Namespaces
Variants
Actions

Sublattice

From Encyclopedia of Mathematics
Revision as of 17:13, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

A subset of a lattice that is closed under the operations and , i.e. a subset such that and for any and from . Therefore, a sublattice is a subalgebra of the lattice considered as a universal algebra with two binary operations. A sublattice is called convex if and imply . An example of a sublattice is any one-element subset of a lattice; other examples are: an ideal, a filter and an interval. All these sublattices are convex. Any subset in a chain is a sublattice of it (not necessarily convex). The sublattices of a given lattice, ordered by inclusion, form a lattice.

References

[1] G. Birkhoff, "Lattice theory" , Colloq. Publ. , 25 , Amer. Math. Soc. (1973)
[2] L.A. Skornyakov, "Elements of lattice theory" , A. Hilger & Hindushtan Publ. Comp. (1977) (Translated from Russian)
[3] G.I. Zhitomirskii, "Lattices of subsets" , Ordered sets and lattices , 7 , Saratov (1983) pp. 69–97 (In Russian)
[4] G. Grätzer, "General lattice theory" , Birkhäuser (1978) (Original: Lattice theory. First concepts and distributive lattices. Freeman, 1978)
How to Cite This Entry:
Sublattice. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sublattice&oldid=20292
This article was adapted from an original article by T.S. Fofanova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article