Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/NoNroff/47

From Encyclopedia of Mathematics
Jump to: navigation, search

List

1. j12001043.png ; $( \partial _ { 1 } , \dots , \partial _ { n } )$ ; confidence 0.696

2. g12004034.png ; $u \in G ^ { S } ( \Omega )$ ; confidence 0.696

3. h12005032.png ; $\beta _ { 1 } ( \phi , \rho ) = - 2 \pi ^ { - 1 / 2 } \int _ { C _ { D } } \phi \rho$ ; confidence 0.696

4. h13002073.png ; $\gamma \in {\cal F} ( S )$ ; confidence 1.000

5. w120110253.png ; $\tilde { h } ( X ) ^ { - 1 } = 1 + \operatorname { sup } _ { \alpha } | q _ { \alpha } ( X ) | + H ( X ) \operatorname { sup } _ { \alpha } \| q _ { \alpha } ^ { \prime } ( X ) \| _ { G _ { X } } ^ { 2 }.$ ; confidence 0.695

6. m12003017.png ; $\sum _ { i = 1 } ^ { n } \Psi ( x _ { i } , T _ { n } ) = 0.$ ; confidence 0.695

7. m13023060.png ; $g : Y \rightarrow S$ ; confidence 0.695

8. t130050127.png ; $M _ { \sigma _ { T } } (\cal B , X )$ ; confidence 1.000

9. i12008053.png ; $\{ - S _ { i } \}$ ; confidence 0.695

10. f12021055.png ; $b _ { l0 } ( \operatorname { log } z ) ^ { l } z ^ { \lambda _ { i } }$ ; confidence 1.000

11. a11032028.png ; $\lambda _ { lj } ^ { ( i ) }$ ; confidence 1.000

12. e12012090.png ; $\operatorname { log } L ( \mu , \Sigma | Y _ {\text{ aug} } )$ ; confidence 1.000

13. p07452013.png ; $a b \in P$ ; confidence 0.694

14. a12020027.png ; $t ^ { N }$ ; confidence 1.000

15. o06817011.png ; $\operatorname { lim } _ { n \rightarrow \infty } \operatorname{P} \{ \int _ { 0 } ^ { 1 } Z _ { n } ^ { 2 } ( t ) d t < \lambda \} = \operatorname{P} \{ \omega ^ { 2 } < \lambda \} =$ ; confidence 1.000

16. a12013017.png ; $H ( \theta , X ) = \theta - X$ ; confidence 0.694

17. f12002087.png ; ${\bf Q}_ +$ ; confidence 1.000

18. f13001014.png ; $1 , x , x ^ { 2 } , \ldots , x ^ { n - 1 } ( \operatorname { mod } f )$ ; confidence 0.694

19. t13005020.png ; $\xi ''$ ; confidence 1.000

20. a13025016.png ; ${\cal L} = L _ { 0 } \oplus L_1$ ; confidence 1.000

21. a11050085.png ; $\tilde{\bf Z}$ ; confidence 1.000

22. t12001020.png ; $\operatorname { Sp } ( ( m + 1 ) / 4 )$ ; confidence 0.694

23. k05507045.png ; $g = \sum g _ { \alpha \overline { \beta } } d z ^ { \alpha } \otimes d z \square ^ { \beta }$ ; confidence 0.694

24. r130080104.png ; $K ( x , y ) = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } \varphi _ { j } ( y ) \overline { \varphi _ { j } ( x ) }$ ; confidence 0.694

25. a12016059.png ; $u _ { t }$ ; confidence 1.000

26. e12026093.png ; $\{ \operatorname{P} ( \theta , \mu _ { p } ) : \theta \in \Theta ( \mu ) , p \in \Lambda ( \mu ) \}$ ; confidence 1.000

27. n067520269.png ; $\overline { A } _ { 11 }$ ; confidence 0.694

28. f13029089.png ; ${\cal T} \circ f ^ { \leftarrow } \geq \cal S$ ; confidence 1.000

29. s1304402.png ; $[ W \bigwedge X , S ] _ { 0 },$ ; confidence 0.693

30. c1301909.png ; $S = \operatorname { inv } ( N ) : = \{ x \in N : \varphi ( t , x ) \in N \text { for all } t \in \bf R \}$ ; confidence 1.000

31. b12046025.png ; $H = C _ { G } ( x )$ ; confidence 0.693

32. r13008022.png ; $\sum _ { i , j = 1 } ^ { n } K ( x _ { i } , x _ { j } ) t _ { j } \overline { t } _ { i } \geq 0 , \forall x _ { i } , y _ { j } \in E , \forall t \in {\bf C} ^ { n }$ ; confidence 1.000

33. a130040404.png ; ${\bf P} _ { \text{SD} } \operatorname{K}$ ; confidence 1.000

34. j13004092.png ; $a _ { 2 , 2} = 1$ ; confidence 1.000

35. t130140177.png ; ${\bf Z} ^ { ( I _ { C } ) }$ ; confidence 1.000

36. l06105073.png ; $F ( E ) = \{ t \in T : \text { there is an } \square \omega \in \Omega \square \text { such that } \square ( \omega , t ) \in F \}$ ; confidence 0.693

37. s12025045.png ; $( a , b ) = ( - \infty , \infty )$ ; confidence 0.693

38. a01193047.png ; $p \in M$ ; confidence 0.693

39. t120010135.png ; ${\cal S} ( p )$ ; confidence 1.000

40. p07101010.png ; $\pi _ { 1 } \subset \pi$ ; confidence 0.693

41. a13023030.png ; $f _ { 1 }$ ; confidence 0.693

42. i12005058.png ; $0 < \operatorname { liminf } _ { n \rightarrow \infty } \beta ( n , \alpha , \theta ; T ) \leq \operatorname { limsup } _ { n \rightarrow \infty } \beta ( n , \alpha , \theta ; T ) < 1.$ ; confidence 1.000

43. m1301907.png ; $L ( x ^ { k } ) = m _ { k }$ ; confidence 0.693

44. d034120331.png ; $A _ { P }$ ; confidence 1.000

45. o12005068.png ; $\operatorname { inf } \{ \lambda > 0 : \int \psi ( f ^ { * } / \lambda w ) w < \infty \}$ ; confidence 0.693

46. m13014073.png ; $0 < r < \text { dist } ( x , \partial \cal D )$ ; confidence 1.000

47. a130040372.png ; $F \subseteq G$ ; confidence 1.000

48. p120170114.png ; $C_0$ ; confidence 1.000

49. o13005062.png ; $F : \mathfrak { F } \rightarrow \mathfrak { H }$ ; confidence 0.693

50. b12004047.png ; $\mu _ { f } ( \lambda ) = \mu \{ t \in \Omega : | f ( t ) | > \lambda \} = \mu _ { g } ( \lambda )$ ; confidence 0.693

51. a130180126.png ; $\pi _ { i } : \square ^ { n } U \rightarrow \square ^ { ( n - 1 ) } U$ ; confidence 0.693

52. s09067081.png ; $V _ { q } ^ { p } = ( ( \otimes ^ { p } V ) ) \otimes ( ( \otimes ^ { q } V ^ { \color{blue} * } ) )$ ; confidence 1.000

53. a12026061.png ; $( a , a , \dots )$ ; confidence 0.693

54. z1300106.png ; $R = \operatorname { limsup } _ { n \rightarrow \infty } | x ( n ) | ^ { 1 / n }$ ; confidence 1.000

55. i13001028.png ; $d _ { \chi } ^ { G } ( A ) \geq \chi ( \text { id } ) \operatorname { det } ( A )$ ; confidence 0.692

56. d120020106.png ; $( \operatorname{LP} )$ ; confidence 1.000

57. l05798033.png ; $\Gamma _ { f }$ ; confidence 0.692

58. g130030108.png ; $m \in \bf Z$ ; confidence 1.000

59. t13005081.png ; $\sigma _ { \pi }$ ; confidence 0.692

60. t12006059.png ; $N < Z$ ; confidence 0.692

61. t120050109.png ; $\Sigma ^ { 2 }$ ; confidence 0.692

62. b110220202.png ; $m = ( i + 1 ) / 2$ ; confidence 1.000

63. e12021017.png ; $\sigma \in \operatorname{Sp} ( E )$ ; confidence 1.000

64. m13014035.png ; $r = r _ { 1 } , r _ { 2 }$ ; confidence 0.692

65. c12030057.png ; $0 \rightarrow {\cal K} \rightarrow {\cal T} _ { n } \rightarrow {\cal O} _ { n } \rightarrow 0$ ; confidence 1.000

66. s12027020.png ; $b _ { v , m } \in \bf R$ ; confidence 1.000

67. b1301104.png ; $B_n f ( x ) : = B _ { n } ( f , x ) : = \sum _ { j = 0 } ^ { n } f ( \frac { j } { n } ) b _ { j } ^ { n } ( x ),$ ; confidence 1.000

68. j13002048.png ; $\operatorname{P} ( X = 0 ) \leq \frac { \operatorname { var } ( X ) } { \lambda }$ ; confidence 1.000

69. b11066084.png ; $\sum _ { i } f _ { i } g _ { i } = 1$ ; confidence 0.691

70. k13006055.png ; ${\cal F} \subseteq \left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right)$ ; confidence 1.000

71. a12005089.png ; $t_j$ ; confidence 1.000

72. s1305007.png ; $\left( \begin{array} { l } { [ n ] } \\ { n / 2 } \end{array} \right)$ ; confidence 0.691

73. l1202007.png ; $( i = 1 , \dots , m )$ ; confidence 0.691

74. a13007028.png ; $a = 2$ ; confidence 0.691

75. b12015086.png ; $\{ d \in D : d _ { S } = 0 \}$ ; confidence 0.691

76. a11058038.png ; $q_2$ ; confidence 1.000

77. r130070144.png ; $\int _ { T } d m ( t ) F ( t ) \int _ { T } d m ( s ) G ( s ) \delta _ { m } ( t - s ) =$ ; confidence 0.691

78. d11022023.png ; $I = [ a , b ]$ ; confidence 0.691

79. a13006088.png ; $G _ { \Gamma }$ ; confidence 0.691

80. t120050102.png ; $i _ { 2 } = \ldots = i _ { r } = 1$ ; confidence 0.691

81. c12029015.png ; $\pi _ { 1 } ( F , e ) \rightarrow \pi _ { 1 } ( E , e )$ ; confidence 0.691

82. a12027078.png ; $r _ { P } ( a )$ ; confidence 0.691

83. n067520381.png ; $N _ { i } = \{ Q : \text { integers } \square q _ { j } \geq 0 , q _ { i } \geq - 1 , q _ { 1 } + \ldots + q _ { n } \geq 0 \}$ ; confidence 1.000

84. h04602034.png ; $\| P C \| _ { \infty } < 1$ ; confidence 0.691

85. a110610120.png ; $- { k }$ ; confidence 1.000

86. a130040629.png ; ${\cal D S }_ { P }$ ; confidence 1.000

87. c13007078.png ; $n - d$ ; confidence 1.000

88. e13007056.png ; $\sum _ { M < n \leq M + N } e ^ { 2 \pi i f ( n ) } =$ ; confidence 0.691

89. a01212020.png ; $G _ { \alpha }$ ; confidence 1.000

90. q13005049.png ; $h _ { 1 } \circ h _ { 2 }$ ; confidence 0.691

91. b1204302.png ; $.: B \otimes B \rightarrow B$ ; confidence 1.000

92. o130010106.png ; $\alpha ^ { \prime } \in S ^ { 2 }$ ; confidence 0.690

93. d13008095.png ; $F _ { z _ { 0 } } ( x , R ) =$ ; confidence 1.000

94. b12015041.png ; $\operatorname{E _ { P }} ( d _ { 1 } ^ { * } ) = \operatorname{E _ { P }} ( d _ { 2 } ^ { * } )$ ; confidence 1.000

95. a13029065.png ; ${\cal M} ( Q )$ ; confidence 1.000

96. y1200405.png ; $\operatorname { lim } _ { j \rightarrow \infty } \int _ { \Omega } \varphi ( x , f_j ( x ) ) d x =$ ; confidence 1.000

97. b13029079.png ; $i \neq s$ ; confidence 0.690

98. p13010085.png ; $P \circ f$ ; confidence 1.000

99. m130260109.png ; $Q ( A ) = M ( A ) / A$ ; confidence 0.690

100. r13004072.png ; $\lambda _ { 2 } ( \Omega ) / \lambda _ { 1 } ( \Omega )$ ; confidence 1.000

101. s13054050.png ; $\operatorname{Ker} \pi$ ; confidence 1.000

102. n066630101.png ; $a _ { i } > 1$ ; confidence 0.689

103. b13001054.png ; $v \in V ^ { * }$ ; confidence 0.689

104. a12007088.png ; $K _ { 3 }$ ; confidence 0.689

105. s120230124.png ; $V = \operatorname{E} ( {\bf x} _ { 1 } {\bf x} _ { 1 } ^ { \prime } )$ ; confidence 1.000

106. a13022042.png ; $X \mapsto \square _ { R } \operatorname { Mod } ( X , C )$ ; confidence 0.689

107. g12007016.png ; $m \equiv 0$ ; confidence 1.000

108. a13031049.png ; ${\cal Q} _ { 1 }$ ; confidence 1.000

109. l120120197.png ; $\operatorname{Gal}( F / M ( t ) ) \cong G$ ; confidence 1.000

110. a130040466.png ; ${\cal D} ( \operatorname{K} )$ ; confidence 1.000

111. a12012049.png ; $x ^ { \prime } \geq x$ ; confidence 1.000

112. i130090155.png ; $\overline {\bf Q } _ { p }$ ; confidence 1.000

113. e13004024.png ; $\Omega _ { \pm }$ ; confidence 1.000

114. l12004079.png ; $f _ { i + 1 / 2 } = f _ { i + 1 } ^ { n } \equiv f ( u _ { i + 1 } ^ { n } )$ ; confidence 0.689

115. a130040646.png ; $\operatorname { Th } _ { {\cal S} _ { P } } \mathfrak { M } = \operatorname { Th } _ { {\cal S} _ { P } } \mathfrak { N }$ ; confidence 1.000

116. i130090115.png ; $X = \text { varprojlim } A _ { n } ( k )$ ; confidence 0.689

117. n13005013.png ; $k = s \mu$ ; confidence 0.689

118. l05700099.png ; ${\bf zero}_?{\bf c}_{k+ 1} =\bf false$ ; confidence 1.000

119. s13062025.png ; $y ( . , \lambda )$ ; confidence 0.688

120. m13003020.png ; $\underline { \beta } ^ { ( i ) } = ( \beta _ { 0 } ^ { ( i ) } , \beta _ { 1 } ^ { ( i ) } , \ldots )$ ; confidence 1.000

121. d13021024.png ; ${\bf I}_1 = 0$ ; confidence 1.000

122. m11011023.png ; $\Gamma ( 1 - a _ { j } + s )$ ; confidence 1.000

123. v096900165.png ; $\zeta \mapsto T ( \zeta )$ ; confidence 0.688

124. w120090118.png ; $z_ \lambda$ ; confidence 1.000

125. j12002075.png ; $\| A \| _ { 1 } = \operatorname{E} [ A ^ { * } ]$ ; confidence 1.000

126. a13008085.png ; $t_3$ ; confidence 1.000

127. a012460175.png ; $f _ { j } ( x )$ ; confidence 0.688

128. a12012078.png ; $x _ { t } + c _ { t } = y _ { t }$ ; confidence 0.688

129. b01501011.png ; $\xi ^ { * } : X \rightarrow B_n$ ; confidence 1.000

130. l13010070.png ; $b ( x , t , \alpha ) t _ { + } ^ { n - 1 } + b ( x , - t , - \alpha ) t ^ { n - 1 }_-$ ; confidence 1.000

131. r13012013.png ; $x _ { 2 } \prec y _ { 2 }$ ; confidence 0.688

132. k05584075.png ; $| \sigma |$ ; confidence 1.000

133. s13045078.png ; $\phi _ { S } = 1 - 3 \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { 1 } | u - v | d C _ { X , Y } \gamma ( u , v ) =$ ; confidence 0.687

134. t13021038.png ; $r _ { n } = 0$ ; confidence 1.000

135. c02237058.png ; $[ L : K ]$ ; confidence 0.687

136. z13011027.png ; $G _ { n } ( x ) = \sum _ { i = 1 } ^ { N } 1 \{ f _ { i n } \geq x \}$ ; confidence 1.000

137. s13051061.png ; $\{ \Gamma _ { 1 } , \dots , \Gamma _ { m } \}$ ; confidence 0.687

138. a12028065.png ; $\rho \in {\cal X} *$ ; confidence 1.000

139. m13019027.png ; $\langle f , g \rangle = L ( f ( z ) \overline { g ( z ) } )$ ; confidence 0.687

140. z13003037.png ; $Z [ a f ( t ) + b g ( t ) ] ( t , w ) = a Z [ f ( t ) ] ( t , w ) + b Z [ g ( t ) ] ( t , w ).$ ; confidence 0.687

141. i0530307.png ; $d X _ { t } = a ( t ) d t + \sigma ( t ) d W _ { t }$ ; confidence 0.687

142. p13010053.png ; $H ^ { p } ( K , {\bf C} ) = 0$ ; confidence 1.000

143. b015350258.png ; $A _ { t }$ ; confidence 0.687

144. c022780225.png ; $\tilde { K }$ ; confidence 0.687

145. b1201307.png ; $\| f \| _ { p , G } ^ { p } = \int_G | f ( z ) | ^ { p } d A ( z ) < \infty$ ; confidence 1.000

146. b130200179.png ; $\Lambda ( h _ { i } ) \in {\bf Z}_{ \geq 0}$ ; confidence 1.000

147. e1202307.png ; $F \subseteq {\bf R} ^ { m }$ ; confidence 1.000

148. a12006020.png ; $u \in P ( x )$ ; confidence 0.687

149. b13007045.png ; $m | k$ ; confidence 0.687

150. w13017047.png ; $y _ { t + r } - \hat { y } _ { t , r } = \sum _ { j = 0 } ^ { r - 1 } K _ { j } \varepsilon _ { t + r - j }.$ ; confidence 1.000

151. l120100136.png ; $\| \rho \| _ { L^\infty ( {\bf R} )} \leq L / m$ ; confidence 1.000

152. t13015022.png ; $\operatorname{Ext} ( {\cal C } ( {\bf T } ) ) \approx \bf Z$ ; confidence 1.000

153. b12049054.png ; $\{ m _ { n } \} _ { n = 0 } ^ { \infty }$ ; confidence 0.687

154. l13010016.png ; $\hat { f } _ { p } : = \frac { \partial \hat { f } } { \partial p }.$ ; confidence 0.686

155. t13013013.png ; $\Lambda ^ { \text{op} }$ ; confidence 1.000

156. z13010054.png ; $\cup x$ ; confidence 0.686

157. a12025042.png ; $\operatorname{PG} ( k - n - 2 , q )$ ; confidence 1.000

158. i12004039.png ; $\partial u / \partial \overline { z _ j } = f$ ; confidence 1.000

159. w13011021.png ; $\frac { 1 } { N } \sum _ { n = 1 } ^ { N } a _ { n } g ( S ^ { n } y )$ ; confidence 0.686

160. c120170125.png ; $\mu \equiv \sum \rho _ { i } \delta _ { z _ { i } }$ ; confidence 0.686

161. k055840152.png ; $[ T x , T x ] \geq 0$ ; confidence 0.686

162. d13008061.png ; $a \in \partial \bf B$ ; confidence 1.000

163. t120050121.png ; $Q _ { x } = T W _ { x } / \operatorname { Im } ( d f _ { x } )$ ; confidence 0.686

164. c12002067.png ; $x ^ { \prime } = ( x _ { 1 } , \dots , x _ { k } )$ ; confidence 0.686

165. t12006031.png ; $[ a ] + = \operatorname { max } \{ 0 , a \}$ ; confidence 1.000

166. a13027024.png ; $x _ { n } \in X _ { n } , Q _ { n } f \in Y _ { n } , T _ { n } = ( Q _ { n } T ) | _{X _ { n }}$ ; confidence 1.000

167. d12018025.png ; $f \in A ( \bf D )$ ; confidence 0.686

168. a01406099.png ; $\rho_i$ ; confidence 1.000

169. a01022093.png ; $z_j$ ; confidence 1.000

170. b11085035.png ; $\chi _ { V }$ ; confidence 0.686

171. s12018044.png ; $\langle e _ { i } , e _ { j } \rangle = 0$ ; confidence 0.686

172. a130040618.png ; $\mathfrak { M } \vDash _ { S _ { P } } \psi$ ; confidence 0.686

173. x12003020.png ; $x . \theta$ ; confidence 1.000

174. m130140114.png ; $l , m = 1 , \dots , n$ ; confidence 0.685

175. a011380163.png ; $+$ ; confidence 1.000

176. l1202001.png ; $\{ A _ { 1 } , \dots , A _ { n + 1 }\}$ ; confidence 1.000

177. b120420104.png ; $| v | , | w | \in G$ ; confidence 0.685

178. d12002045.png ; $= \operatorname { min } _ { x \in X } c ^ { T } x + u _ { 1 } ^ { T } ( A _ { 1 } x - b _ { 1 } ) =$ ; confidence 0.685

179. s13064036.png ; $G ( a ) = \operatorname { exp } ( [ \operatorname { log } \operatorname { det } a ] _ { 0 } )$ ; confidence 1.000

180. c024520198.png ; $j \in S$ ; confidence 1.000

181. c0229403.png ; $\Omega _ { 1 }$ ; confidence 0.685

182. s12032045.png ; ${\cal S} ( V )$ ; confidence 1.000

183. l120120132.png ; $K _ { p }$ ; confidence 0.685

184. p13014040.png ; $| f _ { \rho } ^ { C } ( x _ { 0 } ) - \frac { f _+ ( x _ { 0 } ) + f_ - ( x _ { 0 } ) } { 2 } | = O ( \rho \operatorname { ln } \rho ) \text { as } \rho \rightarrow 0.$ ; confidence 1.000

185. w13017070.png ; $y _ { 1 } , \dots , y _ { T }$ ; confidence 0.684

186. b12031072.png ; $| 1 / p - 1 / 2 | \geq 1 / ( n + 1 )$ ; confidence 1.000

187. n067520288.png ; $K _ { \rho }$ ; confidence 0.684

188. b130010106.png ; $G ({\bf Q }) = \operatorname { Sp } ( 2 n , F )$ ; confidence 1.000

189. p12014016.png ; $\lambda \theta ^ { n }$ ; confidence 0.684

190. l12016038.png ; $L _ { 3 / 2 } ^ { 2 }$ ; confidence 0.684

191. l12009010.png ; $[ X , f Y ] _ { A } = f [ X , Y ] _ { A } + ( q _ { A } ( X ) . f ) Y$ ; confidence 1.000

192. b12029029.png ; $z \mapsto \varepsilon _ { z } ^ { {\cal C} U } ( f )$ ; confidence 1.000

193. b12034039.png ; $B _ { N } ( D ^ { \circ } ) < \frac { 0.446663 } { n }.$ ; confidence 0.684

194. s12032044.png ; $V = V _ { 0 }$ ; confidence 0.684

195. b13020036.png ; $[ e _ { i } f _ { j } ] = h _ { i j}$ ; confidence 1.000

196. z13003070.png ; $\hat { f } ( w ) = \frac { 1 } { \sqrt { 2 \pi } } \int _ { - \infty } ^ { \infty } f ( x ) e ^ { i w x } d x.$ ; confidence 1.000

197. q13002012.png ; $U | i \rangle$ ; confidence 0.684

198. b130200106.png ; $[ a , b ] = ( a | b ) x _ { \alpha }$ ; confidence 0.684

199. a01241090.png ; $V _ { i }$ ; confidence 0.684

200. d13013040.png ; $2 e g / \hbar = n$ ; confidence 0.684

201. b1302802.png ; $H * X = H * ( X , {\bf Z} / p {\bf Z} )$ ; confidence 1.000

202. i12005084.png ; $\operatorname { log } \alpha _ { n } = o ( n ^ { 1 / 3 } ) \text { as } n \rightarrow \infty$ ; confidence 0.683

203. m065010211.png ; $\lambda _ { p }$ ; confidence 1.000

204. b0163603.png ; $\left| \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right\|,$ ; confidence 1.000 NOTE: why is there a single bar on the left and a double bar on the right?

205. s13014033.png ; $Q _ { \lambda } = \sum _ { T } x ^ { T } ,$ ; confidence 0.683

206. c120010199.png ; $\overline { \partial }$ ; confidence 1.000

207. a13024084.png ; $\beta_j$ ; confidence 1.000

208. s13050020.png ; $| {\cal A} | ( n - l ) \leq | \nabla ( {\cal A} ) | ( l + 1 )$ ; confidence 1.000

209. a110420127.png ; $p$ ; confidence 1.000

210. i12008047.png ; $m_S$ ; confidence 1.000

211. k12004019.png ; $\overline { 9 } _ { 42 }$ ; confidence 0.683

212. s12028012.png ; ${\bf E} _ { n } ( X ) = \operatorname { lim } _ { k } \pi _ { n + k } ( X \bigwedge E _ { k } ) = \pi _ { n } ^ { S } ( X \bigwedge {\bf E} ),$ ; confidence 1.000

213. a014060131.png ; $i = 1 , \dots , n - 1$ ; confidence 0.683

214. c12003046.png ; $J \subset I$ ; confidence 0.683

215. f12023028.png ; $\Omega ( M ) = \oplus _ { k \geq 0 } \Omega ^ { k } ( M ) = \oplus _ { k = 0 } ^ { \operatorname { dim } M } \Gamma ( \bigwedge^k T ^ { * } M )$ ; confidence 1.000

216. a130040701.png ; $( X , x , v )$ ; confidence 0.683

217. c1301307.png ; $ { k } = K / L$ ; confidence 1.000

218. q13003054.png ; $H ( . )$ ; confidence 0.683

219. e12026080.png ; $F = \{ f d \nu : f \in S \}$ ; confidence 0.683

220. a11030043.png ; $\theta _ { Y } : ( T W , d ) \rightarrow C * \Omega Y$ ; confidence 0.683

221. e13003021.png ; $\tilde {\cal M } \otimes \bf C = \tilde {\cal M }_C$ ; confidence 1.000

222. k13002083.png ; $F_{ X , Y}$ ; confidence 1.000

223. k055840161.png ; $U = ( A - \bar{z} _ { 0 } ) ( A - z _ { 0 } ) ^ { - 1 }$ ; confidence 0.682

224. w1201106.png ; $= \int \int e ^ { 2 i \pi ( x - y ) . \xi } a ( \frac { x + y } { 2 } , \xi ) u ( y ) d y d \xi.$ ; confidence 1.000

225. c120080102.png ; $\sum _ { i = 0 } ^ { r _ { 1 } } \sum _ { j = 0 } ^ { r _ { 2 } } a _ { i j } T _ { i j } = 0$ ; confidence 0.682

226. b01573021.png ; $\bf n$ ; confidence 1.000

227. f12010099.png ; $\operatorname { PSL } ( 2 , \bf Z )$ ; confidence 1.000

228. m130260202.png ; $0 \leq e \leq 1$ ; confidence 0.682

229. b13020051.png ; $[ h _ { i j } , h _ { m n } ] = 0$ ; confidence 0.682

230. e12023072.png ; ${\cal E} ^ { \alpha } ( L ) ( \sigma ^ { 2 } ( x ) ) = 0,$ ; confidence 1.000

231. s12004016.png ; $| \lambda | = \Sigma _ { i } \lambda_i$ ; confidence 1.000

232. d13011034.png ; $H ( 2 )$ ; confidence 0.682

233. b13001056.png ; $U _ { S } \cap V$ ; confidence 0.682

234. e12027012.png ; $\Lambda _ { m } ^ { \alpha , \beta }$ ; confidence 0.682

235. c02211061.png ; $\xi _ { 1 } , \dots , \xi _ { k - 1 }$ ; confidence 0.682

236. o13001021.png ; $r : = | x | \rightarrow \infty , \alpha ^ { \prime } : = \frac { x } { r }.$ ; confidence 0.682

237. a12028074.png ; $x \in \cal X$ ; confidence 1.000

238. q130050106.png ; $\rho = | a - x | / | b - x |$ ; confidence 1.000

239. f12024035.png ; $\dot { x } ( t ) = f ( t , \int _ { t - h ( t ) } ^ { t } K ( t , s , x ( s ) ) d s ),$ ; confidence 0.682

240. d12011026.png ; $( x _ { i j } )$ ; confidence 0.682

241. l13006069.png ; $W _ { 2 } ^ { * } = \frac { 1 } { D _ { 2 } ^ { * } } = \operatorname { min } _ { i } \sqrt { m _ { i } ^ { 2 } + p _ { 2 } ^ { 2 } }.$ ; confidence 0.681

242. l12004032.png ; $u ( x _ { i } , t ^ { n + 1 } )$ ; confidence 0.681

243. a1200707.png ; $\rho ( A ( t ) ) \supset S _ { \theta _ { 0 } } = \{ z \in {\bf C} : | \operatorname { arg } z | \leq \theta _ { 0 } \} \cup \{ 0 \}$ ; confidence 0.681

244. h12001048.png ; $V ^ { 2 n + 1 }$ ; confidence 1.000

245. i130090207.png ; $k ^ { \prime } = k _ { \chi } ( \mu _ { p } )$ ; confidence 0.681

246. e035000114.png ; ${\cal H} _ { \epsilon } ( C )$ ; confidence 1.000

247. m13022037.png ; $V _ { 2 } = \rho _ { 1 } \oplus \rho _ { 196883 } \oplus \rho _ { 21296876 }$ ; confidence 0.681

248. i13008020.png ; $L_1 ^ { \prime \prime } = A _ { 2 } P ^ { \prime \prime }_1$ ; confidence 1.000

249. c12004068.png ; $\Omega = \{ z : | z | < r \}$ ; confidence 0.681

250. s120040126.png ; $\pi_T = 3111324$ ; confidence 1.000

251. a01292068.png ; $\psi ( x )$ ; confidence 0.681

252. a13025020.png ; $- [ a _ { 1 } , D _ { 1 } ] = [ D _ { 1 } , a _ { 1 } ] = D _ { 1 } a _ { 1 }$ ; confidence 1.000

253. d12029071.png ; $q _ { n } = n ^ { k }$ ; confidence 1.000

254. b12034075.png ; $\operatorname { Re } f ( z ) > 0$ ; confidence 0.681

255. c120180165.png ; $g \in \operatorname{S} ^ { 2 } \cal E$ ; confidence 1.000

256. d12012054.png ; $\operatorname{codom}a_n=\operatorname{codom}a_m'$ ; confidence 1.000

257. f12011019.png ; $\cal S ^ { \prime } \hookrightarrow Q$ ; confidence 0.681

258. t13021031.png ; $R ( x _ { i } ; a _ { 0 } , \dots , a _ { N } ) = 0$ ; confidence 0.681

259. a011480112.png ; $p / q$ ; confidence 1.000

260. c13016044.png ; $\operatorname{NL} = \operatorname{NSPACE} [ \operatorname { log } n ]$ ; confidence 1.000

261. e12023055.png ; $= \int _ { a } ^ { b } {\cal E} ( L ) ( \sigma ^ { 2 } ( x ) ) z ( x ) d x.$ ; confidence 1.000

262. b12052058.png ; $u , v \in {\bf R} ^ { N }$ ; confidence 1.000

263. b13003064.png ; $H ^ { * }$ ; confidence 0.681

264. m1301305.png ; $\{ e _ { 1 } , \dots , e _ { \epsilon } \}$ ; confidence 0.681

265. h120020161.png ; $\mu _ { \text{s} }$ ; confidence 0.680

266. d12028057.png ; $D _ { m } = \{ z : \Phi ^ { m } ( z , \bar{z} ) < 0 \}$ ; confidence 1.000

267. l057000188.png ; $\lambda x . f ( x )$ ; confidence 0.680

268. p13014053.png ; $\psi ( \gamma ) : = \frac { 2 } { \pi ^ { 2 } } \int _ { 0 } ^ { \operatorname { min } ( 1,1 / \gamma ) } \frac { \operatorname { arccos } ( \gamma t ) } { \sqrt { 1 - t ^ { 2 } } } d t , \gamma > 0;$ ; confidence 0.680

269. b12005053.png ; $\tilde { f } \in {\cal H} _ { b } ( E ^ { * * } )$ ; confidence 1.000

270. a130240397.png ; ${\bf M} _ { \operatorname{E} }$ ; confidence 1.000

271. l12010023.png ; $\approx ( 2 \pi ) ^ { - n } \int _ { {\bf R} ^ { n } \times {\bf R} ^ { n } } [ p ^ { 2 } + V ( x ) ] _ { - } ^ { \gamma } d p d x =$ ; confidence 1.000

272. b110220105.png ; $H _ { \text{B} } ^ { 2 } ( X_{/ \bf R} , A ( j ) )$ ; confidence 1.000

273. c1201403.png ; ${\bf R} / 2 \pi \bf Z$ ; confidence 1.000

274. c13010037.png ; $(C) \int ( f _ { 1 } + f _ { 2 } ) d m = ( C ) \int f _ { 1 } d m + ( C ) \int f _ { 2 } d m.$ ; confidence 1.000

275. w13008048.png ; $\overset{\rightharpoonup} { V } _ { n } = \overset{\rightharpoonup} { V } _ { n } ( T _ { m } )$ ; confidence 1.000

276. m12003061.png ; $\tilde { \chi } ( x ) = [ x ^ { 2 } - 1 - a ] _ { - b } ^ { b }$ ; confidence 0.680

277. d11022061.png ; $y ^ { ( n ) } + p ( x ) y = 0$ ; confidence 0.680

278. j12001011.png ; $( X _ { 1 } + H _ { 1 } , \dots , X _ { n } + H _ { n } )$ ; confidence 0.680

279. b13003042.png ; $\| x. z \| ^ { \prime } \leq \| x \| ^ { \prime } \| z \| ^ { \prime }$ ; confidence 1.000

280. m13014041.png ; $r _ { 1 } + r _ { 2 } < R$ ; confidence 0.679

281. c12007080.png ; $\operatorname{Ab} ( Z ({\cal C} ) , M )$ ; confidence 1.000

282. d12028083.png ; $A ( D ) ^ { * } \simeq A ( \overline { D } )$ ; confidence 0.679

283. f12011074.png ; $D ^ { n } + i {\bf R} ^ { n }$ ; confidence 1.000

284. c1300404.png ; $\cong 0.915965594177219015 \ldots$ ; confidence 0.679

285. k13007016.png ; $| { k } | < 1$ ; confidence 1.000

286. s12004013.png ; $a _ { \delta } = \prod _ { i < j } ( x _ { i } - x _ { j } )$ ; confidence 0.679

287. b13007035.png ; $a ^ { i } b ^ { k } a ^ { - j }$ ; confidence 0.679

288. x120010116.png ; $\operatorname{Aut}( R )$ ; confidence 1.000

289. q13002049.png ; $\hat { f } | x , 0 , w \rangle \rightarrow | x , f ( x ) , w \rangle$ ; confidence 0.679

290. v13005067.png ; $\sum _ { n \in \bf Z } x ^ { n }$ ; confidence 1.000

291. b13020092.png ; $\omega h _ { i } = - h_i$ ; confidence 1.000

292. f120150160.png ; $\gamma ( T ) = \operatorname { inf } \frac { \| T _ { X } \| } { d ( x , N ( T ) ) }$ ; confidence 0.679

293. l12019018.png ; $X \leq 0$ ; confidence 1.000

294. b12031051.png ; $M _ { R } ^ { ( n - 1 ) / 2 } f ( 0 ) \rightarrow 0$ ; confidence 0.679

295. k12004015.png ; $\operatorname{Tait}( L _ { D } )$ ; confidence 1.000

296. f12023039.png ; $D | _ { \Omega ^ { 0 } } ( M ) = 0$ ; confidence 0.679

297. c02211043.png ; $\partial ^ { 2 } p _ { i } ( \theta ) / \partial \theta _ { j } \partial \theta _ { r }$ ; confidence 1.000

298. l12010078.png ; $\Phi = \Phi ( x _ { 1 } , \dots , x _ { N } )$ ; confidence 0.678

299. g13001072.png ; ${F} = \operatorname{GF} ( q )$ ; confidence 1.000

300. s13059023.png ; $L ( z ) \not\equiv 0$ ; confidence 1.000

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/47. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/47&oldid=45602