Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/NoNroff/60

From Encyclopedia of Mathematics
Jump to: navigation, search

List

1. w120090105.png ; $K \mathfrak { S } _ { r }$ ; confidence 0.475

2. a0100803.png ; $X$ ; confidence 0.475

3. k12003033.png ; $\mathcal{E} \neq \emptyset$ ; confidence 0.475

4. a130040503.png ; $F \in \mathcal{C}$ ; confidence 0.475

5. a01055025.png ; $X / G$ ; confidence 0.474

6. h1100106.png ; $c \in \mathbf{C}$ ; confidence 0.474

7. p12012047.png ; $p$ ; confidence 0.474

8. a0104201.png ; $X _ { 1 } , \ldots , X _ { n }$ ; confidence 0.474

9. n120020106.png ; $V _ { F } ( m ) = A m ^ { a }$ ; confidence 0.474

10. h120020114.png ; $\mathcal{R} _ { n }$ ; confidence 0.474

11. y12004011.png ; $I : \mathcal{A} \rightarrow \mathbf{R} \cup \{ + \infty \}$ ; confidence 0.474

12. l12003037.png ; $ \rightarrow \operatorname{Hom}_{\mathcal{K}} ( H ^ { * } Y , H ^ { * } X \bigotimes H ^ { * } Z )$ ; confidence 0.474

13. a130240470.png ; $n_i$ ; confidence 0.474

14. t120070146.png ; $p ^ { - 1 } \prod _ { \substack{m > 0 \\ n \in \mathbf{Z} } } ( 1 - p ^ { m } q ^ { n } ) ^ { c_{m n} } = j ( w ) - j ( z ) , p = \operatorname { exp } ( 2 \pi i w ) , \quad q = \operatorname { exp } ( 2 \pi i z ).$ ; confidence 0.474

15. f11016016.png ; $f _ { \mathfrak{A} }$ ; confidence 0.474

16. a13013048.png ; $j$ ; confidence 0.474

17. b01738068.png ; $t \in S$ ; confidence 0.474

18. t12021065.png ; $w ( \mathbf{v} )$ ; confidence 0.474

19. w13008028.png ; $\oint _ { A _ { j } } d \omega _ { 1 } = \oint _ { A _ { j } } d \omega _ { 3 } = 0 , j = 1 , \dots , g ,$ ; confidence 0.474

20. d120230143.png ; $R - Z R Z ^ { * } = G J G ^ { * } , G \in \mathcal{C} ^ { n \times r },$ ; confidence 0.474

21. a130240499.png ; $\mathbf{X} _ { 4 } = ( 0,1 ) ^ { \prime }$ ; confidence 0.474

22. e03516011.png ; $\overline{\omega}$ ; confidence 0.474

23. b11092020.png ; $x^ { * } ( y - x ) \leq f ( y ) - f ( x )$ ; confidence 0.474

24. e1200405.png ; $\left\{ \begin{array} { l } { L _ { x } ^ { 2 } L _ { x x } + 2 L _ { x } L _ { y } L _ { x y } + L _ { y } ^ { 2 } L _ { y y } = 0, } \\ { L _ { x } ^ { 3 } L _ { x x x } + 3 L _ { x } ^ { 2 } L _ { y } L _ { x x y } + 3 L _ { x } L _ { y } ^ { 2 } L _ { x y y } + L _ { y } ^ { 3 } L _ { y y y } < 0. } \end{array} \right.$ ; confidence 0.474

25. w12007056.png ; $\sigma \mapsto \sigma (\mathcal{D} , \mathcal{X} )$ ; confidence 0.474

26. s12023091.png ; $U \sim \mathcal{U} _ { p , n }$ ; confidence 0.473

27. b12052040.png ; $s = x _ { + } - x _ { c }$ ; confidence 0.473

28. c12008015.png ; $\operatorname { det } [ I _ { n } \lambda - A _ { 1 } ] = \sum _ { i = 0 } ^ { m } a _ { i } \lambda ^ { i } ( a _ { m } = 1 ).$ ; confidence 0.473

29. c13025072.png ; $\widehat { \beta }$ ; confidence 0.473

30. a130240343.png ; $z_i$ ; confidence 0.473

31. b12053026.png ; $h _ { n} \rightarrow f$ ; confidence 0.473

32. a13027060.png ; $\| T _ { n } ( x ) - T _ { n } ( y ) \| \geq \phi ( \| x - y \| )$ ; confidence 0.473

33. q13002019.png ; $p = \| P | \phi \rangle \| ^ { 2 }$ ; confidence 0.473

34. a1301807.png ; $\operatorname{Mod}$ ; confidence 0.473

35. t12021037.png ; $v ( G )$ ; confidence 0.473

36. l12009043.png ; $[ . ,. ]_P$ ; confidence 0.473

37. h12003027.png ; $\dim M \geq 3$ ; confidence 0.473

38. b12022013.png ; $\partial _ { t } \int f \operatorname { ln } f d v + \operatorname { div } _ { x } \int v f \operatorname { ln } f d v \leq 0.$ ; confidence 0.472

39. d13013018.png ; $A _ { \phi } ^ { \pm } = \frac { g } { r \operatorname { sin } \theta } ( \pm 1 - \operatorname { cos } \theta ).$ ; confidence 0.472

40. f13002028.png ; $c ^ { a } ( x ) c ^ { b } ( x ) = - c ^ { b } ( x ) c ^ { a } ( x )$ ; confidence 0.472

41. d03224022.png ; $k + l$ ; confidence 0.472

42. c120010157.png ; $\sigma = - s / \langle s , \zeta \rangle$ ; confidence 0.472

43. p12014029.png ; $\| x \| = \operatorname { dist } ( x , \mathbf{Z} ) = | x - N ( x ) |$ ; confidence 0.472

44. c13015015.png ; $N \in \mathbf{N}$ ; confidence 0.472

45. b110220107.png ; $0 \rightarrow F ^ { i + 1 - m } H _ { \text{DR} } ^ { i } ( X _{/ \mathbf{R}} ) \rightarrow H _ { \text{B} } ^ { i } ( X _{/ \mathbf{R}} , \mathbf{R} ( i - m ) ) \rightarrow $ ; confidence 0.472

46. c130160139.png ; $\operatorname { ASPACE } [ s ( n ) ] = \operatorname { DTIME } [ 2 ^ { O ( s ( n ) ) } ].$ ; confidence 0.472

47. a130060150.png ; $\mathcal{P} _ { V } ^ { \# } ( n )$ ; confidence 0.472

48. l12016033.png ; $\operatorname{Diff}( S ^ { 1 } )$ ; confidence 0.472

49. w12010036.png ; $W - O _ { n }$ ; confidence 0.472

50. a12018019.png ; $a _ { 1 } + a _ { 2 } \neq 0$ ; confidence 0.472

51. f13001067.png ; $\mathbf{Q} [ x ]$ ; confidence 0.472

52. h13007041.png ; $\mathbf{e}_j$ ; confidence 0.472

53. i13005040.png ; $\mathbf{C} _ { + } : = \{ k : \operatorname { Im } k > 0 \}$ ; confidence 0.472

54. o13005037.png ; $T \subset \mathcal{A}$ ; confidence 0.472

55. l11001037.png ; $\mathcal{M} _ { n } ( \mathbf{R} )$ ; confidence 0.472

56. f120150194.png ; $\| x \| _ { A } = \| x \| + \| A x \|$ ; confidence 0.472

57. e12012072.png ; $L ( \mu , \Sigma | Y _ { \text{obs} } ) = \prod _ { i = 1 } ^ { n } f ( y _ { i } | \mu , \Sigma , \nu )$ ; confidence 0.472

58. w13009061.png ; $\| ( f _ { 0 } , f _ { 1 } , \ldots ) \| _ { \Gamma ( H ) } = \left( \sum _ { n = 0 } ^ { \infty } n ! |f _ { n } | _ { H^{\bigotimes n} } ^ { 2 } \right) ^ { 1 / 2 }.$ ; confidence 0.471

59. r13013027.png ; $\sigma ( A | _ { M } ) = \sigma$ ; confidence 0.471

60. w120110131.png ; $\mathbf{R} _ { x } ^ { n } \times \mathbf{R} _ { \xi } ^ { n } \times ( 0,1 ]$ ; confidence 0.471

61. s12021019.png ; $0 \neq \nu _ { 2 } \in E ( 0 , \Delta _ { S^2 } ^ { 2 } )$ ; confidence 0.471

62. g12004023.png ; $G _ { 0 } ^ { S } ( \Omega )$ ; confidence 0.471

63. a12024028.png ; $d d ^ { c } g + \delta _ { Z } = \omega,$ ; confidence 0.471

64. s12033033.png ; $k = q ^ { d - 1 } + \ldots + q + 1$ ; confidence 0.471

65. j13004061.png ; $M < \text{cr} ( K )$ ; confidence 0.471

66. i130090225.png ; $\Delta = \text { Gal } ( k _ { \infty } ^ { \prime } / k _ { \infty } ) \cong \text { Gal } ( k ^ { \prime } / k )$ ; confidence 0.471

67. m13008030.png ; $A _ { f } ( x ) = A ( f _ { x } )$ ; confidence 0.471

68. m1101104.png ; $= \frac { 1 } { 2 \pi i } \int _ { L } \frac { \prod _ { j = 1 } ^ { m } \Gamma ( b _ { j } - s ) \prod _ { j = 1 } ^ { n } \Gamma ( 1 - a _ { j } + s ) } { \prod _ { j = m + 1 } ^ { q } \Gamma ( 1 - b _ { j } + s ) \prod _ { j = n + 1 } ^ { p } \Gamma ( a _ { j } - s ) } x ^ { s } d s,$ ; confidence 0.471

69. z1300405.png ; $\text{cr} ( G )$ ; confidence 0.471

70. a011600210.png ; $A_f$ ; confidence 0.471

71. g12005054.png ; $A ( \xi , \tau ) = \rho e ^ { i \langle \langle K , \xi \rangle + W \tau \rangle }$ ; confidence 0.471

72. l12014022.png ; $\ker T = \{ x \in X : T x = 0 \} \neq \{ 0 \},$ ; confidence 0.471

73. w13012020.png ; $d _ { \text{H} }$ ; confidence 0.471

74. q12005039.png ; $\langle \operatorname { grad } _ { R } f ( x ) , v \rangle _ { R } = D f ( x ) . v$ ; confidence 0.471

75. s0911804.png ; $\mathcal{O} _ { M }$ ; confidence 0.470

76. b12052074.png ; $B _ { n + 1 } = B _ { n } + u _ { n } v _ { n } ^ { T },$ ; confidence 0.470

77. n12006025.png ; $G_m ^ { r }$ ; confidence 0.470

78. n067520134.png ; $\mathcal{E} _ { A , K [ \lambda ] }$ ; confidence 0.470

79. s13051078.png ; $u_i = v_i$ ; confidence 0.470

80. b120040147.png ; $X _ { \theta }$ ; confidence 0.470

81. s12032068.png ; $\Pi ( M ) _ { \overline{1} } = M _ { \overline{0} }$ ; confidence 0.470

82. b12002018.png ; $\limsup _ { n \rightarrow \infty } \frac { n ^ { 1 / 4 } } { ( \operatorname { log } n ) ^ { 1 / 2 } ( \operatorname { log } \operatorname { log } n ) ^ { 1 / 4 } } \| \alpha _ { n } + \beta _ { n } \| = 2 ^ { - 1 / 4 } \text{ a.s.}$ ; confidence 0.470

83. s12023016.png ; $- X := X$ ; confidence 0.470

84. c120180230.png ; $W ( g )$ ; confidence 0.470

85. g130050102.png ; $\mathbf{R} ^ { d-1 } $ ; confidence 0.470

86. l12019050.png ; $| X _ { A } ( t , z ) | \leq \beta _ { e } ^ { - \alpha ( t - z ) }$ ; confidence 0.470

87. t12005054.png ; $F _ { i } \subset G _ { n } ( \mathbf{R} ^ { n } \times \mathbf{R} ^ { p } )$ ; confidence 0.470

88. w1300601.png ; $T _ { g , n }$ ; confidence 0.470

89. w12011023.png ; $= \int \int e ^ { 2 i \pi ( x - y ) . \xi } a ( ( 1 - t ) x + t y , \xi ) u ( y ) d y d \xi.$ ; confidence 0.470

90. b12015078.png ; $d _ { s } ( x _ { 1 } , \ldots , x _ { n } ) =$ ; confidence 0.470

91. f12017010.png ; $V = K ^ { n }$ ; confidence 0.470

92. b11022087.png ; $H _ { \mathcal{D} } ^ { i } ( X , A ( j ) ) = \mathbf{H} ^ { i } ( X , A ( j ) _ { \mathcal{D} } ),$ ; confidence 0.470

93. f12009072.png ; $\mu ^ { * }$ ; confidence 0.470

94. f12004038.png ; $f ^ { b ( \varphi ) }$ ; confidence 0.470

95. m13025092.png ; $\partial _ { t } u ( x , t ) + \partial _ { x } ( u ^ { m } ( x , t ) ) = 0$ ; confidence 0.469

96. c026010582.png ; $\sigma _ { t }$ ; confidence 0.469

97. f12024075.png ; $[ \overline { t_0 } , t _ { 0 } )$ ; confidence 0.469

98. a120050116.png ; $u _ { 0 } \in Y$ ; confidence 0.469

99. b12016068.png ; $v = x_3 - x_2$ ; confidence 0.469

100. s13001031.png ; $M _ { \mathbf{Q} }$ ; confidence 0.469

101. b13030015.png ; $x ^ { n } \equiv 1$ ; confidence 0.469

102. e12012075.png ; $t = \mu + \frac { \Sigma ^ { 1 / 2 } Z } { \sqrt { q } },$ ; confidence 0.469

103. b12029019.png ; $\mathcal{C} U : = \mathbf{R} ^ { n } \backslash U$ ; confidence 0.469

104. a130040263.png ; $\mathbf{\dashv} \mathsf{A}$ ; confidence 0.469

105. m12016048.png ; $\mathsf{E} ( X ) = M$ ; confidence 0.469

106. c13008029.png ; $\# A / n$ ; confidence 0.469

107. g130040161.png ; $\nu _ { i } \rightarrow \nu$ ; confidence 0.469

108. a1201809.png ; $\Delta S _ { n } = S _ { n + 1 } - S _ { n }$ ; confidence 0.469

109. i130060160.png ; $ \left| F ^ { \prime } ( 2 x ) - \frac { q ( x ) } { 4 } + \frac { 1 } { 4 } \left( \int _ { x } ^ { \infty } q ( t ) d t \right)^2 \right| \leq c \sigma ^ { 2 } ( x ),$ ; confidence 0.469

110. m130140160.png ; $( F f ) ( z ) = \sum _ { j = 1 } ^ { n } \bar{z}_j \frac { \partial f ( z ) } { \partial \bar{z} _ { j } }.$ ; confidence 0.469

111. e035000109.png ; $I _ { \epsilon } = \operatorname { inf } _ { \rho \in R _ { \epsilon } ( X ) } I ( \rho ),$ ; confidence 0.469

112. a011490103.png ; $a_i$ ; confidence 0.469

113. e120230139.png ; $\pi _ { r } ^ { k * } ( \theta )$ ; confidence 0.469

114. d12002098.png ; $k \in P$ ; confidence 0.469

115. w12021051.png ; $( 1,1,1,1 , I _ { m } ) = ( 1,4 , I _ { m } )$ ; confidence 0.469

116. b13023041.png ; $\operatorname { rist } _ { G } ( n ) = \langle \operatorname { rist } _ { G } ( u ) : | u | = n \rangle$ ; confidence 0.469

117. b12014041.png ; $q_i( z )$ ; confidence 0.469

118. e12007010.png ; $\overline { \mathcal{R} }$ ; confidence 0.469

119. g13002031.png ; $w \in \mathbf{C}$ ; confidence 0.468

120. a01296022.png ; $U _ { n }$ ; confidence 0.468

121. a13025019.png ; $[ a _ { 1 } , a _ { 2 } ] = L ( a _ { 1 } , a _ { 2 } ) \in L ( V , V )$ ; confidence 0.468

122. b12030043.png ; $\mathcal{A} \psi (. ; \eta ) = \lambda \psi (. ; \eta ) \text{ in }\mathbf{R} ^ { N },$ ; confidence 0.468

123. w12019014.png ; $n ( x , t ) = \int _ { \mathbf{R} ^ { 3 N } } f _ { \text{W} } d p$ ; confidence 0.468

124. n13003055.png ; $G ( x ) \partial ^ { 5 } /\partial x ^ { 4 } \partial t$ ; confidence 0.468

125. h046010151.png ; $T ^ { 4 }$ ; confidence 0.468

126. n067520312.png ; $a ( x ) , a ^ { * } ( x )$ ; confidence 0.468

127. f1301308.png ; $S \subset E$ ; confidence 0.468

128. m12025011.png ; $H _ { 0 } | _ { U ^ { \prime } } = \operatorname{id}$ ; confidence 0.468

129. s13014010.png ; $\sum _ { i = 0 } ^ { n } ( - 1 ) ^ { i } q _ { i } q _ { n - i } = 0$ ; confidence 0.468

130. l13004025.png ; $L ( A ) / \operatorname { Inn } \operatorname { Der } A$ ; confidence 0.468

131. q12002029.png ; $| T _ { 1, \dots, k } ^ { 1 , \ldots , k } | _ { q }$ ; confidence 0.468

132. b130290165.png ; $A / \mathfrak{m}$ ; confidence 0.468

133. l05700078.png ; $\mathbf{c} _ { k } \equiv \lambda f x . f ^ { k } x$ ; confidence 0.468

134. h13007043.png ; $k ^ { l - r }$ ; confidence 0.468

135. a01184034.png ; $\omega _ { n }$ ; confidence 0.468

136. b1204907.png ; $\{ m_i \}$ ; confidence 0.467

137. a13022016.png ; $r f = \operatorname{id}$ ; confidence 0.467

138. s13051062.png ; $\{ G _ { 1 } = ( V _ { 1 } , E _ { 1 } ) , \dots , G _ { m } = ( V _ { m } , E _ { m } ) \}$ ; confidence 0.467

139. b12051054.png ; $H _ { c }$ ; confidence 0.467

140. e03717032.png ; $P _ { L }$ ; confidence 0.467

141. s12024020.png ; $\operatorname{varprojlim}_kh * ( X _ { k } ) = h * ( \text { varprojlim } _ { k } X _ { k } ),$ ; confidence 0.467

142. f12011068.png ; $\mathcal{Q} ( D ^ { n } )$ ; confidence 0.467

143. a01220049.png ; $D _ { 0 }$ ; confidence 0.467

144. b13020073.png ; $\mathfrak{g}_{-}$ ; confidence 0.467

145. w12020015.png ; $R [ K ( x _ { \nu } , . ) ] = 0 , \quad \nu = 1 , \dots , n,$ ; confidence 0.467

146. b12037010.png ; $2 ^ { 2 ^ { n } }$ ; confidence 0.467

147. d13003027.png ; $f ( x ) = \frac { 1 } { C _ { \psi } } \int _ { 0 } ^ { \infty } \int _ { - \infty } ^ { \infty } W _ { \psi } [ f ] ( a , b ) \psi ( \frac { x - b } { a } ) d b \frac { d a } { a \sqrt { a } }.$ ; confidence 0.467

148. s12022044.png ; $\operatorname{Vol}( M , g )$ ; confidence 0.467

149. f0402708.png ; $S _ { m }$ ; confidence 0.467

150. b12027043.png ; $u _ { n } \equiv \mathsf{P} ( S _ { k } = n \text{ for some } k \geq 0 ),$ ; confidence 0.467

151. b12022060.png ; $u ^ { 0 }$ ; confidence 0.466

152. w120110204.png ; $G _ { X } = \sum _ { 1 \leq j \leq n } h _ { j } ( | d q _ { j } | ^ { 2 } + | d p _ { j } | ^ { 2 } ),$ ; confidence 0.466

153. w1200602.png ; $\varphi \in \operatorname{Hom}( C ^ { \infty } ( \mathbf{R} ^ { m } , \mathbf{R} ) , A )$ ; confidence 0.466

154. c13009019.png ; $P _ { N } u ( x ) = \sum _ { n = 0 } ^ { N } a _ { n } T _ { n } ( x )$ ; confidence 0.466

155. b13023066.png ; $\operatorname{Aut}T$ ; confidence 0.466

156. f12017017.png ; $e _ { 2 } , \dots , e _ { n }$ ; confidence 0.466

157. m13023045.png ; $v \in \overline { N E } ( X / S )$ ; confidence 0.466

158. l12007033.png ; $w = \frac { 1 } { s } \left( \begin{array} { c } { 1 } \\ { p _ { 1 } / r } \\ { p _ { 1 } p _ { 2 } / r ^ { 2 } } \\ { \vdots } \\ { p _ { 1 } \dots p _ { k - 1} / r ^ { k - 1 } } \end{array} \right),$ ; confidence 0.466

159. f12002017.png ; $K \subseteq L$ ; confidence 0.466

160. b13027063.png ; $0 \rightarrow \operatorname { Ext } _ { \mathbf{Z} } ^ { 1 } ( K _ { 0 } ( A ) , \mathbf{Z} ) \rightarrow \operatorname { Ext } ( A ) \rightarrow$ ; confidence 0.466

161. m12003096.png ; $\operatorname { IF } ( ( \overset{\rightharpoonup} { x } _ { 0 } , y _ { 0 } ) ; T , H _ { \overset{\rightharpoonup}{ \theta } } ) = \eta ( \overset{\rightharpoonup} { x } _ { 0 } , e _ { 0 } ) M ^ { - 1 } \overset{\rightharpoonup} { x } _ { 0 }$ ; confidence 0.466

162. a12012094.png ; $y _ { 0 }$ ; confidence 0.466

163. g04448032.png ; $U \subset \mathbf{R} ^ { n }$ ; confidence 0.466

164. a130050262.png ; $N _ { \mathcal{C} } ^ { \# } ( x ) = \sum _ { n \leq x } G _ { \mathcal{C} } ^ { \# } ( n )$ ; confidence 0.466

165. b11048028.png ; $\mathbf{s}$ ; confidence 0.466

166. c13005011.png ; $\operatorname { Cay } ( G , S )$ ; confidence 0.466

167. c02236018.png ; $l - 1$ ; confidence 0.466

168. f12004035.png ; $f ^ { b ( \varphi ) } ( w ) = \operatorname { sup } _ { x \in X } \{ - [ - \varphi ( x , w ) \odot f ( x ) ] \} ( w \in W );$ ; confidence 0.466

169. n067520162.png ; $M _ { s \times s } ( K )$ ; confidence 0.466

170. y12001093.png ; $\mathcal{R} _ { V } ( u \otimes v ) = u ^ { \{ 1 \} } \otimes u ^ { ( 2 ) } . v$ ; confidence 0.465

171. i12004069.png ; $s _ { r } ( \zeta , z ) = ( \partial r / \partial \zeta _ { 1 } ( \zeta ) , \ldots , \partial r / \partial \zeta _ { n } ( \zeta ) )$ ; confidence 0.465

172. a130050169.png ; $\zeta _ { K } ( z ) = \sum _ { I \in G _ { K } } | I | ^ { - z } = \sum _ { n = 1 } ^ { \infty } K ( n ) n ^ { - z },$ ; confidence 0.465

173. f130290165.png ; $\mathcal{T} \circ ( f , \phi ) ^ { \leftarrow } \geq \phi ^ { \operatorname{op} } \circ \mathcal{S}$ ; confidence 0.465

174. c020660169.png ; $c = \text{const} > 0$ ; confidence 0.465

175. b12009018.png ; $ k = k ( t )$ ; confidence 0.465

176. a12013012.png ; $1 / n$ ; confidence 0.465

177. b12027071.png ; $a ( t ) = \int _ { ( 0 , t ] } b ( t - s ) U ( d s ),$ ; confidence 0.465

178. d1302101.png ; $\dot { x } = G ( x , \alpha ),$ ; confidence 0.465

179. b12032085.png ; $k = k ( i ) \in \mathbf{N}$ ; confidence 0.465

180. d13008099.png ; $K _ { \mathcal{D} }$ ; confidence 0.465

181. b12021089.png ; $\mathfrak{h} ^ { * }$ ; confidence 0.465

182. l11001041.png ; $a _ { i j } \preceq b _ { i j }$ ; confidence 0.465

183. a110610114.png ; $n_-$ ; confidence 0.465

184. m13022055.png ; $C _ { \mathbf{M} } ( g )$ ; confidence 0.465

185. b12010037.png ; $S ^ { n } ( - t , x _ { 1 } , \dots , x _ { n } )$ ; confidence 0.465

186. c12007014.png ; $\{ M ( \alpha _ { n +1} ) \text { pr }_{ ( \alpha _ { 1 } , \dots , \alpha _ { n } )}+$ ; confidence 0.465

187. b120270100.png ; $a ( t ) \equiv \mathsf{E} h ( Z ( t ) )$ ; confidence 0.465

188. a12018026.png ; $\frac { S _ { n + 1 } - S } { S _ { n } - S } = \lambda \neq 0,1.$ ; confidence 0.465

189. s12028033.png ; $\overline { S } ( X )$ ; confidence 0.465

190. v13007045.png ; $V _ { x } - i V _ { y }$ ; confidence 0.465

191. t13013089.png ; $\operatorname{Hom}_{\mathcal{H}}( T , X ) = 0 = \operatorname { Ext } _ { \mathcal{H}} ^ { 1 } ( T , X )$ ; confidence 0.465

192. j13004086.png ; $P _ { L } ( v , z ) = \sum a _ { i ,j} v ^ { i } z ^ { j }$ ; confidence 0.464

193. p13009013.png ; $P ( x , \xi ) = \frac { r ^ { 2 } - | x - x _ { 0 } | ^ { 2 } } { \omega _ { n } r | x - \xi | ^ { n } },$ ; confidence 0.464

194. i12005078.png ; $\beta ( m , \alpha _ { n } , \theta _ { n } ; T )$ ; confidence 0.464

195. d12020017.png ; $\int _ { 0 } ^ { 1 } | p _ { n } ( i t ) | ^ { 2 } d t = \sum _ { m = 1 } ^ { n } | a _ { m } | ^ { 2 } ( T + O ( m ) ).$ ; confidence 0.464

196. b13026077.png ; $\mathbf{R} ^ { n } \backslash K _ { 1 }$ ; confidence 0.464

197. t13005089.png ; $\sigma _ { \text{T} } ( L _ { a } , \mathcal{B} ) = \sigma _ { \mathcal{B} } ( a )$ ; confidence 0.464

198. c12008062.png ; $P _ { n } ( C )$ ; confidence 0.464

199. f04178016.png ; $T _ { \lambda }$ ; confidence 0.464

200. i13004013.png ; $\Delta ^ { 2 } a _ { k } = \Delta ( \Delta a _ { k } ) \geq 0$ ; confidence 0.464

201. w120110156.png ; $.\operatorname { exp } 4 i \pi \sum _ { 1 \leq j < l \leq 2 k } ( - 1 ) ^ { j + l } [ X - Y _ { j } , X - Y _ { l } ] .. d Y _ { 1 } \ldots d Y _ { 2 k }.$ ; confidence 0.464

202. t120200128.png ; $| 1 - z _ { h } | < \delta _ { 1 }$ ; confidence 0.464

203. b12022078.png ; $M ( \underline { u } , \xi ) = ( 1 , \xi _ { 1 } , \ldots , \xi _ { N } , | \xi | ^ { 2 } / 2 ) M _ { 0 } ( \underline { u } , \xi )$ ; confidence 0.464

204. d03029017.png ; $\geq \operatorname { min } _ { 0 \leq i \leq n + 1 } | f ( x _ { i } ) - P _ { n } ( x _ { i } ) |$ ; confidence 0.464

205. r13007055.png ; $u \in H _ { + }$ ; confidence 0.464

206. m130180170.png ; $M / a$ ; confidence 0.463

207. f12021023.png ; $= a _ { 0 } ^ { N } \prod _ { i = 1 } ^ { \nu } ( \lambda - \lambda _ { i } ) ^ { n _ { i } }.$ ; confidence 0.463

208. l11001011.png ; $( c > 0 ) \& ( a \preceq b ) \Rightarrow ( a c \preceq b c ) \& ( c a \preceq c b ),$ ; confidence 0.463

209. s12032030.png ; $a \otimes b \rightarrow a b$ ; confidence 0.463

210. m130140144.png ; $z = ( z _ { 1 } , \dots , z _ { n } ) \in \mathbf{C} ^ { n }$ ; confidence 0.463

211. m13025016.png ; $( f , g ) \rightarrow f g : L ^ { p } ( \Omega ) \times L ^ { q } ( \Omega ) \rightarrow L ^ { 1 } ( \Omega )$ ; confidence 0.463

212. q12005075.png ; $B _ { \operatorname{new} } = B - \frac { B s s ^ { T } B } { s ^ { T } B s } + \frac { y y ^ { T } } { y ^ { T } s } + \theta . w w ^ { T },$ ; confidence 0.463

213. a13001015.png ; $S ^ { * } = S$ ; confidence 0.463

214. o13008039.png ; $q_1 , q _ { 2 } \in L _ { 1 ,1} $ ; confidence 0.463

215. f12021057.png ; $l = 0 , \dots , n _ { i } - 1$ ; confidence 0.463

216. b12013064.png ; $B _ { 0 } ^ { * } \cong L _ { a } ^ { 1 }$ ; confidence 0.463

217. j130040115.png ; $\frac { P _ { 2_1 } ( v , z ) - \frac { v ^ { - 1 } - v } { z } } { z \left( \left( \frac { v ^ { - 1 } - v } { z } \right) ^ { 2 } - 1 \right) } = - v.$ ; confidence 0.463

218. p120170108.png ; $\mathcal{A} x = 0 = \mathcal{B} x$ ; confidence 0.463

219. l12004035.png ; $\partial _ { t } ^ { ( k ) } u ( x , t ) = ( - a ) ^ { k } \partial _ { x } ^ { ( k ) }$ ; confidence 0.463

220. d12002038.png ; $k \in R$ ; confidence 0.463

221. c022780520.png ; $v_i$ ; confidence 0.463

222. s12016022.png ; $( U ^ { i _ { 1 } } \bigotimes \ldots \bigotimes U ^ { i _ { d } } ) ( f ) =$ ; confidence 0.462

223. k13006034.png ; $\Delta ( \mathcal{F} ) : = \left\{ Y \in \left( \begin{array} { c } { [ n ] } \\ { k - 1 } \end{array} \right) : Y \subset X \text { for some } X \in \mathcal{F} \right\}.$ ; confidence 0.462

224. r13010091.png ; $\mathbf{ZD}_n$ ; confidence 0.462

225. k13002080.png ; $\beta = \mathsf{P} [ ( X - \tilde { X } ) ( Y - \tilde { Y } ) > 0 ] +$ ; confidence 0.462

226. z13010051.png ; $\forall x \exists z \forall v ( v \in z \leftrightarrow \exists y ( y \in x \bigwedge v \in y ) ).$ ; confidence 0.462

227. b11035023.png ; $k = 1,2 , \dots$ ; confidence 0.462

228. a1201708.png ; $\beta ( a )$ ; confidence 0.462

229. a13013017.png ; $P_0$ ; confidence 0.462

230. t09408029.png ; $\pi _ { n-1 } ( \Omega ( X ; A , * ) , * )$ ; confidence 0.462

231. c120180270.png ; $\tau _ { p + 1 } : \otimes ^ { p + q + 1 } \mathcal{E} \rightarrow \otimes ^ { p + q + 1 } \mathcal{E}$ ; confidence 0.462

232. c12030076.png ; $\mathcal{O} _ { n } \simeq \mathcal{O} _ { m }$ ; confidence 0.462

233. j13004040.png ; $L^-$ ; confidence 0.462

234. g130060116.png ; $r _ { i } ( A )$ ; confidence 0.462

235. a13018067.png ; $\textbf{Alg}_{ \vdash } ( L _ { \omega } )$ ; confidence 0.462

236. d12024047.png ; $I ( f , \mathfrak{h} )$ ; confidence 0.462

237. b1200307.png ; $\{ c _ { n ,m} ( f ) : n , m \in \mathbf{Z} \}$ ; confidence 0.462

238. g13002049.png ; $e ^ { \beta _ { 1 } } , \ldots , e ^ { \beta _ { n } }$ ; confidence 0.462

239. f12001029.png ; $u : Y \rightarrow X$ ; confidence 0.462

240. s09067088.png ; $\theta = j _ { x } ^ { 1 } ( u ) = ( d u ^ { 1 } , \dots , d u ^ { n } )$ ; confidence 0.462

241. m12003029.png ; $\operatorname { IF } ( x ; T , G ) = \frac { \partial } { \partial \varepsilon } [ T ( ( 1 - \varepsilon ) G + \varepsilon \Delta _ { x } ) ]_{\varepsilon = 0 +},$ ; confidence 0.462

242. r13004026.png ; $\lambda _ { 1 } ( \Omega ) = \operatorname { inf } _ { u \in H _ { 0 } ^ { 1 } ( \Omega ) } \frac { \int_{\Omega} ( \nabla u ) ^ { 2 } d x } { \int _ { \Omega } u ^ { 2 } d x }.$ ; confidence 0.462

243. z1200101.png ; $O _ { 1 } ( m ) = \left\{ x ^ { ( i ) } : x ^ { ( i ) } x ^ { ( j ) } = \left( \begin{array} { c } { i + j } \\ { i } \end{array} \right) x ^ { ( i + j ) } , 0 \leq i , j < p ^ { m } \right\}$ ; confidence 0.461

244. c120180172.png ; $g ^ { - 1 } \{ p , q \} : \otimes ^ { r + 2 } \mathcal{E} \rightarrow \otimes ^ { r } \mathcal{E}$ ; confidence 0.461

245. a13027035.png ; $X _ { n } = \operatorname { span } \{ \phi _ { 1 } , \dots , \phi _ { n } \}$ ; confidence 0.461

246. w120090135.png ; $\chi _ { \lambda } = \sum _ { \mu \in \Lambda ( n ) } \operatorname { dim } _ { K } ( \Delta ( \lambda ) ^ { \mu } ) _ { e _ { \mu } },$ ; confidence 0.461

247. m13002063.png ; $\widetilde{ M } _ { k } \times S ^ { 1 } \times \mathbf{R} ^ { 3 }$ ; confidence 0.461

248. a11030020.png ; $\mathbf{Z}$ ; confidence 0.461

249. b12027036.png ; $( X _ { 1 } - a ) / h$ ; confidence 0.461

250. m13019029.png ; $m _ { i -j } = \langle x ^ { i } , x ^ { j } \rangle$ ; confidence 0.461

251. s13063017.png ; $M / ( y _ { 1 } , \ldots , y _ { s } ) M$ ; confidence 0.461

252. b130200176.png ; $\operatorname { ch } _ { V } : = \sum _ { \lambda \in \mathfrak{h} ^ {e* } } ( \operatorname { dim } V ^ { \lambda } ) e ^ { \lambda }.$ ; confidence 0.461

253. b110220244.png ; $X / \mathbf{C}$ ; confidence 0.461

254. p13010084.png ; $f ( \Delta ) \subset \hat { K }$ ; confidence 0.461

255. d13017064.png ; $r _ { \Omega }$ ; confidence 0.461

256. i13007040.png ; $\theta . w : = \sum _ { j = 1 } ^ { 3 } \theta _ { j } .w _ { j }$ ; confidence 0.461

257. c12030099.png ; $KMS$ ; confidence 0.461

258. x12002047.png ; $\operatorname{ad} _ { q }$ ; confidence 0.460

259. o13006086.png ; $\mathcal{H}^{ ( 2 )}$ ; confidence 0.460

260. a01301058.png ; $\mathbf{R} ^ { m }$ ; confidence 0.460

261. b1300605.png ; $x \equiv 0$ ; confidence 0.460

262. a130040285.png ; $\mathbf{S} 4$ ; confidence 0.460

263. i12004041.png ; $K _ { \operatorname{BM} } $ ; confidence 0.460

264. z130110146.png ; $\alpha = a / ( 1 - a )$ ; confidence 0.460

265. a130050170.png ; $K ( n )$ ; confidence 0.460

266. b13019071.png ; $y ( a / q )$ ; confidence 0.460

267. w13008020.png ; $R _ { g } ( \lambda ) = \prod _ { i = 0 } ^ { 2 g } ( \lambda - \lambda _ { i } )$ ; confidence 0.460

268. a0138307.png ; $R_n$ ; confidence 0.460

269. s12020057.png ; $\sigma \left( \begin{array} { c c c c } { 9 } & { 2 } & { 3 } & { 6 } \\ { 7 } & { 1 } & { 4 } & { \square } \\ { 5 } & { \square } & { \square } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \end{array} \right) = \left( \begin{array} { c c c c } { 8 } & { 4 } & { 1 } & { 3 } \\ { 7 } & { 6 } & { 5 } & { \square } \\ { 2 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right).$ ; confidence 0.460

270. c130070157.png ; $r ( x , y ) / s ( x , y )$ ; confidence 0.460

271. w120090387.png ; $\mathbf{Z} v^{+}$ ; confidence 0.460

272. j130040110.png ; $\frac { P _ { L } ( v , z ) - P _ { T_{\operatorname{ com } ( L )}} ( v , z ) } { z \left( \left( \frac { v ^ { - 1 } - v } { z } \right) ^ { 2 } - 1 \right) } \equiv$ ; confidence 0.460

273. m13001022.png ; $\{ \langle x _ { 1 } , d _ { 1 } \rangle , \ldots , \langle x _ { n } , d _ { n } \rangle \}$ ; confidence 0.460

274. l12017035.png ; $wx_{n+1}$ ; confidence 0.460

275. q12008035.png ; $\mathsf{E} [ W _ { p } ] _ { \operatorname{NP} } < \mathsf{E} [ W _ { q } ] _ { \operatorname{NP} }$ ; confidence 0.460

276. t12020082.png ; $R _ { n } < 1 - 1 / ( 250 n )$ ; confidence 0.460

277. o130010144.png ; $\rho = \operatorname { sup } _ { x \in S _ { 1 } } \text { inf }_{ y \in S _ { 2 } } | x - y |$ ; confidence 0.460

278. a120280173.png ; $a \in M ^ { \alpha } ( [ s , \infty ) )$ ; confidence 0.459

279. c12008037.png ; $\Delta ( A _ { 1 } ) = \sum _ { i = 0 } ^ { m } ( I _ { m } \bigotimes D _ { m - i } ) A _ { 1 } ^ { i } = 0 ( D _ { 0 } = I _ { n } ).$ ; confidence 0.459

280. k13002013.png ; $x _ { j } > x _ { k }$ ; confidence 0.459

281. a1302903.png ; $( Y , P _ { Y } )$ ; confidence 0.459

282. b12040040.png ; $\pi : G \times^\varrho F \rightarrow G / H$ ; confidence 0.459

283. s13040017.png ; $X \cong D ^ { n}$ ; confidence 0.459

284. i130030111.png ; $D : = \sum c ( e _ { i } ) \nabla _ { e_i }$ ; confidence 0.459

285. n06752064.png ; $d j = \Delta_j / \Delta_{ j - 1}$ ; confidence 0.459

286. m12013081.png ; $\gamma F ^ { p }$ ; confidence 0.459

287. p12015016.png ; $X = \mathbf{R} ^ { n }$ ; confidence 0.459

288. s1300207.png ; $g _ { t } : U M \rightarrow U M$ ; confidence 0.459

289. p07101037.png ; $\mod p _ { i }$ ; confidence 0.459

290. t12006034.png ; $\Phi ( x ) = V ( x ) - \int _ { \mathbf{R} ^ { 3 } } | x - y | ^ { - 1 } \rho ( y ) d y.$ ; confidence 0.459

291. e13003043.png ; $\dots \rightarrow H ^ { \bullet - 1 } ( \partial ( \Gamma \backslash X ) , \tilde { \mathcal{M} } ) \rightarrow H _ { c } ^ { \bullet } ( \Gamma \backslash X , \tilde { \mathcal{M} } ) \rightarrow$ ; confidence 0.459

292. i13001064.png ; $\{ v _ { 1 } , \dots , v _ { n } \}$ ; confidence 0.459

293. b12004046.png ; $| g |$ ; confidence 0.459

294. b120210115.png ; $\operatorname{Ext}_{\mathfrak{a}}^i( \mathbf{C} , M)$ ; confidence 0.459

295. s13054015.png ; $a , b \in F$ ; confidence 0.459

296. s12021020.png ; $\pi ^ { * } \nu _ { 2 } \in E ( \mu , \Delta _ { S^3 } ^ { 2 } )$ ; confidence 0.459

297. e12012073.png ; $L ( \mu , \Sigma | Y _ { \operatorname{obs} } )$ ; confidence 0.459

298. a130040346.png ; $= \{ \langle a , b \rangle \in A ^ { 2 } : \epsilon ^ { \mathbf{A} } ( a , b ) \in F \text { for all } \epsilon ( x , y ) \in E ( x , y ) \}.$ ; confidence 0.459

299. o130060119.png ; $S ( \lambda ) = I _ { \mathcal{E} } - i \Phi ( \xi _ { 1 } A _ { 1 } + \xi _ { 2 } A _ { 2 } - \xi _ { 1 } \lambda _ { 1 } - \xi _ { 2 } \lambda _ { 2 } ) ^ { - 1 }.$ ; confidence 0.459

300. n06696013.png ; $X _ { 1 } ^ { 2 } + \ldots X _ { n } ^ { 2 }$ ; confidence 0.458

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/60. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/60&oldid=45837