User:Maximilian Janisch/latexlist/latex/NoNroff/60
List
1. ; $K \mathfrak { S } _ { r }$ ; confidence 0.475
2. ; $X$ ; confidence 0.475
3. ; $\mathcal{E} \neq \emptyset$ ; confidence 0.475
4. ; $F \in \mathcal{C}$ ; confidence 0.475
5. ; $X / G$ ; confidence 0.474
6. ; $c \in \mathbf{C}$ ; confidence 0.474
7. ; $p$ ; confidence 0.474
8. ; $X _ { 1 } , \ldots , X _ { n }$ ; confidence 0.474
9. ; $V _ { F } ( m ) = A m ^ { a }$ ; confidence 0.474
10. ; $\mathcal{R} _ { n }$ ; confidence 0.474
11. ; $I : \mathcal{A} \rightarrow \mathbf{R} \cup \{ + \infty \}$ ; confidence 0.474
12. ; $ \rightarrow \operatorname{Hom}_{\mathcal{K}} ( H ^ { * } Y , H ^ { * } X \bigotimes H ^ { * } Z )$ ; confidence 0.474
13. ; $n_i$ ; confidence 0.474
14. ; $p ^ { - 1 } \prod _ { \substack{m > 0 \\ n \in \mathbf{Z} } } ( 1 - p ^ { m } q ^ { n } ) ^ { c_{m n} } = j ( w ) - j ( z ) , p = \operatorname { exp } ( 2 \pi i w ) , \quad q = \operatorname { exp } ( 2 \pi i z ).$ ; confidence 0.474
15. ; $f _ { \mathfrak{A} }$ ; confidence 0.474
16. ; $j$ ; confidence 0.474
17. ; $t \in S$ ; confidence 0.474
18. ; $w ( \mathbf{v} )$ ; confidence 0.474
19. ; $\oint _ { A _ { j } } d \omega _ { 1 } = \oint _ { A _ { j } } d \omega _ { 3 } = 0 , j = 1 , \dots , g ,$ ; confidence 0.474
20. ; $R - Z R Z ^ { * } = G J G ^ { * } , G \in \mathcal{C} ^ { n \times r },$ ; confidence 0.474
21. ; $\mathbf{X} _ { 4 } = ( 0,1 ) ^ { \prime }$ ; confidence 0.474
22. ; $\overline{\omega}$ ; confidence 0.474
23. ; $x^ { * } ( y - x ) \leq f ( y ) - f ( x )$ ; confidence 0.474
24. ; $\left\{ \begin{array} { l } { L _ { x } ^ { 2 } L _ { x x } + 2 L _ { x } L _ { y } L _ { x y } + L _ { y } ^ { 2 } L _ { y y } = 0, } \\ { L _ { x } ^ { 3 } L _ { x x x } + 3 L _ { x } ^ { 2 } L _ { y } L _ { x x y } + 3 L _ { x } L _ { y } ^ { 2 } L _ { x y y } + L _ { y } ^ { 3 } L _ { y y y } < 0. } \end{array} \right.$ ; confidence 0.474
25. ; $\sigma \mapsto \sigma (\mathcal{D} , \mathcal{X} )$ ; confidence 0.474
26. ; $U \sim \mathcal{U} _ { p , n }$ ; confidence 0.473
27. ; $s = x _ { + } - x _ { c }$ ; confidence 0.473
28. ; $\operatorname { det } [ I _ { n } \lambda - A _ { 1 } ] = \sum _ { i = 0 } ^ { m } a _ { i } \lambda ^ { i } ( a _ { m } = 1 ).$ ; confidence 0.473
29. ; $\widehat { \beta }$ ; confidence 0.473
30. ; $z_i$ ; confidence 0.473
31. ; $h _ { n} \rightarrow f$ ; confidence 0.473
32. ; $\| T _ { n } ( x ) - T _ { n } ( y ) \| \geq \phi ( \| x - y \| )$ ; confidence 0.473
33. ; $p = \| P | \phi \rangle \| ^ { 2 }$ ; confidence 0.473
34. ; $\operatorname{Mod}$ ; confidence 0.473
35. ; $v ( G )$ ; confidence 0.473
36. ; $[ . ,. ]_P$ ; confidence 0.473
37. ; $\dim M \geq 3$ ; confidence 0.473
38. ; $\partial _ { t } \int f \operatorname { ln } f d v + \operatorname { div } _ { x } \int v f \operatorname { ln } f d v \leq 0.$ ; confidence 0.472
39. ; $A _ { \phi } ^ { \pm } = \frac { g } { r \operatorname { sin } \theta } ( \pm 1 - \operatorname { cos } \theta ).$ ; confidence 0.472
40. ; $c ^ { a } ( x ) c ^ { b } ( x ) = - c ^ { b } ( x ) c ^ { a } ( x )$ ; confidence 0.472
41. ; $k + l$ ; confidence 0.472
42. ; $\sigma = - s / \langle s , \zeta \rangle$ ; confidence 0.472
43. ; $\| x \| = \operatorname { dist } ( x , \mathbf{Z} ) = | x - N ( x ) |$ ; confidence 0.472
44. ; $N \in \mathbf{N}$ ; confidence 0.472
45. ; $0 \rightarrow F ^ { i + 1 - m } H _ { \text{DR} } ^ { i } ( X _{/ \mathbf{R}} ) \rightarrow H _ { \text{B} } ^ { i } ( X _{/ \mathbf{R}} , \mathbf{R} ( i - m ) ) \rightarrow $ ; confidence 0.472
46. ; $\operatorname { ASPACE } [ s ( n ) ] = \operatorname { DTIME } [ 2 ^ { O ( s ( n ) ) } ].$ ; confidence 0.472
47. ; $\mathcal{P} _ { V } ^ { \# } ( n )$ ; confidence 0.472
48. ; $\operatorname{Diff}( S ^ { 1 } )$ ; confidence 0.472
49. ; $W - O _ { n }$ ; confidence 0.472
50. ; $a _ { 1 } + a _ { 2 } \neq 0$ ; confidence 0.472
51. ; $\mathbf{Q} [ x ]$ ; confidence 0.472
52. ; $\mathbf{e}_j$ ; confidence 0.472
53. ; $\mathbf{C} _ { + } : = \{ k : \operatorname { Im } k > 0 \}$ ; confidence 0.472
54. ; $T \subset \mathcal{A}$ ; confidence 0.472
55. ; $\mathcal{M} _ { n } ( \mathbf{R} )$ ; confidence 0.472
56. ; $\| x \| _ { A } = \| x \| + \| A x \|$ ; confidence 0.472
57. ; $L ( \mu , \Sigma | Y _ { \text{obs} } ) = \prod _ { i = 1 } ^ { n } f ( y _ { i } | \mu , \Sigma , \nu )$ ; confidence 0.472
58. ; $\| ( f _ { 0 } , f _ { 1 } , \ldots ) \| _ { \Gamma ( H ) } = \left( \sum _ { n = 0 } ^ { \infty } n ! |f _ { n } | _ { H^{\bigotimes n} } ^ { 2 } \right) ^ { 1 / 2 }.$ ; confidence 0.471
59. ; $\sigma ( A | _ { M } ) = \sigma$ ; confidence 0.471
60. ; $\mathbf{R} _ { x } ^ { n } \times \mathbf{R} _ { \xi } ^ { n } \times ( 0,1 ]$ ; confidence 0.471
61. ; $0 \neq \nu _ { 2 } \in E ( 0 , \Delta _ { S^2 } ^ { 2 } )$ ; confidence 0.471
62. ; $G _ { 0 } ^ { S } ( \Omega )$ ; confidence 0.471
63. ; $d d ^ { c } g + \delta _ { Z } = \omega,$ ; confidence 0.471
64. ; $k = q ^ { d - 1 } + \ldots + q + 1$ ; confidence 0.471
65. ; $M < \text{cr} ( K )$ ; confidence 0.471
66. ; $\Delta = \text { Gal } ( k _ { \infty } ^ { \prime } / k _ { \infty } ) \cong \text { Gal } ( k ^ { \prime } / k )$ ; confidence 0.471
67. ; $A _ { f } ( x ) = A ( f _ { x } )$ ; confidence 0.471
68. ; $= \frac { 1 } { 2 \pi i } \int _ { L } \frac { \prod _ { j = 1 } ^ { m } \Gamma ( b _ { j } - s ) \prod _ { j = 1 } ^ { n } \Gamma ( 1 - a _ { j } + s ) } { \prod _ { j = m + 1 } ^ { q } \Gamma ( 1 - b _ { j } + s ) \prod _ { j = n + 1 } ^ { p } \Gamma ( a _ { j } - s ) } x ^ { s } d s,$ ; confidence 0.471
69. ; $\text{cr} ( G )$ ; confidence 0.471
70. ; $A_f$ ; confidence 0.471
71. ; $A ( \xi , \tau ) = \rho e ^ { i \langle \langle K , \xi \rangle + W \tau \rangle }$ ; confidence 0.471
72. ; $\ker T = \{ x \in X : T x = 0 \} \neq \{ 0 \},$ ; confidence 0.471
73. ; $d _ { \text{H} }$ ; confidence 0.471
74. ; $\langle \operatorname { grad } _ { R } f ( x ) , v \rangle _ { R } = D f ( x ) . v$ ; confidence 0.471
75. ; $\mathcal{O} _ { M }$ ; confidence 0.470
76. ; $B _ { n + 1 } = B _ { n } + u _ { n } v _ { n } ^ { T },$ ; confidence 0.470
77. ; $G_m ^ { r }$ ; confidence 0.470
78. ; $\mathcal{E} _ { A , K [ \lambda ] }$ ; confidence 0.470
79. ; $u_i = v_i$ ; confidence 0.470
80. ; $X _ { \theta }$ ; confidence 0.470
81. ; $\Pi ( M ) _ { \overline{1} } = M _ { \overline{0} }$ ; confidence 0.470
82. ; $\limsup _ { n \rightarrow \infty } \frac { n ^ { 1 / 4 } } { ( \operatorname { log } n ) ^ { 1 / 2 } ( \operatorname { log } \operatorname { log } n ) ^ { 1 / 4 } } \| \alpha _ { n } + \beta _ { n } \| = 2 ^ { - 1 / 4 } \text{ a.s.}$ ; confidence 0.470
83. ; $- X := X$ ; confidence 0.470
84. ; $W ( g )$ ; confidence 0.470
85. ; $\mathbf{R} ^ { d-1 } $ ; confidence 0.470
86. ; $| X _ { A } ( t , z ) | \leq \beta _ { e } ^ { - \alpha ( t - z ) }$ ; confidence 0.470
87. ; $F _ { i } \subset G _ { n } ( \mathbf{R} ^ { n } \times \mathbf{R} ^ { p } )$ ; confidence 0.470
88. ; $T _ { g , n }$ ; confidence 0.470
89. ; $= \int \int e ^ { 2 i \pi ( x - y ) . \xi } a ( ( 1 - t ) x + t y , \xi ) u ( y ) d y d \xi.$ ; confidence 0.470
90. ; $d _ { s } ( x _ { 1 } , \ldots , x _ { n } ) =$ ; confidence 0.470
91. ; $V = K ^ { n }$ ; confidence 0.470
92. ; $H _ { \mathcal{D} } ^ { i } ( X , A ( j ) ) = \mathbf{H} ^ { i } ( X , A ( j ) _ { \mathcal{D} } ),$ ; confidence 0.470
93. ; $\mu ^ { * }$ ; confidence 0.470
94. ; $f ^ { b ( \varphi ) }$ ; confidence 0.470
95. ; $\partial _ { t } u ( x , t ) + \partial _ { x } ( u ^ { m } ( x , t ) ) = 0$ ; confidence 0.469
96. ; $\sigma _ { t }$ ; confidence 0.469
97. ; $[ \overline { t_0 } , t _ { 0 } )$ ; confidence 0.469
98. ; $u _ { 0 } \in Y$ ; confidence 0.469
99. ; $v = x_3 - x_2$ ; confidence 0.469
100. ; $M _ { \mathbf{Q} }$ ; confidence 0.469
101. ; $x ^ { n } \equiv 1$ ; confidence 0.469
102. ; $t = \mu + \frac { \Sigma ^ { 1 / 2 } Z } { \sqrt { q } },$ ; confidence 0.469
103. ; $\mathcal{C} U : = \mathbf{R} ^ { n } \backslash U$ ; confidence 0.469
104. ; $\mathbf{\dashv} \mathsf{A}$ ; confidence 0.469
105. ; $\mathsf{E} ( X ) = M$ ; confidence 0.469
106. ; $\# A / n$ ; confidence 0.469
107. ; $\nu _ { i } \rightarrow \nu$ ; confidence 0.469
108. ; $\Delta S _ { n } = S _ { n + 1 } - S _ { n }$ ; confidence 0.469
109. ; $ \left| F ^ { \prime } ( 2 x ) - \frac { q ( x ) } { 4 } + \frac { 1 } { 4 } \left( \int _ { x } ^ { \infty } q ( t ) d t \right)^2 \right| \leq c \sigma ^ { 2 } ( x ),$ ; confidence 0.469
110. ; $( F f ) ( z ) = \sum _ { j = 1 } ^ { n } \bar{z}_j \frac { \partial f ( z ) } { \partial \bar{z} _ { j } }.$ ; confidence 0.469
111. ; $I _ { \epsilon } = \operatorname { inf } _ { \rho \in R _ { \epsilon } ( X ) } I ( \rho ),$ ; confidence 0.469
112. ; $a_i$ ; confidence 0.469
113. ; $\pi _ { r } ^ { k * } ( \theta )$ ; confidence 0.469
114. ; $k \in P$ ; confidence 0.469
115. ; $( 1,1,1,1 , I _ { m } ) = ( 1,4 , I _ { m } )$ ; confidence 0.469
116. ; $\operatorname { rist } _ { G } ( n ) = \langle \operatorname { rist } _ { G } ( u ) : | u | = n \rangle$ ; confidence 0.469
117. ; $q_i( z )$ ; confidence 0.469
118. ; $\overline { \mathcal{R} }$ ; confidence 0.469
119. ; $w \in \mathbf{C}$ ; confidence 0.468
120. ; $U _ { n }$ ; confidence 0.468
121. ; $[ a _ { 1 } , a _ { 2 } ] = L ( a _ { 1 } , a _ { 2 } ) \in L ( V , V )$ ; confidence 0.468
122. ; $\mathcal{A} \psi (. ; \eta ) = \lambda \psi (. ; \eta ) \text{ in }\mathbf{R} ^ { N },$ ; confidence 0.468
123. ; $n ( x , t ) = \int _ { \mathbf{R} ^ { 3 N } } f _ { \text{W} } d p$ ; confidence 0.468
124. ; $G ( x ) \partial ^ { 5 } /\partial x ^ { 4 } \partial t$ ; confidence 0.468
125. ; $T ^ { 4 }$ ; confidence 0.468
126. ; $a ( x ) , a ^ { * } ( x )$ ; confidence 0.468
127. ; $S \subset E$ ; confidence 0.468
128. ; $H _ { 0 } | _ { U ^ { \prime } } = \operatorname{id}$ ; confidence 0.468
129. ; $\sum _ { i = 0 } ^ { n } ( - 1 ) ^ { i } q _ { i } q _ { n - i } = 0$ ; confidence 0.468
130. ; $L ( A ) / \operatorname { Inn } \operatorname { Der } A$ ; confidence 0.468
131. ; $| T _ { 1, \dots, k } ^ { 1 , \ldots , k } | _ { q }$ ; confidence 0.468
132. ; $A / \mathfrak{m}$ ; confidence 0.468
133. ; $\mathbf{c} _ { k } \equiv \lambda f x . f ^ { k } x$ ; confidence 0.468
134. ; $k ^ { l - r }$ ; confidence 0.468
135. ; $\omega _ { n }$ ; confidence 0.468
136. ; $\{ m_i \}$ ; confidence 0.467
137. ; $r f = \operatorname{id}$ ; confidence 0.467
138. ; $\{ G _ { 1 } = ( V _ { 1 } , E _ { 1 } ) , \dots , G _ { m } = ( V _ { m } , E _ { m } ) \}$ ; confidence 0.467
139. ; $H _ { c }$ ; confidence 0.467
140. ; $P _ { L }$ ; confidence 0.467
141. ; $\operatorname{varprojlim}_kh * ( X _ { k } ) = h * ( \text { varprojlim } _ { k } X _ { k } ),$ ; confidence 0.467
142. ; $\mathcal{Q} ( D ^ { n } )$ ; confidence 0.467
143. ; $D _ { 0 }$ ; confidence 0.467
144. ; $\mathfrak{g}_{-}$ ; confidence 0.467
145. ; $R [ K ( x _ { \nu } , . ) ] = 0 , \quad \nu = 1 , \dots , n,$ ; confidence 0.467
146. ; $2 ^ { 2 ^ { n } }$ ; confidence 0.467
147. ; $f ( x ) = \frac { 1 } { C _ { \psi } } \int _ { 0 } ^ { \infty } \int _ { - \infty } ^ { \infty } W _ { \psi } [ f ] ( a , b ) \psi ( \frac { x - b } { a } ) d b \frac { d a } { a \sqrt { a } }.$ ; confidence 0.467
148. ; $\operatorname{Vol}( M , g )$ ; confidence 0.467
149. ; $S _ { m }$ ; confidence 0.467
150. ; $u _ { n } \equiv \mathsf{P} ( S _ { k } = n \text{ for some } k \geq 0 ),$ ; confidence 0.467
151. ; $u ^ { 0 }$ ; confidence 0.466
152. ; $G _ { X } = \sum _ { 1 \leq j \leq n } h _ { j } ( | d q _ { j } | ^ { 2 } + | d p _ { j } | ^ { 2 } ),$ ; confidence 0.466
153. ; $\varphi \in \operatorname{Hom}( C ^ { \infty } ( \mathbf{R} ^ { m } , \mathbf{R} ) , A )$ ; confidence 0.466
154. ; $P _ { N } u ( x ) = \sum _ { n = 0 } ^ { N } a _ { n } T _ { n } ( x )$ ; confidence 0.466
155. ; $\operatorname{Aut}T$ ; confidence 0.466
156. ; $e _ { 2 } , \dots , e _ { n }$ ; confidence 0.466
157. ; $v \in \overline { N E } ( X / S )$ ; confidence 0.466
158. ; $w = \frac { 1 } { s } \left( \begin{array} { c } { 1 } \\ { p _ { 1 } / r } \\ { p _ { 1 } p _ { 2 } / r ^ { 2 } } \\ { \vdots } \\ { p _ { 1 } \dots p _ { k - 1} / r ^ { k - 1 } } \end{array} \right),$ ; confidence 0.466
159. ; $K \subseteq L$ ; confidence 0.466
160. ; $0 \rightarrow \operatorname { Ext } _ { \mathbf{Z} } ^ { 1 } ( K _ { 0 } ( A ) , \mathbf{Z} ) \rightarrow \operatorname { Ext } ( A ) \rightarrow$ ; confidence 0.466
161. ; $\operatorname { IF } ( ( \overset{\rightharpoonup} { x } _ { 0 } , y _ { 0 } ) ; T , H _ { \overset{\rightharpoonup}{ \theta } } ) = \eta ( \overset{\rightharpoonup} { x } _ { 0 } , e _ { 0 } ) M ^ { - 1 } \overset{\rightharpoonup} { x } _ { 0 }$ ; confidence 0.466
162. ; $y _ { 0 }$ ; confidence 0.466
163. ; $U \subset \mathbf{R} ^ { n }$ ; confidence 0.466
164. ; $N _ { \mathcal{C} } ^ { \# } ( x ) = \sum _ { n \leq x } G _ { \mathcal{C} } ^ { \# } ( n )$ ; confidence 0.466
165. ; $\mathbf{s}$ ; confidence 0.466
166. ; $\operatorname { Cay } ( G , S )$ ; confidence 0.466
167. ; $l - 1$ ; confidence 0.466
168. ; $f ^ { b ( \varphi ) } ( w ) = \operatorname { sup } _ { x \in X } \{ - [ - \varphi ( x , w ) \odot f ( x ) ] \} ( w \in W );$ ; confidence 0.466
169. ; $M _ { s \times s } ( K )$ ; confidence 0.466
170. ; $\mathcal{R} _ { V } ( u \otimes v ) = u ^ { \{ 1 \} } \otimes u ^ { ( 2 ) } . v$ ; confidence 0.465
171. ; $s _ { r } ( \zeta , z ) = ( \partial r / \partial \zeta _ { 1 } ( \zeta ) , \ldots , \partial r / \partial \zeta _ { n } ( \zeta ) )$ ; confidence 0.465
172. ; $\zeta _ { K } ( z ) = \sum _ { I \in G _ { K } } | I | ^ { - z } = \sum _ { n = 1 } ^ { \infty } K ( n ) n ^ { - z },$ ; confidence 0.465
173. ; $\mathcal{T} \circ ( f , \phi ) ^ { \leftarrow } \geq \phi ^ { \operatorname{op} } \circ \mathcal{S}$ ; confidence 0.465
174. ; $c = \text{const} > 0$ ; confidence 0.465
175. ; $ k = k ( t )$ ; confidence 0.465
176. ; $1 / n$ ; confidence 0.465
177. ; $a ( t ) = \int _ { ( 0 , t ] } b ( t - s ) U ( d s ),$ ; confidence 0.465
178. ; $\dot { x } = G ( x , \alpha ),$ ; confidence 0.465
179. ; $k = k ( i ) \in \mathbf{N}$ ; confidence 0.465
180. ; $K _ { \mathcal{D} }$ ; confidence 0.465
181. ; $\mathfrak{h} ^ { * }$ ; confidence 0.465
182. ; $a _ { i j } \preceq b _ { i j }$ ; confidence 0.465
183. ; $n_-$ ; confidence 0.465
184. ; $C _ { \mathbf{M} } ( g )$ ; confidence 0.465
185. ; $S ^ { n } ( - t , x _ { 1 } , \dots , x _ { n } )$ ; confidence 0.465
186. ; $\{ M ( \alpha _ { n +1} ) \text { pr }_{ ( \alpha _ { 1 } , \dots , \alpha _ { n } )}+$ ; confidence 0.465
187. ; $a ( t ) \equiv \mathsf{E} h ( Z ( t ) )$ ; confidence 0.465
188. ; $\frac { S _ { n + 1 } - S } { S _ { n } - S } = \lambda \neq 0,1.$ ; confidence 0.465
189. ; $\overline { S } ( X )$ ; confidence 0.465
190. ; $V _ { x } - i V _ { y }$ ; confidence 0.465
191. ; $\operatorname{Hom}_{\mathcal{H}}( T , X ) = 0 = \operatorname { Ext } _ { \mathcal{H}} ^ { 1 } ( T , X )$ ; confidence 0.465
192. ; $P _ { L } ( v , z ) = \sum a _ { i ,j} v ^ { i } z ^ { j }$ ; confidence 0.464
193. ; $P ( x , \xi ) = \frac { r ^ { 2 } - | x - x _ { 0 } | ^ { 2 } } { \omega _ { n } r | x - \xi | ^ { n } },$ ; confidence 0.464
194. ; $\beta ( m , \alpha _ { n } , \theta _ { n } ; T )$ ; confidence 0.464
195. ; $\int _ { 0 } ^ { 1 } | p _ { n } ( i t ) | ^ { 2 } d t = \sum _ { m = 1 } ^ { n } | a _ { m } | ^ { 2 } ( T + O ( m ) ).$ ; confidence 0.464
196. ; $\mathbf{R} ^ { n } \backslash K _ { 1 }$ ; confidence 0.464
197. ; $\sigma _ { \text{T} } ( L _ { a } , \mathcal{B} ) = \sigma _ { \mathcal{B} } ( a )$ ; confidence 0.464
198. ; $P _ { n } ( C )$ ; confidence 0.464
199. ; $T _ { \lambda }$ ; confidence 0.464
200. ; $\Delta ^ { 2 } a _ { k } = \Delta ( \Delta a _ { k } ) \geq 0$ ; confidence 0.464
201. ; $.\operatorname { exp } 4 i \pi \sum _ { 1 \leq j < l \leq 2 k } ( - 1 ) ^ { j + l } [ X - Y _ { j } , X - Y _ { l } ] .. d Y _ { 1 } \ldots d Y _ { 2 k }.$ ; confidence 0.464
202. ; $| 1 - z _ { h } | < \delta _ { 1 }$ ; confidence 0.464
203. ; $M ( \underline { u } , \xi ) = ( 1 , \xi _ { 1 } , \ldots , \xi _ { N } , | \xi | ^ { 2 } / 2 ) M _ { 0 } ( \underline { u } , \xi )$ ; confidence 0.464
204. ; $\geq \operatorname { min } _ { 0 \leq i \leq n + 1 } | f ( x _ { i } ) - P _ { n } ( x _ { i } ) |$ ; confidence 0.464
205. ; $u \in H _ { + }$ ; confidence 0.464
206. ; $M / a$ ; confidence 0.463
207. ; $= a _ { 0 } ^ { N } \prod _ { i = 1 } ^ { \nu } ( \lambda - \lambda _ { i } ) ^ { n _ { i } }.$ ; confidence 0.463
208. ; $( c > 0 ) \& ( a \preceq b ) \Rightarrow ( a c \preceq b c ) \& ( c a \preceq c b ),$ ; confidence 0.463
209. ; $a \otimes b \rightarrow a b$ ; confidence 0.463
210. ; $z = ( z _ { 1 } , \dots , z _ { n } ) \in \mathbf{C} ^ { n }$ ; confidence 0.463
211. ; $( f , g ) \rightarrow f g : L ^ { p } ( \Omega ) \times L ^ { q } ( \Omega ) \rightarrow L ^ { 1 } ( \Omega )$ ; confidence 0.463
212. ; $B _ { \operatorname{new} } = B - \frac { B s s ^ { T } B } { s ^ { T } B s } + \frac { y y ^ { T } } { y ^ { T } s } + \theta . w w ^ { T },$ ; confidence 0.463
213. ; $S ^ { * } = S$ ; confidence 0.463
214. ; $q_1 , q _ { 2 } \in L _ { 1 ,1} $ ; confidence 0.463
215. ; $l = 0 , \dots , n _ { i } - 1$ ; confidence 0.463
216. ; $B _ { 0 } ^ { * } \cong L _ { a } ^ { 1 }$ ; confidence 0.463
217. ; $\frac { P _ { 2_1 } ( v , z ) - \frac { v ^ { - 1 } - v } { z } } { z \left( \left( \frac { v ^ { - 1 } - v } { z } \right) ^ { 2 } - 1 \right) } = - v.$ ; confidence 0.463
218. ; $\mathcal{A} x = 0 = \mathcal{B} x$ ; confidence 0.463
219. ; $\partial _ { t } ^ { ( k ) } u ( x , t ) = ( - a ) ^ { k } \partial _ { x } ^ { ( k ) }$ ; confidence 0.463
220. ; $k \in R$ ; confidence 0.463
221. ; $v_i$ ; confidence 0.463
222. ; $( U ^ { i _ { 1 } } \bigotimes \ldots \bigotimes U ^ { i _ { d } } ) ( f ) =$ ; confidence 0.462
223. ; $\Delta ( \mathcal{F} ) : = \left\{ Y \in \left( \begin{array} { c } { [ n ] } \\ { k - 1 } \end{array} \right) : Y \subset X \text { for some } X \in \mathcal{F} \right\}.$ ; confidence 0.462
224. ; $\mathbf{ZD}_n$ ; confidence 0.462
225. ; $\beta = \mathsf{P} [ ( X - \tilde { X } ) ( Y - \tilde { Y } ) > 0 ] +$ ; confidence 0.462
226. ; $\forall x \exists z \forall v ( v \in z \leftrightarrow \exists y ( y \in x \bigwedge v \in y ) ).$ ; confidence 0.462
227. ; $k = 1,2 , \dots$ ; confidence 0.462
228. ; $\beta ( a )$ ; confidence 0.462
229. ; $P_0$ ; confidence 0.462
230. ; $\pi _ { n-1 } ( \Omega ( X ; A , * ) , * )$ ; confidence 0.462
231. ; $\tau _ { p + 1 } : \otimes ^ { p + q + 1 } \mathcal{E} \rightarrow \otimes ^ { p + q + 1 } \mathcal{E}$ ; confidence 0.462
232. ; $\mathcal{O} _ { n } \simeq \mathcal{O} _ { m }$ ; confidence 0.462
233. ; $L^-$ ; confidence 0.462
234. ; $r _ { i } ( A )$ ; confidence 0.462
235. ; $\textbf{Alg}_{ \vdash } ( L _ { \omega } )$ ; confidence 0.462
236. ; $I ( f , \mathfrak{h} )$ ; confidence 0.462
237. ; $\{ c _ { n ,m} ( f ) : n , m \in \mathbf{Z} \}$ ; confidence 0.462
238. ; $e ^ { \beta _ { 1 } } , \ldots , e ^ { \beta _ { n } }$ ; confidence 0.462
239. ; $u : Y \rightarrow X$ ; confidence 0.462
240. ; $\theta = j _ { x } ^ { 1 } ( u ) = ( d u ^ { 1 } , \dots , d u ^ { n } )$ ; confidence 0.462
241. ; $\operatorname { IF } ( x ; T , G ) = \frac { \partial } { \partial \varepsilon } [ T ( ( 1 - \varepsilon ) G + \varepsilon \Delta _ { x } ) ]_{\varepsilon = 0 +},$ ; confidence 0.462
242. ; $\lambda _ { 1 } ( \Omega ) = \operatorname { inf } _ { u \in H _ { 0 } ^ { 1 } ( \Omega ) } \frac { \int_{\Omega} ( \nabla u ) ^ { 2 } d x } { \int _ { \Omega } u ^ { 2 } d x }.$ ; confidence 0.462
243. ; $O _ { 1 } ( m ) = \left\{ x ^ { ( i ) } : x ^ { ( i ) } x ^ { ( j ) } = \left( \begin{array} { c } { i + j } \\ { i } \end{array} \right) x ^ { ( i + j ) } , 0 \leq i , j < p ^ { m } \right\}$ ; confidence 0.461
244. ; $g ^ { - 1 } \{ p , q \} : \otimes ^ { r + 2 } \mathcal{E} \rightarrow \otimes ^ { r } \mathcal{E}$ ; confidence 0.461
245. ; $X _ { n } = \operatorname { span } \{ \phi _ { 1 } , \dots , \phi _ { n } \}$ ; confidence 0.461
246. ; $\chi _ { \lambda } = \sum _ { \mu \in \Lambda ( n ) } \operatorname { dim } _ { K } ( \Delta ( \lambda ) ^ { \mu } ) _ { e _ { \mu } },$ ; confidence 0.461
247. ; $\widetilde{ M } _ { k } \times S ^ { 1 } \times \mathbf{R} ^ { 3 }$ ; confidence 0.461
248. ; $\mathbf{Z}$ ; confidence 0.461
249. ; $( X _ { 1 } - a ) / h$ ; confidence 0.461
250. ; $m _ { i -j } = \langle x ^ { i } , x ^ { j } \rangle$ ; confidence 0.461
251. ; $M / ( y _ { 1 } , \ldots , y _ { s } ) M$ ; confidence 0.461
252. ; $\operatorname { ch } _ { V } : = \sum _ { \lambda \in \mathfrak{h} ^ {e* } } ( \operatorname { dim } V ^ { \lambda } ) e ^ { \lambda }.$ ; confidence 0.461
253. ; $X / \mathbf{C}$ ; confidence 0.461
254. ; $f ( \Delta ) \subset \hat { K }$ ; confidence 0.461
255. ; $r _ { \Omega }$ ; confidence 0.461
256. ; $\theta . w : = \sum _ { j = 1 } ^ { 3 } \theta _ { j } .w _ { j }$ ; confidence 0.461
257. ; $KMS$ ; confidence 0.461
258. ; $\operatorname{ad} _ { q }$ ; confidence 0.460
259. ; $\mathcal{H}^{ ( 2 )}$ ; confidence 0.460
260. ; $\mathbf{R} ^ { m }$ ; confidence 0.460
261. ; $x \equiv 0$ ; confidence 0.460
262. ; $\mathbf{S} 4$ ; confidence 0.460
263. ; $K _ { \operatorname{BM} } $ ; confidence 0.460
264. ; $\alpha = a / ( 1 - a )$ ; confidence 0.460
265. ; $K ( n )$ ; confidence 0.460
266. ; $y ( a / q )$ ; confidence 0.460
267. ; $R _ { g } ( \lambda ) = \prod _ { i = 0 } ^ { 2 g } ( \lambda - \lambda _ { i } )$ ; confidence 0.460
268. ; $R_n$ ; confidence 0.460
269. ; $\sigma \left( \begin{array} { c c c c } { 9 } & { 2 } & { 3 } & { 6 } \\ { 7 } & { 1 } & { 4 } & { \square } \\ { 5 } & { \square } & { \square } & { \square } \\ { 8 } & { \square } & { \square } & { \square } \end{array} \right) = \left( \begin{array} { c c c c } { 8 } & { 4 } & { 1 } & { 3 } \\ { 7 } & { 6 } & { 5 } & { \square } \\ { 2 } & { \square } & { \square } & { \square } \\ { 9 } & { \square } & { \square } & { \square } \end{array} \right).$ ; confidence 0.460
270. ; $r ( x , y ) / s ( x , y )$ ; confidence 0.460
271. ; $\mathbf{Z} v^{+}$ ; confidence 0.460
272. ; $\frac { P _ { L } ( v , z ) - P _ { T_{\operatorname{ com } ( L )}} ( v , z ) } { z \left( \left( \frac { v ^ { - 1 } - v } { z } \right) ^ { 2 } - 1 \right) } \equiv$ ; confidence 0.460
273. ; $\{ \langle x _ { 1 } , d _ { 1 } \rangle , \ldots , \langle x _ { n } , d _ { n } \rangle \}$ ; confidence 0.460
274. ; $wx_{n+1}$ ; confidence 0.460
275. ; $\mathsf{E} [ W _ { p } ] _ { \operatorname{NP} } < \mathsf{E} [ W _ { q } ] _ { \operatorname{NP} }$ ; confidence 0.460
276. ; $R _ { n } < 1 - 1 / ( 250 n )$ ; confidence 0.460
277. ; $\rho = \operatorname { sup } _ { x \in S _ { 1 } } \text { inf }_{ y \in S _ { 2 } } | x - y |$ ; confidence 0.460
278. ; $a \in M ^ { \alpha } ( [ s , \infty ) )$ ; confidence 0.459
279. ; $\Delta ( A _ { 1 } ) = \sum _ { i = 0 } ^ { m } ( I _ { m } \bigotimes D _ { m - i } ) A _ { 1 } ^ { i } = 0 ( D _ { 0 } = I _ { n } ).$ ; confidence 0.459
280. ; $x _ { j } > x _ { k }$ ; confidence 0.459
281. ; $( Y , P _ { Y } )$ ; confidence 0.459
282. ; $\pi : G \times^\varrho F \rightarrow G / H$ ; confidence 0.459
283. ; $X \cong D ^ { n}$ ; confidence 0.459
284. ; $D : = \sum c ( e _ { i } ) \nabla _ { e_i }$ ; confidence 0.459
285. ; $d j = \Delta_j / \Delta_{ j - 1}$ ; confidence 0.459
286. ; $\gamma F ^ { p }$ ; confidence 0.459
287. ; $X = \mathbf{R} ^ { n }$ ; confidence 0.459
288. ; $g _ { t } : U M \rightarrow U M$ ; confidence 0.459
289. ; $\mod p _ { i }$ ; confidence 0.459
290. ; $\Phi ( x ) = V ( x ) - \int _ { \mathbf{R} ^ { 3 } } | x - y | ^ { - 1 } \rho ( y ) d y.$ ; confidence 0.459
291. ; $\dots \rightarrow H ^ { \bullet - 1 } ( \partial ( \Gamma \backslash X ) , \tilde { \mathcal{M} } ) \rightarrow H _ { c } ^ { \bullet } ( \Gamma \backslash X , \tilde { \mathcal{M} } ) \rightarrow$ ; confidence 0.459
292. ; $\{ v _ { 1 } , \dots , v _ { n } \}$ ; confidence 0.459
293. ; $| g |$ ; confidence 0.459
294. ; $\operatorname{Ext}_{\mathfrak{a}}^i( \mathbf{C} , M)$ ; confidence 0.459
295. ; $a , b \in F$ ; confidence 0.459
296. ; $\pi ^ { * } \nu _ { 2 } \in E ( \mu , \Delta _ { S^3 } ^ { 2 } )$ ; confidence 0.459
297. ; $L ( \mu , \Sigma | Y _ { \operatorname{obs} } )$ ; confidence 0.459
298. ; $= \{ \langle a , b \rangle \in A ^ { 2 } : \epsilon ^ { \mathbf{A} } ( a , b ) \in F \text { for all } \epsilon ( x , y ) \in E ( x , y ) \}.$ ; confidence 0.459
299. ; $S ( \lambda ) = I _ { \mathcal{E} } - i \Phi ( \xi _ { 1 } A _ { 1 } + \xi _ { 2 } A _ { 2 } - \xi _ { 1 } \lambda _ { 1 } - \xi _ { 2 } \lambda _ { 2 } ) ^ { - 1 }.$ ; confidence 0.459
300. ; $X _ { 1 } ^ { 2 } + \ldots X _ { n } ^ { 2 }$ ; confidence 0.458
Maximilian Janisch/latexlist/latex/NoNroff/60. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/60&oldid=45837