Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/NoNroff/63

From Encyclopedia of Mathematics
< User:Maximilian Janisch‎ | latexlist‎ | latex
Revision as of 13:33, 18 June 2020 by Martina Jørgensen (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

List

1. v096900192.png ; $A = \int^{ \bigoplus} A ( \zeta ) d \mu ( \zeta ) ,$ ; confidence 0.421

2. z13004023.png ; $K _ { 7 , 9}$ ; confidence 0.421

3. a12028018.png ; $\hat{x} ( n )$ ; confidence 0.421

4. m13019028.png ; $m _ { i + j} = \langle x ^ { i } , x ^ { j } \rangle$ ; confidence 0.421

5. k1201302.png ; $= \sum _ { \nu = 1 } ^ { n } \alpha _ { i \nu }\, f ( x _ { \nu } ) + \sum _ { \rho = 1 } ^ { i } \sum _ { \nu = 1 } ^ { 2 ^ { \rho - 1 } ( n + 1 ) } \beta _ { i \rho \nu }\, f ( \xi _ { \nu } ^ { \rho } ),$ ; confidence 0.421

6. n06752023.png ; $C \in M _ { m \times m } ( K )$ ; confidence 0.421

7. e1201808.png ; $\eta ( s ) = \sum _ { a _ { n } \neq 0 } \frac { a _ { n } } { | a _ { n } | } | a _ { n } | ^ { - s }$ ; confidence 0.420

8. l05700063.png ; $( \ldots (( F A _ { 1 } ) A _ { 2 } ) \ldots A _ { n } )$ ; confidence 0.420

9. t120200204.png ; $M = \frac { 1 } { 3 ( n + k ) } \left( \frac { \delta _ { 1 } - \delta _ { 2 } } { 16 } \right) ^ { 2 n + 2 k } \delta _ { 2 } ^ { m + ( n + k ) ( 1 + \pi / k ) }\times$ ; confidence 0.420

10. t13013088.png ; $\operatorname { Ext } _ { \mathcal { H } } ^ { 1 } ( T , T ) = 0$ ; confidence 0.420

11. q120070116.png ; $\Delta \left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right) = \left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right) \bigotimes \left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right),$ ; confidence 0.420

12. w12007055.png ; $= ( 2 \pi ) ^ { - 2 n } \int _ { \mathbf{R} ^ { 2 n } } e ^ { i ( p \mathcal{D} + q \mathcal{X} ) } \hat { \sigma } ( p , q ) d p d q.$ ; confidence 0.420

13. k13001010.png ; $\langle L ^ { ( 1 ) } \rangle = - A ^ { 3 } \langle L \rangle$ ; confidence 0.420

14. t1301304.png ; $\operatorname { Ext } _ { \Lambda } ^ { 1 } ( T , T ) = 0$ ; confidence 0.420

15. b12024018.png ; $f : \mathcal{T} \rightarrow \operatorname {GL} ( n , \mathbf{C} )$ ; confidence 0.420

16. w13017019.png ; $\mathsf{E} \varepsilon _ { t } = 0$ ; confidence 0.420

17. b12021050.png ; $\overline { \delta } _{k} : \overline { D } _ { k } \rightarrow \overline { D } _ { k - 1 }$ ; confidence 0.420

18. b12018062.png ; $\mathcal{L} _ { \omega _ { 1 } \omega }$ ; confidence 0.420

19. o12006043.png ; $\tilde { \Phi } ( s ) = \operatorname { sup } \{ | s | t - \Phi ( t ) : t \geq 0 \}$ ; confidence 0.419

20. t12020036.png ; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { k \in S } \frac { \operatorname { Re } g _ { 2 } ( k ) } { M _ { d } ( k ) },$ ; confidence 0.419

21. c1104002.png ; $p o$ ; confidence 0.419

22. g1300407.png ; $f _ { i } : \mathbf{R} ^ { m } \rightarrow \mathbf{R} ^ { n }$ ; confidence 0.419

23. m12007021.png ; $\| P \| _{\infty} \| Q \| _{\infty} \leq \delta^{d} \| PQ \| _{\infty} $ ; confidence 0.419

24. b13007046.png ; $a b ^ { k } a ^ { - 1 }$ ; confidence 0.419

25. o12005055.png ; $u ^ { p }$ ; confidence 0.419

26. k12008046.png ; $S _ { r } = \left\{ ( v _ { 0 } , \dots , v _ { r } ) \in \mathbf{R} ^ { r + 1 } : v _ { j } \geq 0 , \sum _ { j = 0 } ^ { r } v _ { j } = 1 \right\}$ ; confidence 0.419

27. c12003044.png ; $J \times G$ ; confidence 0.418

28. d12005028.png ; $C _ { f } \subset \operatorname {Dbx} _ { f }$ ; confidence 0.418

29. c02016017.png ; $P _ { 3 }$ ; confidence 0.418

30. f0380707.png ; $\operatorname{II}$ ; confidence 0.418

31. z13008023.png ; $R _ { n } ^ { m } ( r )$ ; confidence 0.418

32. a120160136.png ; $r _ { i } ( X _ { i } )$ ; confidence 0.418

33. q12001032.png ; $= \operatorname { lim } _ { t \rightarrow \infty } \int \prod _ { k = 1 } ^ { n } A _ { k } ( q ( t _ { k } ) ) d \mu _ { t } ( q ( \cdot ) ).$ ; confidence 0.418

34. f130090109.png ; $H _ { n } ^ { ( k ) } ( \mathbf{x} )$ ; confidence 0.418

35. b12042031.png ; $\Psi _ { V , W \bigotimes Z } = \Psi _ { V ,\, Z } \circ \Psi _ { V , W } .$ ; confidence 0.418

36. h120020139.png ; $B _ { p } ^ { S }$ ; confidence 0.418

37. n066630107.png ; $f - q \in H _ { p } ^ { r _ { 1 } , \ldots , r _ { n } } ( M _ { 1 } ^ { * } , \ldots , M _ { n } ^ { * } ; \mathbf{R} ^ { n } ),$ ; confidence 0.418

38. t12001019.png ; $( C ( \mathcal{S} ) , \overline { g } )$ ; confidence 0.418

39. d13006083.png ; $m ^ { \uparrow X } ( A ) = 0$ ; confidence 0.417

40. a12027099.png ; $K [ G ]$ ; confidence 0.417

41. c02449022.png ; $m_1$ ; confidence 0.417

42. c025420105.png ; $T _ { A }$ ; confidence 0.417

43. f130290181.png ; $\mathbf{LOC}$ ; confidence 0.417

44. e11007079.png ; $\operatorname { char } K \neq 2$ ; confidence 0.417

45. f12024084.png ; $[ \overline { t } _0 , t _ { 0 } ]$ ; confidence 0.417

46. b13006087.png ; $1 \leq \| ( \mu I - A ) ^ { - 1 } \cdot E \| \leq \| ( \mu I - A ) ^ { - 1 } \| \cdot \| E \| .$ ; confidence 0.417

47. a130040636.png ; $\operatorname { Th } _ { \mathcal{S} _ { P }} \mathfrak { M }$ ; confidence 0.417

48. b12012018.png ; $v ^ { \perp } \subset T _ { p } M$ ; confidence 0.417

49. z13008055.png ; $J _ { a }$ ; confidence 0.417

50. m13019043.png ; $\phi _ { n } ( z ) = M _ { n } ( z ) / \sqrt { \mathcal{M} _ { n - 1} \mathcal{M} _ { n }} $ ; confidence 0.417

51. o13008059.png ; $( l _ { 2 } - k ^ { 2 } ) f _ { 2 } = 0$ ; confidence 0.417

52. a13006086.png ; $\overline { H _ { 1 } } \cdot \overline { H _ { 2 } } = \overline { H _ { 1 } \cup _ { d } H _ { 2 } }$ ; confidence 0.417

53. a130040434.png ; $F _ { 0 }$ ; confidence 0.417

54. p13010042.png ; $\mathbf{C} \backslash K$ ; confidence 0.416

55. f12009015.png ; $| \mu ( f ) | \leq C _ { U } \operatorname { sup } _ { U } | f ( z ) |.$ ; confidence 0.416

56. p13007065.png ; $L_{E}$ ; confidence 0.416

57. p12013014.png ; $[ K : \mathbf{Q} ]$ ; confidence 0.416

58. c120170122.png ; $z_{0} , \dots , z _ { r - 1}$ ; confidence 0.416

59. h12005018.png ; $\beta ( \phi , \rho ) ( t ) \sim \sum _ { n \geq 0 } \beta _ { n } ( \phi , \rho ) t ^ { n / 2 }.$ ; confidence 0.416

60. h04601050.png ; $\operatorname {Wh} \pi_{1}$ ; confidence 0.416

61. i13007068.png ; $y _ { 0 } \in P$ ; confidence 0.416

62. k055840107.png ; $( \mathcal{K} _ { - } , [\cdot , \cdot] )$ ; confidence 0.416

63. p120170103.png ; $e ^ { i t \mathcal{B} }$ ; confidence 0.416

64. z13004031.png ; $K _ { 5 ,\, n }$ ; confidence 0.416

65. r08232021.png ; $h ^ { * }$ ; confidence 0.416

66. a13013053.png ; $P ^ { ( l ) } = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { c c } { 0 } & { q ^ { ( l ) } } \\ { r ^ { ( l ) } } & { 0 } \end{array} \right).$ ; confidence 0.416

67. t13021016.png ; $R ( x ; a _ { 0 } , \dots , a _ { N } ) \equiv L [ u _ { N } ( x ) ] - f$ ; confidence 0.416

68. a01084016.png ; $\mathcal{A} ^ { * }$ ; confidence 0.416

69. s13048038.png ; $H _ { S } ^ { i } ( D ) = 0$ ; confidence 0.416

70. k1200203.png ; $\mathbf{CP} ^ { 4 }$ ; confidence 0.416

71. a13004054.png ; $F \subseteq A$ ; confidence 0.416

72. m12027059.png ; $Q_{j}$ ; confidence 0.415

73. a01227050.png ; $x , y$ ; confidence 0.415

74. n12002036.png ; $m = k ^ { \prime \mu } ( \theta ) = \int _ { E } x \mathsf{P} ( \theta , \mu ) ( d x ),$ ; confidence 0.415

75. g13003090.png ; $C _ { \text{nd} } ^ { \infty } ( \Omega )$ ; confidence 0.415

76. c12028045.png ; $\gamma : \omega \square \operatorname{Gpd} \rightarrow \mathcal{C} \operatorname{rs}$ ; confidence 0.415

77. s13049053.png ; $\{ \tilde{p} : p \in P \}$ ; confidence 0.415

78. h120120130.png ; $\hat { \tau }_{0} = 0,$ ; confidence 0.415

79. x12001037.png ; $C = \mathbf{Z} ( Q ) = \mathbf{C} _ { Q } ( R )$ ; confidence 0.415

80. c120180266.png ; $\wedge ^ { * } \mathcal{E}$ ; confidence 0.415

81. s120340112.png ; $s \in \mathbf{T}$ ; confidence 0.415

82. b12028013.png ; $a \in \Omega$ ; confidence 0.415

83. a12015047.png ; $\operatorname { ad } X$ ; confidence 0.415

84. a110610150.png ; $\mu _{1}$ ; confidence 0.415

85. l12004020.png ; $\{ u _ { i } ^ { n } \}$ ; confidence 0.415

86. c12008089.png ; $= \sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { j = 0 } ^ { r _ { 2 } } a _ { i j } z _ { 1 } ^ { i } z _ { 2 } ^ { j }$ ; confidence 0.415

87. c12030089.png ; $\operatorname { tr } ( K _ { i } ) = 1$ ; confidence 0.415

88. a12026058.png ; $( a _ { n } ) _ { n \in \mathbf{N} }$ ; confidence 0.415

89. k1200407.png ; $\Lambda _ { T _ { n } } ( a , x ) = \left( \frac { a + a ^ { - 1 } - x } { x } \right) ^ { n - 1 }.$ ; confidence 0.415

90. z13013025.png ; $H _ { n } ( r , 0 ) = r ^ { n }$ ; confidence 0.415

91. a13030038.png ; $y \in F$ ; confidence 0.415

92. c12007040.png ; $\mathcal{A } ^ { \text{C} }$ ; confidence 0.415

93. r13010041.png ; $\mathbf{Z} \overset{\rightharpoonup}{ \Delta }$ ; confidence 0.414

94. b12050029.png ; $\mathbf{l} ( t , 0 )$ ; confidence 0.414

95. e12007094.png ; $q_h$ ; confidence 0.414

96. c02338016.png ; $\sigma ( a )$ ; confidence 0.414

97. l12007047.png ; $v _ { t } / \sum _ { i = 1 } ^ { k } v _ { i , t }$ ; confidence 0.414

98. m12013060.png ; $\delta _{( 1 )} > K _ { ( 1 ) } / K _ { ( 2 ) }$ ; confidence 0.414

99. a130240152.png ; $\mathbf{X} \beta$ ; confidence 0.414

100. b12005058.png ; $\tilde { \delta _ { z } } : f \in \mathcal{H} _ { b } ( E ) \rightarrow \tilde { f } ( z ) \in \mathbf{C}$ ; confidence 0.414

101. d120020119.png ; $\tilde{x} ^ { ( l ) }$ ; confidence 0.414

102. f1300504.png ; $P : = \{ p _ { 1 } , \dots , p _ { m } \}$ ; confidence 0.414

103. d12024030.png ; $f ( [ \cdot , \cdot ] )$ ; confidence 0.413

104. a130040527.png ; $\langle \mathbf{A} , \mathcal{C} \rangle$ ; confidence 0.413

105. c12004071.png ; $\sigma _ { 0 } = \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j - 1 } \overline { \zeta } _{j} d \overline { \zeta } [ j ] \bigwedge d \zeta .$ ; confidence 0.413

106. e12009016.png ; $F^{\mu \nu}$ ; confidence 0.413

107. b110220214.png ; $\mathcal{MH} _ { \mathbf{R} } ^ { + }$ ; confidence 0.413

108. c13004013.png ; $\psi ( z )$ ; confidence 0.413

109. l12012094.png ; $\text{p} \in S$ ; confidence 0.413

110. v120020137.png ; $t _ { n_{*} }$ ; confidence 0.413

111. t12002035.png ; $| n | = \operatorname { min } _ { 1 \leq i \leq d } | n _ { i } |$ ; confidence 0.413

112. f13009061.png ; $n = k , k + 1 , \dots .$ ; confidence 0.413

113. s120230125.png ; $X = ( \mathbf{x} _ { 1 } , \dots , \mathbf{x} _ { n } )$ ; confidence 0.413

114. z13001064.png ; $k ! z \,/ ( z - 1 ) ^ { k + 1 }$ ; confidence 0.413

115. c120170106.png ; $\mathbf{C} [ z , \overline{z} ]$ ; confidence 0.413

116. o13005095.png ; $v \in \mathfrak{G}$ ; confidence 0.413

117. w12005030.png ; $D = \langle x ^ { 2 } \rangle \subset \mathbf{R} [ x ]$ ; confidence 0.413

118. c13004020.png ; $\zeta ( s , a ) : = \sum _ { k = 0 } ^ { \infty } \frac { 1 } { ( k + a ) ^ { s } },$ ; confidence 0.413

119. l057000117.png ; $( \lambda x \cdot M ) N$ ; confidence 0.413

120. c120180492.png ; $\tilde { g } = t ^ { 2 } \sum _ { i ,\, j } \tilde { g } _ { i j } ( x , t ) d x ^ { i } \bigotimes d x ^ { j } +$ ; confidence 0.413

121. a130050178.png ; $P _ { q } ^ { \# } ( n )$ ; confidence 0.413

122. a12006040.png ; $u_{0}$ ; confidence 0.413

123. d12020016.png ; $p _ { n } ( s )$ ; confidence 0.413

124. w13010032.png ; $f ( t ) = \left\{ \begin{array} { l l } { o \left( \frac { t } { \operatorname { log } t } \right) , } & { d = 2, } \\ { o ( t ) , } & { d \geq 3, } \end{array} \right.$ ; confidence 0.412

125. t13004039.png ; $T _ { n } ^ { * } ( x ) : = c _ { 0 } ^ { n } + c _ { 1 } ^ { n } x + \ldots + c _ { n } ^ { n } x ^ { n }$ ; confidence 0.412

126. f1101603.png ; $\{ c _ { 1 } , \dots , c _ { n } , \dots \}$ ; confidence 0.412

127. b11022019.png ; $H _ { l } ^ { i } ( X )$ ; confidence 0.412

128. e12021042.png ; $( b _ { m } ) _ { m \geq 0 }$ ; confidence 0.412

129. a12016070.png ; $S _ { t } = c _ { 0 } ( 1 - \lambda ) + \lambda S _ { t - 1 } + c _ { 1 } u _ { t } + \mu _ { t } - \lambda \mu _ { t - 1 } .$ ; confidence 0.412

130. b120430108.png ; $B \operatorname {SL} _ { q } ( 2 )$ ; confidence 0.412

131. d03027033.png ; $K _ { n ,\, p } ( t ) = \frac { \operatorname { sin } ( ( 2 n + 1 - p ) t / 2 ) \operatorname { sin } ( ( p + 1 ) t / 2 ) } { 2 ( p + 1 ) \operatorname { sin } ^ { 2 } t / 2 } ,$ ; confidence 0.412

132. c02054093.png ; $a = 1 , \dots , m$ ; confidence 0.412

133. f130100152.png ; $v \in A _ { p } ( G )$ ; confidence 0.412

134. a01220077.png ; $f _ { a }$ ; confidence 0.412

135. c120180325.png ; $A ( g ) \in \mathsf{S} ^ { 2 } \mathcal{E}$ ; confidence 0.412

136. c02583020.png ; $T ^ { n } = P B ^ { n }$ ; confidence 0.412

137. l05961013.png ; $\frac { \partial \rho } { \partial t } = \{ H , \rho \} _ { \text{qu} .} \equiv \frac { 1 } { i \hbar } [ H \rho - \rho H ],$ ; confidence 0.412

138. s120320119.png ; $\operatorname { ev } _ { x } ( a )$ ; confidence 0.412

139. l13010046.png ; $c _ { 1 } | \xi | ^ { m _ { 1 } } \leq | b | \leq c _ { 2 } | \xi | ^ { m _ { 2 } }$ ; confidence 0.412

140. w120090231.png ; $\operatorname {Ind} ^{ G }_ { B } ( \lambda )$ ; confidence 0.412

141. b110220232.png ; $\operatorname {CH} ^ { i } ( X , j ) \otimes \mathbf{Q} \simeq H _ { \mathcal{M} } ^ { 2 j - i } ( X , \mathbf{Q} ( i ) )$ ; confidence 0.412

142. s13062056.png ; $\left\{ \begin{array} { l l } { \phi ( 0 , \lambda ) = 1 , } & { \theta ( 0 , \lambda ) = 0, } \\ { \phi ^ { \prime } ( 0 , \lambda ) = 0 , } & { \theta ^ { \prime } ( 0 , \lambda ) = 1. } \end{array} \right.$ ; confidence 0.412

143. p12015063.png ; $\nu _ { 1 } , \dots , \nu _ { \text{l} }$ ; confidence 0.411

144. a130180105.png ; $L_{n}$ ; confidence 0.411

145. m130140145.png ; $\zeta = ( 1 , \zeta _ { 2 } , \dots , \zeta _ { n } )$ ; confidence 0.411

146. o13001027.png ; $= \frac { k } { 4 \pi } \int _ { S ^ { 2 } } f ( \alpha ^ { \prime } , \beta , k ) \overline { f ( \alpha , \beta , k ) } d \beta ,$ ; confidence 0.411

147. b12052088.png ; $w _ { n - 1}$ ; confidence 0.411

148. f12011081.png ; $\Omega \subset D ^ { n }$ ; confidence 0.411

149. a011380105.png ; $\vee$ ; confidence 0.411

150. b13006053.png ; $A = \operatorname { diag } \{ b _ { 11 } , \dots , b _ { n n } \}$ ; confidence 0.411

151. i130090134.png ; $k = \mathbf{Q} ( \mu _ { p } )$ ; confidence 0.411

152. q13005081.png ; $h \in \operatorname { QS} ( \mathbf{T} )$ ; confidence 0.411

153. f12021041.png ; $u ( z , \lambda _ { 1 } ) = z ^ { \lambda _ { 1 } } + \ldots , \ldots , u ( z , \lambda _ { N } ) = z ^ { \lambda _ { N } } +\dots$ ; confidence 0.410

154. b11104012.png ; $x ^ { p } - x - p k $ ; confidence 0.410

155. g120040164.png ; $= D _ { t } ^ { m } u + \sum _ { j = 1 } ^ { m } \sum _ { | \alpha | \leq m - j } p _ { j , \alpha } ( t , x ) D _ { t } ^ { j } D _ { x } ^ { \alpha } u = f ( t , x ) ,\; D _ { t } ^ { j } u ( 0 , x ) = u _ { j } ^ { 0 } ( x ) , \quad j = 0 , \ldots , m - 1.$ ; confidence 0.410

156. c120180219.png ; $h \otimes k = ( \theta \otimes \theta ) \otimes ( \varphi \otimes \varphi ) \in \mathsf{S} ^ { 2 } \mathcal{E} \otimes \mathsf{S} ^ { 2 } \mathcal{E}$ ; confidence 0.410

157. t130130117.png ; $K ^ {b} ( P _ { \Lambda } )$ ; confidence 0.410

158. o06837010.png ; $\{ U _ { t } \}$ ; confidence 0.410

159. d12012046.png ; $d \alpha = d a _ { n } \circ \ldots \circ d a _ { 1 }$ ; confidence 0.410

160. i13002011.png ; $A _ { 1 } \cap \ldots \cap A _ { n }$ ; confidence 0.410

161. f13010044.png ; $a , x \in G$ ; confidence 0.410

162. b1201202.png ; $\operatorname {inj} M = \operatorname { inf } _ { p \in M } \operatorname { sup } \{ r : \operatorname { exp } _ { p } \text { injective on } B _ { r } ( 0 ) \subset T _ { p } M \},$ ; confidence 0.410

163. w130080111.png ; $a _ { i } = \alpha _ { i }$ ; confidence 0.410

164. l1100208.png ; $\{ G ; \cdot , e ,^{ - 1} \}$ ; confidence 0.409

165. b12020064.png ; $H ^ { \infty }$ ; confidence 0.409

166. m130180152.png ; $\sum _ { H : H \leq G } \mu ( H , G ) | H | ^ { S },$ ; confidence 0.409

167. r130070135.png ; $( f ( \cdot ) , K ( \cdot , y ) ) _ { H } = ( L F , K ( \cdot , y ) ) _ { H } =$ ; confidence 0.409

168. t13014037.png ; $\tilde { A }_{ n }$ ; confidence 0.409

169. b1200205.png ; $\alpha _ { n } ( t ) = n ^ { 1 / 2 } ( \Gamma _ { n } ( t ) - t ) , \quad 0 \leq t \leq 1.$ ; confidence 0.409

170. c1302108.png ; $a _ { n } * a _ { n + 1} = a _ { n }$ ; confidence 0.409

171. c13019059.png ; $B ^ { l }$ ; confidence 0.409

172. d120020191.png ; $g(\overline{u}_1)$ ; confidence 0.409

173. a130040659.png ; $\operatorname {Alg} \operatorname {Mod}^{*\text{L}} \mathcal{DS}_{P}$ ; confidence 0.409

174. e12012031.png ; $Q ( \theta | \theta ^ { ( t ) } ) = \mathsf{E} \left[ \operatorname { log } L ( \theta | Y _ { \text{aug} } ) | Y _ { \text{obs} } , \theta ^ { ( t ) } \right],$ ; confidence 0.409

175. t13013023.png ; $\mathcal{T} = \operatorname {Fac} T$ ; confidence 0.409

176. o13008026.png ; $C _ { \psi }$ ; confidence 0.409

177. n067520349.png ; $\mu z ( f ( x _ { 1 } , \ldots , x _ { n } , z ) = 0 )$ ; confidence 0.409

178. t12006099.png ; $\rho _ { \text { atom } } ^ { \text {TF} } ( x ; N = \lambda Z , Z ) =$ ; confidence 0.409

179. c13016076.png ; $\operatorname { co } \mathcal{C} = \{ S : \overline{S} \in \mathcal{C} \}.$ ; confidence 0.409

180. c12001094.png ; $= 2 \operatorname { Re } \left( \sum _ { j ,\, k } \rho _ { j k } ( a ) w _ { j } w _ { k } \right) + 2 \sum _ { j ,\, k } \rho _ { j \overline { k } } ( a ) w _ { j } \overline { w } _ { k },$ ; confidence 0.409

181. a13027032.png ; $Q _ { n }$ ; confidence 0.409

182. l120120202.png ; $\prod _ { \text{p} ^ { \prime } \in S ^ { \prime } } G ( K _ { \text{p} ^ { \prime } } ),$ ; confidence 0.409

183. b12050035.png ; $l ( u ) = ( 2 u | \operatorname {ln} | \operatorname {ln} u | | ) ^ { 1 / 2 }$ ; confidence 0.409

184. e12023017.png ; $E ^ { 1 } = J ^ { 1 } ( E ) = M \times F \times \mathbf{R} ^ { n m },$ ; confidence 0.409

185. k055840341.png ; $x , y \in \mathcal{H} ^ { n }$ ; confidence 0.408

186. a120160150.png ; $q_{ it}$ ; confidence 0.408

187. b13025041.png ; $C ^ { \prime_{ BC}}$ ; confidence 0.408

188. j130040108.png ; $P _ { L } ( v , z ) - P _ { T _ { \text{com} ( L ) }} ( v , z )$ ; confidence 0.408

189. b12027028.png ; $h / \mathsf{E} X _ { 1 }$ ; confidence 0.408

190. f1300705.png ; $a _ { 1 } = a _ { 2 } = 1$ ; confidence 0.408

191. g13004095.png ; $c _ { i } > 0$ ; confidence 0.408

192. b12031064.png ; $\mathcal{T} ^ { n }$ ; confidence 0.408

193. t12014011.png ; $\hat { \phi } ( j )$ ; confidence 0.408

194. c120180121.png ; $\mathcal{E}_{ * *}$ ; confidence 0.408

195. d12016033.png ; $\| h _ { n } \| \rightarrow 0$ ; confidence 0.408

196. a12016049.png ; $N ( X ( t ) , A ( t ) , t ) = A ( t ) \int _ { a ( X ( t ) ) F + b } ^ { \infty } g ( W ) d W.$ ; confidence 0.407

197. b1302106.png ; $d _ { w } > 0$ ; confidence 0.407

198. f1202304.png ; $[ \cdot , \cdot ] : \Omega ^ { k } ( M ; T M ) \times \Omega ^ { l } ( M ; T M ) \rightarrow \Omega ^ { k + l } ( M ; T M )$ ; confidence 0.407

199. b1302609.png ; $\chi [ f _ { 0 } , \dots , f _ { n } ]$ ; confidence 0.407

200. c02586026.png ; $\rho_{0} $ ; confidence 0.407

201. a1201706.png ; $[ a _ { 1 } , a _ { 2 } ]$ ; confidence 0.407

202. b12052089.png ; $s _ { n }$ ; confidence 0.407

203. a012410141.png ; $\mathbf{R} ^ { n } \subset \mathbf{C} ^ { n }$ ; confidence 0.407

204. n067520323.png ; $( y _ { 1 } , \dots , y _ { m } ) \in M ^ { m }$ ; confidence 0.407

205. k13001046.png ; $\operatorname { span } \langle D \rangle < 4 c ( D )$ ; confidence 0.407

206. b11005040.png ; $F _ { 1 }$ ; confidence 0.407

207. g04302029.png ; $V = \mathbf{R} ^ { n }$ ; confidence 0.407

208. c13009031.png ; $( d ^ { k } C _ { j } / d x ^ { k } ) ( x _ { i } ) = [ ( d C _ { j } / d x ) ( x _ { i } ) ] ^ { k }$ ; confidence 0.407

209. c13014026.png ; $A _ { i }\, A _ { j } = \sum _ { k = 1 } ^ { r } p _ { i ,\, j } ^ { k } \,A _ { k }$ ; confidence 0.407

210. b13026052.png ; $\operatorname { deg } _ { B }$ ; confidence 0.406

211. r13005036.png ; $a ^ { g } \neq a$ ; confidence 0.406

212. c12008058.png ; $\Delta ( \lambda , \mu ) = \operatorname { det } [ E \lambda - A \mu ] = \sum _ { i = 0 } ^ { n } a _ { i , n - i } \lambda ^ { i } \mu ^ { n - i }.$ ; confidence 0.406

213. w120110222.png ; $S _ { \rho , \delta } ^ { \mu } = S \left( \langle \xi \rangle ^ { \mu } , \langle \xi \rangle ^ { 2 \delta } | d x | ^ { 2 } + \langle \xi \rangle ^ { - 2 \rho } | d \xi | ^ { 2 } \right),$ ; confidence 0.406

214. t12006095.png ; $E _ { \text{atom} } ^ { \text{TF} } ( \lambda , Z ) = Z ^ { 7 / 3 } E _ { \text{atom} } ^ { \text{TF} } ( \lambda , 1 )$ ; confidence 0.406

215. w13009050.png ; $\varphi \in G _ { n }$ ; confidence 0.406

216. w1200605.png ; $x _ { 0 } \in \mathbf{R} ^ { m }$ ; confidence 0.406

217. c130070101.png ; $P _ { 1 } , \ldots , P _ { h }$ ; confidence 0.406

218. k1300107.png ; $\langle L _ { + } \rangle = A \langle L _ { 0 } \rangle + A ^ { - 1 } \langle L _ { \infty } \rangle .$ ; confidence 0.405

219. g120040186.png ; $\| u \| _ { T } ^ { 2 } = \sum _ { \xi \in \mathbf{Z} ^ { n } } ( 1 + | \xi | ) ^ { 2 r } e ^ { 2 T | \xi | ^ { 1 / s } } | \hat { u } ( \xi ) | ^ { 2 },$ ; confidence 0.405

220. b110220171.png ; $B ^ { m } ( X )$ ; confidence 0.405

221. a12028089.png ; $\mathcal{Y} _ { * }$ ; confidence 0.405

222. b12044066.png ; $B ^ { H } = \{ a \in B : h ^ { - 1 } a h =a \ \text {for all } h \in H \}.$ ; confidence 0.405

223. m130140109.png ; $\frac { \pi ^ { n } } { n \operatorname { vol } ( \mathcal{D} _ { 1 } ) } \int _ { \partial \mathcal{D} _ { 1 } } f ( \zeta ) \nu ( \zeta - a ) = f ( a ).$ ; confidence 0.405

224. b12032028.png ; $\| x \| ^ { p } + \| y \| ^ { p } = \| x + y \| ^ { p }$ ; confidence 0.405

225. c120180438.png ; $\mathsf{S} ^ { 2 } \mathcal{E}$ ; confidence 0.405

226. d1201208.png ; $G : A G \overset{\text{dom}_G}{\underset{\underset{\text{codom}_G}{\rightarrow} }{\rightarrow}} O G,$ ; confidence 0.405

227. b12036032.png ; $w ( i , j , k , l ) = w \left( \begin{array} { c c c } { \square } & { l } & { \square } \\ { i } & { + } & { k } \\ { \square } & { j } & { \square } \end{array} \right) = \operatorname { exp } \left( - \frac { \epsilon ( i ,\, j ,\, k ,\, l ) } { k _ { B } T } \right).$ ; confidence 0.405

228. c02477031.png ; $x _ { i } ^ { * }$ ; confidence 0.405

229. l13005021.png ; $a _{0} , \dots , a _ { k - 1 }$ ; confidence 0.405

230. k12013021.png ; $E ^{ i } _ { 2 ^{ i - 1} ( n + 1 ) } = T _ { 2 ^{ i - 1} ( n + 1 ) }$ ; confidence 0.405

231. t12020058.png ; $s _ { k } = z _ { 1 } ^ { k } + \ldots + z _ { n } ^ { k }$ ; confidence 0.405

232. s1306501.png ; $\langle f , g \rangle = \int _ { - \pi } ^ { \pi } f ( e ^ { i \theta }) \overline { g ( e ^ { i \theta } ) } d \mu ( \theta ),$ ; confidence 0.405

233. l12003019.png ; $\mathcal{S} \text{q} ^ { 1 } = \beta$ ; confidence 0.405

234. c1301409.png ; $A = ( a _ { i ,\, j } ) \in W$ ; confidence 0.404

235. r1300105.png ; $a _ { 0 } , a _ { 1 } , \dots , a _ { m } \in R [ x _ { 0 } ]$ ; confidence 0.404

236. a130040649.png ; $\mathfrak{N}$ ; confidence 0.404

237. b12043046.png ; $\left[\begin{array} { l } { n } \\ { m } \end{array} \right] _ { q } = \frac { [ n ] _{q} ! } { [ m ] _{q} ! [ n - m ] _{q} ! } ,\; [ m ]_{ q} = \frac { 1 - q ^ { m } } { 1 - q },$ ; confidence 0.404

238. l12005031.png ; $f , g \in L _ { 1 } ( \mathbf{R} _ { + } ; e ^ { - \beta x } / \sqrt { x } )$ ; confidence 0.404

239. w13009058.png ; $\| \varphi \| _ { L ^ { 2 } ( \mu ) } ^ { 2 } = \sum _ { n = 0 } ^ { \infty } n ! | f _ { n } | ^ { 2 } _ { H ^ {\bigotimes n}}.$ ; confidence 0.404

240. s120340135.png ; $\alpha _ { H } ( \tilde { x } _ { + } ) - \alpha _ { H } ( \tilde { x } _ { - } ) = 1$ ; confidence 0.404

241. l12010059.png ; $L _ { 0 ,\, n } = L _ { 0 ,\, n } ^ { 1 }$ ; confidence 0.404

242. w12001017.png ; $+ \psi ( z ^ { n } f ( D ) , z ^ { m } g ( D ) ) \cdot C,$ ; confidence 0.404

243. j12002011.png ; $f \in L ^ { p } ( \partial D , d \vartheta / ( 2 \pi ) )$ ; confidence 0.404

244. c12008077.png ; $x _ { i j } ^ { v } \in \mathbf{R} ^ { n _ { 2 } }$ ; confidence 0.404

245. c120180327.png ; $\mathsf{S} ^ { 2 } \mathcal{E} \subset \otimes ^ { 2 } \mathcal{E}$ ; confidence 0.404

246. b12032082.png ; $a _ { 2 } > 1$ ; confidence 0.404

247. f110160176.png ; $\vee \{ \psi _ { \mathfrak { A } } ^ { l } e : \phi \text { is true on } \mathfrak { A } \}.$ ; confidence 0.404

248. a1103209.png ; $i = 2 , \ldots , s,$ ; confidence 0.404

249. c12007029.png ; $c M : \mathcal{C} \rightarrow A$ ; confidence 0.404

250. a12005069.png ; $[0 , T]$ ; confidence 0.403

251. b120150144.png ; $\frac { 1 } { m } \sum _ { j = 1 } ^ { m } k _ { j }$ ; confidence 0.403

252. c1100403.png ; $\geq$ ; confidence 0.403

253. w12021056.png ; $( 1,1,1,1,1,1,1,1 , I _ { m } ) = ( 1,8 , I _ { m } )$ ; confidence 0.403

254. b12037083.png ; $\operatorname { exp } ( \Omega ( n ^ { 1 / d - 1 } ) )$ ; confidence 0.403

255. a12020065.png ; $X = X _ { 1 } \bigoplus \ldots \bigoplus X _ { n },$ ; confidence 0.403

256. f12004030.png ; $f ^ { \Delta ( \varphi ) } ( w ) = \operatorname { sup } _ { x \in X } \operatorname { min } \{ \varphi ( x , w ) , - f ( x ) \} ( w \in W ),$ ; confidence 0.403

257. a130240452.png ; $P$ ; confidence 0.403

258. a12025012.png ; $\{ ( 1 , t , t ^ { 2 } ) : t \in \operatorname {GF} ( q ) \} \cup \{ ( 0,0,1 ) \}$ ; confidence 0.403

259. l12004067.png ; $w _ { 1 } = ( 1 + c ) / 2$ ; confidence 0.403

260. q13002036.png ; $\mathbf{BQP}$ ; confidence 0.403

261. a1202404.png ; $\operatorname {Spec}( \mathbf{Z})$ ; confidence 0.403

262. t12007064.png ; $Q_{ m ,\, j_{ g} } - \frac { 1 } { q ^ { m } } \in q \mathbf{Z} [ [ q ] ].$ ; confidence 0.403

263. b1202909.png ; $R _ { s } ^ { A } : = \operatorname { inf } \left\{ t : \begin{array} { l } \ {t \ \text{superharmonic on}\ \mathbf{R}^{n} , } \\ { t \geq s \ \text{on} \ A } \end{array} \right\}.$ ; confidence 0.403

264. a01412045.png ; $2 ^ { m }$ ; confidence 0.403

265. k12006027.png ; $h ^ { 0 } ( K_{ X} \otimes L ^ { * } ) = 0$ ; confidence 0.403

266. n067520398.png ; $\dot{z} _ { j } = z _ { i }\, f ( z _ { 1 } , \dots , z _ { k } ) , \quad i = 1 , \dots , n$ ; confidence 0.402

267. n12012049.png ; $f \in \mathbf{R} [ x _ { 1 } , \dots , x _ { n } ]$ ; confidence 0.402

268. c12008036.png ; $[ l _ { m } \otimes \Lambda - A _ { 1 } ]$ ; confidence 0.402

269. b12043032.png ; $\Psi _ { B , B }$ ; confidence 0.402

270. g130060113.png ; $\bigcup _ { i , j = 1 \atop i \neq j } ^ { n } K _ { i ,\, j} ( A ) \subseteq \bigcup _ { i = 1 } ^ { n } G _ { i } ( A ),$ ; confidence 0.402

271. g13006065.png ; $a_{i,\,j}$ ; confidence 0.402

272. d1300606.png ; $\operatorname { Bel } ( \emptyset ) = 0$ ; confidence 0.402

273. n06752087.png ; $\tilde { K } = \tilde { F } [ \lambda ]$ ; confidence 0.402

274. i12006011.png ; $Q = ( X _ { P } , <_{ Q} )$ ; confidence 0.402

275. f12010039.png ; $r ( I _ { 8 } , m ) = 240 \sigma _ { 3 } ( m ),$ ; confidence 0.402

276. a12016057.png ; $S _ { t }$ ; confidence 0.402

277. l05702021.png ; $\mathbf{Z}_{ l,X } = ( ( \mathbf{Z} / l ^ { n } \mathbf{Z} ) _ { X } )_{n \in \mathbf{N}}$ ; confidence 0.402

278. w120090279.png ; $| \sum |$ ; confidence 0.402

279. b13026011.png ; $\omega = \sum _ { j = 1 } ^ { n } ( - 1 ) ^ { j - 1 } \| x \| ^ { - n } x _ { j }\, d x _ { 1 } \wedge \ldots \wedge d x _ { j - 1 } \wedge d x _ { j + 1 } \wedge \ldots \wedge d x _ { n }$ ; confidence 0.401

280. g11010015.png ; $k \in \mathbf{R} ^ { n }$ ; confidence 0.401

281. h13002044.png ; $\alpha _ { 1} , \dots , \alpha _ { q } \in \mathcal{F} ( S )$ ; confidence 0.401

282. k12005025.png ; $\mu | _ { Y \backslash E } : Y \backslash E \rightarrow X \backslash \mu ( E )$ ; confidence 0.401

283. o11001037.png ; $a _ { i } \neq e$ ; confidence 0.401

284. l110020132.png ; $( M ^ { \perp } \bigcup N ^ { \perp } ) ^ { \perp } = M ^ { \perp \perp } \bigcap N ^ { \perp \perp }.$ ; confidence 0.401

285. a11002050.png ; $u$ ; confidence 0.401

286. f120150185.png ; $\| T \| < \nu ( A )$ ; confidence 0.401

287. w13008023.png ; $d \omega _ { 1 } ( \lambda ) = \frac { \prod _ { i = 1 } ^ { g } ( \lambda - \alpha _ { i } ) } { \sqrt { R _ { g } ( \lambda ) } } d \lambda \sim$ ; confidence 0.401

288. a13013036.png ; $\partial / \partial x = \partial / \partial t _ { 1 }$ ; confidence 0.401

289. a130040116.png ; $\rightarrow$ ; confidence 0.401

290. a12016047.png ; $X ( t _ { 0 } ) = X _ { 0 }.$ ; confidence 0.401

291. g1300707.png ; $a \in \mathcal{A} ^ { - 1 }$ ; confidence 0.401

292. m12023055.png ; $d f _ { t ,\, s }$ ; confidence 0.401

293. n06663059.png ; $f \in H _ { p } ^ { r } ( \Omega )$ ; confidence 0.400

294. b12021084.png ; $M ( \mu ) = U ( \mathfrak { g } ) \otimes_{ U ( \mathfrak { b } )} \mathbf{C} ( \mu )$ ; confidence 0.400

295. f120110116.png ; $\mathcal{D} ^ { \prime } ( \mathbf{R} ^ { n } )$ ; confidence 0.400

296. w12008010.png ; $f ( q , p ) \in L ^ { 2 } ( \mathbf{R} ^ { 2 n } )$ ; confidence 0.400

297. n067520344.png ; $\phi ( x _ { 1 } , \dots , x _ { n } ) = g ( \mu z ( f ( x _ { 1 } , \dots , x _ { n } , z ) = 0 ) ),$ ; confidence 0.400

298. m12027036.png ; $s _ { j } = \sum _ { \text{l} = 1 } ^ { M } ( z _ { 1 } ^ { ( \text{l} ) } ) ^ { j } , \quad j = 1 , \ldots , M,$ ; confidence 0.400

299. k13002020.png ; $\tau _ { n } = \frac { c - d } { c + d } = \frac { S } { \left( \begin{array} { l } { n } \\ { 2 } \end{array} \right) } = \frac { 2 S } { n ( n - 1 ) }$ ; confidence 0.400

300. g1200506.png ; $R \in \mathbf{R}$ ; confidence 0.400

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/63. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/63&oldid=49777