Entry:
Kuratowski-Knaster fan. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kuratowski-Knaster_fan&oldid=22689
This article was adapted from an original article by L.G. Zambakhidze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article