User:Maximilian Janisch/latexlist/latex/NoNroff/76
List
1. ; $D _ { a } + D _ { a^{*} } ^ { t }$ ; confidence 0.089
2. ; $\prod _ { j } H _ { n_j } \left( \frac { \langle y , f _ { j } \rangle } { \sqrt { 2 } } \right) ,$ ; confidence 0.089
3. ; $P _ { m } ^ { \prime } ( A _ { m } ) \rightarrow 1$ ; confidence 0.089
4. ; $\| \mathcal{H} ( u , v ) \| _ { L ^ { 2 } ( \mathbf{R} ^{n}) } = \| u \|_ { L ^ { 2 } ( \mathbf{R} ^{n}) } \| v \| _ { L ^ { 2 } ( \mathbf{R} ^{n}) } ,$ ; confidence 0.089
5. ; $\| F ( x ) \| _ { L^{\infty} ( \mathbf{R} _ { + } ) } + \| F ( x ) \| _ { L ^ { 1 } ( \mathbf{R} _ { + } ) } +$ ; confidence 0.088
6. ; $a _ { 1 } , \dots , a _ { m } \in R$ ; confidence 0.088
7. ; $f \in H _ { p } ^ { r } ( M _ { 1 } , \ldots , M _ { n } ; \Omega ) , \quad M _ { i } > 0,$ ; confidence 0.088
8. ; $r _ { \text{ess} } ( T ) \in \sigma _ { \text{ess} } ( T )$ ; confidence 0.088
9. ; $\gamma = \left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right) \in \operatorname { GL} _ { 2 } ( \mathbf{Q} )$ ; confidence 0.088
10. ; $\Omega ^ { k } ( f ^ { ( s ) } , \delta ) = \operatorname { sup } _ { | k | = 1} \operatorname { sup }_{0 \leq t \leq \delta } \| \Delta _ { t h } ^ { k } f ^ { ( s ) } \| _ { L _ { p } ( \Omega _ { k t } ) } \leq M \delta ^ { r - s }.$ ; confidence 0.088
11. ; $\mathfrak{h} ^ {e }$ ; confidence 0.088
12. ; $\tilde { \mathfrak{E} } ( \lambda )$ ; confidence 0.088
13. ; $a _ { n + m} = F ( a _ { n } , a _ { m } )$ ; confidence 0.087
14. ; $\frac { \text { Vol } ( \partial \Omega ) } { \text { Vol } ( \Omega ) } \geq \frac { c _ { 1 } } { \operatorname { diam } \Omega } . \omega , \quad c_ { 1 } = \frac { 2 \pi \alpha ( n - 1 ) } { \alpha ( n ) },$ ; confidence 0.087
15. ; $\mathcal{NP} \not< \mathbf{BQP}$ ; confidence 0.087
16. ; $p _ { i }$ ; confidence 0.087
17. ; $.\operatorname { det } _ { \text{Q} } ^ { - 1 } ( F ^ { i + 1 - m } H _ { \text{DR} } ^ { i } ( X_{ / \mathbf{R} } ) )$ ; confidence 0.087
18. ; $= ( \Omega _ { + } - 1 ) ( g - g_{0} ) \psi ( t ) + ( \Omega _ { + } - 1 ) _{g_{0}} \psi ( t ),$ ; confidence 0.087
19. ; $\operatorname {Cnn} _ { \mathcal{L} }$ ; confidence 0.087
20. ; $\Psi ( x _ { i } \bigotimes x _ { j } ) = x _ { b } \bigotimes x _ { a } R ^ { a } \square _ { i } \square ^ { b } \square_{j}$ ; confidence 0.087
21. ; $p _ { i , j } ^ { k } = | \{ z \in X : ( x , z ) \in R _{i} \& ( z , y ) \in R _ { j } \} |.$ ; confidence 0.087
22. ; $\frac { Q _ { n } ( z ) } { P _ { n } ^ { ( \alpha , \beta ) } ( z ) } \underset{ \rightarrow } { \rightarrow } \frac { 2 } { \phi ^ { \prime } ( z ) },$ ; confidence 0.087
23. ; $N _ { E / F} ( z ) = z . z ^ { q } . \ldots . z ^ { q ^ { n - 1 } }.$ ; confidence 0.087
24. ; $\sum _ { |\mathbf{m.r} \leq N } \Delta _ { \mathbf{m} } ( f )$ ; confidence 0.086
25. ; $( \lambda - a _ { i , i} ) x _ { i } = \sum _ { j = 1 \atop j \neq i } ^ { n } a _ { i , j } x _ { j }.$ ; confidence 0.086
26. ; $| a _ { \pm n } | \leq a _ { n } ^ { * }$ ; confidence 0.086
27. ; $\| \tilde { u } \| _ { p } \leq c \| u \| _ { p }$ ; confidence 0.086
28. ; $a : \mathbf{R}_{ +} \times \mathbf{R} ^ { n } \rightarrow \mathbf{R} ^ { n }$ ; confidence 0.086
29. ; $\partial _ { q , y}$ ; confidence 0.086
30. ; $\operatorname { max } _ { k = m + 1 , \ldots , m + n } | g ( k ) | \geq c _ { m , n } , \operatorname { min } _ { j = 1 , \ldots , n } | b _ { 1 } + \ldots + b _ { j } |$ ; confidence 0.086
31. ; $- \Delta t a \partial _ { x } ^ { ( 1 ) } u ( x _ { i } , t ^ { n } ) + \frac { \Delta t ^ { 2 } } { 2 } a ^ { 2 } \partial _ { x } ^ { ( 2 ) } u ( x _ { i } , t ^ { n } ) + O ( \Delta t ^ { 2 } ).$ ; confidence 0.085
32. ; $\operatorname { lim } _ { |Q| \rightarrow 0 } \frac { 1 } { | Q | } \int _ { Q } | f - f _ { Q } | d t \rightarrow 0.$ ; confidence 0.085
33. ; $ c _ { 1 } ( L )$ ; confidence 0.085
34. ; $\operatorname { Tr } _ { L l / L }$ ; confidence 0.085
35. ; $H _ { n }$ ; confidence 0.085
36. ; $L _ { i , j } = L C _ { j } ( x ) |_ { x = x _ { i } }$ ; confidence 0.085
37. ; $e _ { i }$ ; confidence 0.085
38. ; $\lambda g = \sum _ { i , j } \lambda g_ { i j } d x ^ { i } \otimes d x ^ { j } \in \mathsf{S} ^ { 2 } \mathcal{E}$ ; confidence 0.085
39. ; $\xi ^ { J } = \xi _ { 1 } ^ { j_1 } \ldots \xi _ { n } ^ { j_n }$ ; confidence 0.085
40. ; $F ( f ) = F _ { \phi } ( f ) = \int _ { \partial D _ { m } } f ( z ) \sum ^ { n } _ { k = 1 } ( - 1 ) ^ { k - 1 } \frac { \partial \overline{ v } } { \partial z _ { k } } d \overline{z} [ k ] \bigwedge d z.$ ; confidence 0.085
41. ; $\mathbf{\mathsf{RCA}} _ { \omega } = \mathbf{SP} \left\{ \left( \mathfrak { P } ( \square ^ { \omega } U ) , c _ { i } , \operatorname{Id} _ { i j } \right)_ { i , j \in \omega } : U \ \text {is a set } \right\}.$ ; confidence 0.085
42. ; $\langle . , . \rangle : \operatorname{CH} ^ { p } ( X ) ^ { 0 } \times \operatorname{CH} ^ { n + 1 - p } ( X ) ^ { 0 } \rightarrow \mathbf{R}$ ; confidence 0.085
43. ; $X _ { k }$ ; confidence 0.085
44. ; $r _ { \mathcal{D} } : H _ { \mathcal{M} } ^ { i } ( M _ { \mathbf{Z} } , \mathbf{Q} ( j ) ) \rightarrow H _ { \mathcal{D} } ^ { i } ( M_{ / \mathbf{R}} , \mathbf{R} ( j ) )$ ; confidence 0.085
45. ; $B _ { 2 } \stackrel { d } { \rightarrow } B _ { 1 } \stackrel { d _ { 1 } } { \rightarrow } B _ { 0 } \rightarrow 0,$ ; confidence 0.085
46. ; $\| P _ { n , \theta _ { n }} - R _ { n , h }\| \rightarrow 0$ ; confidence 0.085
47. ; $\exists b _ { i } : b = \langle b _ { 0 } , \dots , b _ { i - 1} , b _ { i } , b _ { i + 1} , \dots , b _ { n - 1} \rangle \in R \}.$ ; confidence 0.084
48. ; $\{ \otimes ^ { * } \tilde { \mathcal{E} } , \tilde { \nabla } \}$ ; confidence 0.084
49. ; $\frac { 1 } { x } . \sum _ { n \leq x } f ( n ) = c x ^ { ia_{0} } .$ ; confidence 0.084
50. ; $F ( 0 ) = ( F _ { 1 } ( 0 , x _ { 1 } ) , \ldots , F _ { n } ( 0 , x _ { 1 } , \ldots , x _ { n } ) , \ldots ).$ ; confidence 0.084
51. ; $v _ { 1 } , \dots , v _ { m }$ ; confidence 0.084
52. ; $mn$ ; confidence 0.083
53. ; $\Theta_{ \mathsf{Q} } ( a , b )$ ; confidence 0.083
54. ; $\operatorname { sup } _ { u > 0 } \varphi ^ { \prime } ( a u ) / \varphi ^ { \prime } ( u ) < 1$ ; confidence 0.083
55. ; $+ h \sum _ { j = 1 } ^ { s } B _ { j } ( h T ) \left[ f ( t _ { m } + c _ { j } h , u _ { m + 1 } ^ { ( j ) } ) - T u _ { m +1 } ^ { ( j ) } \right].$ ; confidence 0.083
56. ; $w _ { 1 } , \ldots , w _ { n }$ ; confidence 0.083
57. ; $R ^ { a } _{b c d}$ ; confidence 0.083
58. ; $X \stackrel { f } { \rightarrow } Y \stackrel { g } { \rightarrow } X$ ; confidence 0.083
59. ; $\alpha _ { n , F} \circ Q + \beta _ { n , F }$ ; confidence 0.082
60. ; $J ( f ) = \left\| \begin{array} { c c c c c c } { a } & { 1 } & { \square } & { \square } & { \square } & { 0 } \\ { \square } & { \cdot } & { \square } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { . } & { \square } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { . } & { \square } & { \square } \\ { \square } & { \square } & { \square } & { \square } & { . } & { 1 } \\ { 0 } & { \square } & { \square } & { \square } & { \square } & { a } \end{array} \right\|,$ ; confidence 0.082
61. ; $v _ { \text{M} }$ ; confidence 0.082
62. ; $\{ p _ { M } : M \in \Gamma \}$ ; confidence 0.082
63. ; $H ^ { q } ( B \Gamma , \mathbf{C} ) \simeq H ^ { q } ( \Gamma , \mathbf{C} )$ ; confidence 0.082
64. ; $= v _ { M }$ ; confidence 0.082
65. ; $\operatorname { Ric } ( \tilde{g} ) = 0 \in \mathsf{S} ^ { 2 } \tilde{\mathcal{E}}$ ; confidence 0.082
66. ; $h_{n}$ ; confidence 0.081
67. ; $Z = \sum _ { S _ { 1 } = \pm 1 } \left( S _ { 1 } | \mathcal{P} ^ { N } | S _ { 1 } \right) = \lambda _ { + } ^ { N } + \lambda ^ { N }_{-},$ ; confidence 0.081
68. ; $J _ { E }$ ; confidence 0.081
69. ; $\varphi_{ *} : K _ { 0 } ^ { \text{alg} } ( \mathcal{C} _ { 1 } \bigotimes \mathbf{C} [ \Gamma ] ) \rightarrow \mathbf{C},$ ; confidence 0.081
70. ; $\Psi _ { V , W } ( v \bigotimes w ) = \sum v ^ { \overline{( 1 )} } \rhd w \bigotimes v ^ { \overline{( 2 )} }.$ ; confidence 0.080
71. ; $( X , \tau ) \in | L \square \mathbf{TOP} |$ ; confidence 0.080
72. ; $s _ { k }$ ; confidence 0.080
73. ; $\lambda ^ { \mathbf{Fm} } ( \varphi_0 , \dots , \varphi _ { n - 1} )$ ; confidence 0.080
74. ; $\text { Alg } \text {Mod} ^ { * \text{L}} \mathcal{DS} = \cup \{ \text { Alg } \text {Mod} ^ { * \text{L}} \mathcal{DS} _ { P } : P \ \text { a set } \}$ ; confidence 0.080
75. ; $t ( G ; x , y ) = \sum_{ S \subseteq E} ( x - 1 ) ^ { r ( G ) - r ( S ) } ( y - 1 ) ^ { | S | - r ( S ) }$ ; confidence 0.080
76. ; $\operatorname { lim } _ { K \rightarrow \infty } \operatorname { sup } _ { x \geq 1 } \frac { 1 } { x } . \sum _ { n \leq x , | f ( n )| \geq K } \quad | f ( n ) | = 0.$ ; confidence 0.080
77. ; $r_1 / r _ { 2 } \notin \mathbf{Z} _ { n }$ ; confidence 0.080
78. ; $\langle \mathbf{Fm} _ { P } , \models_{\mathcal{S}_ { P }} \rangle$ ; confidence 0.080
79. ; $j_1 , \ldots , j _ { r } < i$ ; confidence 0.079
80. ; $\overline{ h }$ ; confidence 0.079
81. ; $\mathbf{zero}_{?} \equiv \lambda p . p ( \lambda x . \mathbf{false})\mathbf{true}$ ; confidence 0.079
82. ; $A _ { i } = A.e _ { i } = \mathbf{R}.e_{i} \oplus N _ { i }$ ; confidence 0.079
83. ; $( \operatorname{Op} ( a ) u ) ( x ) = \int e ^ { 2 i \pi x . \xi } a ( x , \xi ) \hat { u } ( \xi ) d \xi,$ ; confidence 0.079
84. ; $\Delta_ { 2 } U = \frac { \partial ^ { 2 } U } { \partial t ^ { 2 } },$ ; confidence 0.078
85. ; $\alpha_{n, F} = n ^ { 1 / 2 } ( F _ { n } - F )$ ; confidence 0.078
86. ; $r _ { \mathcal{D} }$ ; confidence 0.078
87. ; $\widetilde{ d ^ { 2 } f } _ { x } : \mathbf{R} ^ { n } \times \mathbf{R} ^ { n } \rightarrow \mathbf{R}$ ; confidence 0.078
88. ; $R _ { k + l } ^ { k - l } ( r ; \alpha ) = \frac { l ! } { ( \alpha + 1 ) _ { l } } r ^ { k - l } P _ { l } ^ { ( \alpha , k - l ) } ( 2 r ^ { 2 } - 1 ),$ ; confidence 0.078
89. ; $\epsilon_{l}$ ; confidence 0.078
90. ; $p ^ { - 1 } \prod _ { \underset{n \in \mathbf{Z} }{m > 0} } ( 1 - p ^ { m } q ^ { n } ) ^ { a_{ m n} } = j ( w ) - j ( z )$ ; confidence 0.078
91. ; $\theta _ { n } ( h _ { 1 } \bigotimes \ldots \bigotimes h _ { n } ) = P _ { n } ( \tilde { h _ { 1 } } \ldots \tilde { h _ { n } } ).$ ; confidence 0.078
92. ; $E ( x , y ) \vdash _ { \mathcal{D} } E ( y , x ) , \quad E ( x , y ) , E ( y , z ) \vdash _ { \mathcal{D} } E ( x , z ),$ ; confidence 0.078
93. ; $\mathcal{E} ^ { a } ( L ) = \sum _ { | \alpha | = 0 } ^ { k } ( - 1 ) ^ { | \alpha | } D ^ { \alpha } \left( \frac { \partial L } { \partial y _ { \alpha } ^ { a } } \right),$ ; confidence 0.077
94. ; $\| u \| _ { m } ^ { 2 } \leq c _ { 1 } \operatorname { Re } B [ u , u ] = c _ { 2 } \| u \| _ { 0 } ^ { 2 },$ ; confidence 0.077
95. ; $\mathbf{z} ^ { n } = \{ z ^ { n _ { i } } , x _ { i } ^ { n + 1 } \} , \overline{\mathbf{z}} \square ^ { n } = \{ z _ { i } ^ { n } , \overline{x} \square _ { i } ^ { n + 1 } \}$ ; confidence 0.077
96. ; $\mathbf{\mathsf{RCA}} _ { n } = \mathbf{SP} \{ \mathfrak{Rel} _ { n } ( U ) : U \ \text {is a set } \},$ ; confidence 0.077
97. ; $\mathbf{a}$ ; confidence 0.077
98. ; $X \underline { \square } _ { n } = \operatorname { inf } _ { t } X _ { n } ( t )$ ; confidence 0.077
99. ; $\frac { \operatorname {Vol} ( \partial \Omega ) ^ { n } } { \operatorname {Vol} ( \Omega ) ^ { n - 1 } } \geq c _ { 2 } . \omega ^ { n + 1 } , \quad c _ { 2 } = \frac { \alpha ( n - 1 ) ^ { n } } { \left( \frac { \alpha ( n ) } { 2 } \right) ^ { n - 1 } }.$ ; confidence 0.077
100. ; $\operatorname {SL} _ { n } ( F )$ ; confidence 0.077
101. ; $\mathcal{L} = \{ u \in \operatorname { PSH } ( \mathbf{C} ^ { n } ) : u - \operatorname { log } ( 1 + | z | ) = O ( 1 ) ( z \rightarrow \infty ) \}.$ ; confidence 0.077
102. ; $\| f \| \leq \operatorname { sup } _ { M } | f ( z ) |$ ; confidence 0.077
103. ; $1|G:G_{\text{inn}}|< \infty$ ; confidence 0.077
104. ; $\hat { X } \in \operatorname { ker } \delta _ { \hat { A } ^ { * } , B ^ { * }}$ ; confidence 0.077
105. ; $\hat { C }$ ; confidence 0.077
106. ; $\mathfrak { Rel } _ { n } ( U ) = \left( \mathfrak { P } ( \square ^ { n } U ) , c _ { 0 } , \ldots , c _ { n - 1} , \operatorname{Id} \right)$ ; confidence 0.077
107. ; $a \sharp b = a b + S ( m _ { 1 } m _ { 2 } H , G ) , a \sharp b = a b + \frac { 1 } { 2 \iota } \{ a , b \} + S ( m _ { 1 } m _ { 2 } H ^ { 2 } , G ),$ ; confidence 0.076
108. ; $c_ 1 , \ldots , c _ { n }$ ; confidence 0.076
109. ; $a _ { j }$ ; confidence 0.076
110. ; $\geq 2 \left( \frac { \delta _ { 1 } - \delta _ { 2 } } { 12 e } \right) ^ { n } \operatorname { min } _ { j = h , \ldots , l } | b _ { 1 } + \ldots + b _ { j } |.$ ; confidence 0.076
111. ; $\psi _ { i }$ ; confidence 0.075
112. ; $P _ { k - 1}$ ; confidence 0.075
113. ; $K _ { n , m}$ ; confidence 0.075
114. ; $\text{NTIME}$ ; confidence 0.075
115. ; $Se ^ { - s A ( t , u ) } \supset e ^ { - s \hat{A} ( t , u ) } S,$ ; confidence 0.075
116. ; $0 \rightarrow H ^ { 0 } ( M ) \rightarrow C ^ { \infty } ( M ) \stackrel { H } { \rightarrow } \mathfrak{X} ( M , \omega ) \stackrel { \gamma } { \rightarrow } H ^ { 1 } ( M ) \rightarrow 0,$ ; confidence 0.075
117. ; $\int _ { | x - a _ { j } | \leq r _ { j } } f ( x ) d x , \quad | a _ { j } | + r _ { j } < 1 , j = 1,2,$ ; confidence 0.075
118. ; $P \sum _ { n = 0 } ^ { \infty } ( Q - 1 ) ^ { n }$ ; confidence 0.075
119. ; $\psi _ { \mathfrak { A } } ^ { l } \overline {a}$ ; confidence 0.075
120. ; $( \mathcal{X} \otimes e _ { 0 } ) \oplus ( \mathcal{X} \otimes e_ { 1 } )$ ; confidence 0.075
121. ; $\| \operatorname { tg } ( t ) \| _ { 2 } \| \gamma \hat{g} ( \gamma ) \| _ { 2 } \geq ( 4 \pi ) ^ { - 1 } \| g \| _ { 2 } ^ { 2 }$ ; confidence 0.075
122. ; $A _ { k } \equiv ( a _ { i , j } ^ { ( k ) } ) _ { i , j = 1 } ^ { \operatorname { dim } \mathcal{X} }$ ; confidence 0.075
123. ; $\overline{z} = ( \overline{z}_{1} , \dots , \overline{z}_ { n } )$ ; confidence 0.074
124. ; $\mathbf{C} ^ { n + 1}$ ; confidence 0.074
125. ; $( a _ { 1 } , \dots , a _ { i - 1 } ) : a _ { i } a _ { j } = ( a _ { 1 } , \dots , a _ { i - 1 } ) : a _ { j }$ ; confidence 0.074
126. ; $v _ { M } > v ^ { * }$ ; confidence 0.074
127. ; $\{ x _ { 1 , n} , \dots , x _ { n , n} \} \subseteq \{ y _ { 1 , m} , \dots , y _ { m , m} \},$ ; confidence 0.074
128. ; $K _ { x } \in \wedge ^ { k + 1 } T _ { x } ^ { * } M \otimes T _ { x } M$ ; confidence 0.074
129. ; $\hat{x} ( n ) = \int _ { \mathbf{T} } \overline{z}^{n} U _ { z } ( x ) d z$ ; confidence 0.074
130. ; $\mathfrak{M} \in \operatorname{Mod}_{\tau}$ ; confidence 0.074
131. ; $B ( m , n , i ) = \langle a _ { 1 } , \dots , a _ { m } | A _ { 1 } ^ { n } , \dots , A _ { i } ^ { n } \rangle$ ; confidence 0.074
132. ; $U _ { 1 } = \{ u _ { 1 } \geq 0 : c ^ { T } \tilde { x } ^{ ( k ) } + u _ { 1 } A _ { 1 } \tilde{x} ^ { ( k ) } \geq 0 \text { for all } k \in R \}$ ; confidence 0.074
133. ; $= ( 2 \pi i ) ^ { 1 - n } \int _ { \Delta _ { n } } d t \int _ { S } ( F _ { n } f ) \times \times \left( ( 1 - t _ { 2 } - \ldots - t _ { n } ) ( z , \zeta ) , \frac { t _ { 2 } } { \zeta _ { 2 } } ( z , \zeta ) , \ldots , \frac { t _ { n } } { \zeta _ { n } } ( z , \zeta ) \right) \frac { d \zeta } { \zeta },$ ; confidence 0.073
134. ; $\alpha _ { H } ( \tilde{y} ) - \alpha _ { H } ( \tilde{x} ) = 1$ ; confidence 0.073
135. ; $e _ { n } ( F _ { d } ) = \operatorname { inf } _ { Q _ { n } } e ( Q _ { n } , F _ { d } ).$ ; confidence 0.073
136. ; $M _ { R } ^ { \delta } ( f ) ( x ) = \int _ { | \xi | \leq R } \left( 1 - \frac { | \xi | ^ { 2 } } { R ^ { 2 } } \right) ^ { \delta } e ^ { 2 \pi i x . \xi } \hat { f } ( \xi ) d \xi .$ ; confidence 0.073
137. ; $\mathbf{R} _ { x } ^ { n } \times \mathbf{R} _ { \xi } ^ { n }$ ; confidence 0.073
138. ; $R ( \tilde{ g } ) = W ( \tilde { g } ) \in \mathsf{A} ^ { 2 } \tilde{ \mathcal{E} } \otimes \mathsf{A} ^ { 2 } \tilde{ \mathcal{E} }$ ; confidence 0.073
139. ; $\langle a _ { 1 } , \dots , a _ { n } \rangle$ ; confidence 0.073
140. ; $v _ { \operatorname {MAP} } = \operatorname { arg } \operatorname { max } _ { v _ { j } \in \mathcal{V} } \mathsf{P} ( a _ { 1 } , \ldots , a _ { n } | v _ { j } ) . \mathsf{P} ( v _ { j } ).$ ; confidence 0.073
141. ; $a = c _ { 1 } \dots c _ { n }$ ; confidence 0.073
142. ; $W _ { P } ( \rho _ { a } )$ ; confidence 0.073
143. ; $\ll \frac { N ^ { 2 } } { H } + \frac { N } { H } \sum _ { 1 \leq k \leq H } \left| \sum_ { M < n \leq M + N - h } e ^ { 2 \pi i ( f ( n + h ) - f ( n ) ) } \right|,$ ; confidence 0.073
144. ; $\mathcal{B} : \mathcal{C} \text{rs} \rightarrow \mathcal{FT} \text{op}$ ; confidence 0.073
145. ; $t_{1}$ ; confidence 0.072
146. ; $\oplus _ { i } G_ {i}$ ; confidence 0.072
147. ; $\partial _ { i } f _ { w } = \left\{ \begin{array} { l l } { 0 } & { \text{if} \ \text{l} ( s _ { i } w ) > \text{I} ( w ), } \\ { f _ { s _ { i } w } } & { \text{if} \ \text{l}( s _ { i } w ) < \text{l}( w ), } \end{array} \right.$ ; confidence 0.072
148. ; $\tilde { S } _ { n }$ ; confidence 0.072
149. ; $( \frac { \partial } { \partial x } ) ^ { \alpha } = ( \frac { \partial } { \partial x _ { 1 } } ) ^ { \alpha _ { 1 } } \dots ( \frac { \partial } { \partial x _ { n } } ) ^ { \alpha _ { n } }.$ ; confidence 0.072
150. ; $v \in e$ ; confidence 0.072
151. ; $= \sum _ { i = 1 } ^ { k } ( - 1 ) ^ { i + 1 } X X _ { i } \bigotimes X _ { 1 } \bigwedge \ldots \bigwedge \hat{X} _ { i } \bigwedge \ldots \bigwedge X _ { k } +$ ; confidence 0.072
152. ; $\| \nabla f \| _ { L } 2 _ { ( \mathbf{R} ^ { n } ) } \geq S _ { n } \| f \| _ { L ^{ 2 n / ( n - 2 ) } ( \mathbf{R} ^ { n } ) }$ ; confidence 0.071
153. ; $= \frac { 1 } { ( 2 \pi i ) ^ { n } } \int _ { \partial \Omega } \sum _ { | \alpha | + \beta = n - 1 } \left( \prod _ { j = 0 } ^ { m } \frac { \langle \rho ^ { \prime } ( \xi ) , z - p _ { j } \rangle } { \langle \rho ^ { \prime } ( \xi ) , \xi - p _ { j } \rangle } \right) \times \times \frac { f ( \xi ) \partial \rho ( \xi ) \wedge ( \overline { \partial } \partial \rho ( \xi ) ) ^ { n - 1 } } { \langle \rho ^ { \prime } ( \xi ) , \xi - p \rangle ^ { \alpha } \langle \rho ^ { \prime } ( \xi ) , \xi - z \rangle ^ { \beta + 1 } },$ ; confidence 0.071
154. ; $t ^ { n }$ ; confidence 0.071
155. ; $f _ { w } \in \mathbf{Z} [ x _ { 1 } , \dots , x _ { n } ]$ ; confidence 0.071
156. ; $\mathbf{f} ^ { \text{em} } = 0 = \operatorname { div } \mathbf{t} ^ { \text{em} . f} - \frac { \partial \mathbf{G} ^ { \text{em}.f } } { \partial t },$ ; confidence 0.071
157. ; $\pi ( \lambda ) = ( \lambda + 2 ) ( \lambda + 1 ) a ^ { 2_0 } + ( \lambda + 1 ) a ^ { 1_0 } + a ^ { 0_0 } =$ ; confidence 0.071
158. ; $S _ { k } = \mathsf{E} \left[ \left( \begin{array} { l } { X } \\ { k } \end{array} \right) \right] = \sum _ { i = 1 } ^ { n } \left( \begin{array} { l } { i } \\ { k } \end{array} \right) p _ { i }$ ; confidence 0.071
159. ; $\zeta _ { \lambda } ^ { + \lambda } = \zeta _ { \lambda } ^ { - \lambda } = i ^ { ( n - r ( \lambda ) ) / 2 } \sqrt { ( \lambda _ { 1 } \ldots \lambda _ { r ( \lambda ) } ) }.$ ; confidence 0.071
160. ; $\frac { \Omega _ { n } } { \partial T _ { m } } = \frac { \partial \Omega _ { m } } { \partial T _ { n } }.$ ; confidence 0.071
161. ; $| \varphi ( z ) | e ^ { \delta | z | } < \infty \text { for some } \delta > 0.$ ; confidence 0.071
162. ; $\operatorname {mng} _ { \mathcal{S} _ { P }, \mathfrak { M } } ( \varphi ) = \operatorname { mng } _ { \mathcal{S} _ { P }, \mathfrak { M } } ( \psi )$ ; confidence 0.071
163. ; $\vdash _ { \mathcal{G} } \theta _ { 0 } , \ldots , \theta _ { n - 1 } \rhd \xi ,$ ; confidence 0.070
164. ; $x_1 , \dots , x_ { n } , \dots$ ; confidence 0.070
165. ; $q_{v _ { 1 } , \ldots , v _ { n } } ( x _ { 1 } , \ldots , x _ { n } ) \in L _ { p } ( \mathbf{R} ^ { n } )$ ; confidence 0.070
166. ; $\mathsf{E} [T]_{ \operatorname { SRPTF }} =$ ; confidence 0.069
167. ; $S ( C ) ^ { o } = H \operatorname { exp } C ^ { o }$ ; confidence 0.069
168. ; $\{ G ; . , e ,^{ - 1} , \vee , \wedge \}$ ; confidence 0.069
169. ; $n ^ { - k / d }$ ; confidence 0.069
170. ; $C ^ { n \times m}$ ; confidence 0.069
171. ; $\operatorname { Ext }^{1} _ { \mathcal{MH} _ { \mathbf{R} } ^ { + } } ( \mathbf{R} ( 0 ) , H _ { \text{B} } ^ { i } ( X ) , \mathbf{R} ( j ) )$ ; confidence 0.068
172. ; $\text{NSPACE} [t( n )]$ ; confidence 0.068
173. ; $\mathcal{E} ^ { a } ( L ) = \frac { \partial L } { \partial y ^ { a } } - D _ { i } \left( \frac { \partial L } { \partial y ^ { a _ { i } } } \right),$ ; confidence 0.068
174. ; $\sum _ { m } b ( m ) e \left( \frac { m a } { q } \right) g ( m ) = \sum _ { n } b ( n ) e \left( - n \frac { \overline { a } } { q } \right) \mathcal{L} g ( n ),$ ; confidence 0.068
175. ; $g ^ { i }_{ ; j ; k } / 2$ ; confidence 0.068
176. ; $( ( X _ { n + 1} , B _ { n + 1} ) , f _ { n + 1 } ) = ( ( Y , \phi_{ * } B _ { n } ) , f _ { n } \circ \phi ^ { - 1 } )$ ; confidence 0.068
177. ; $X ^ { \prime } = \sqrt { X ^ { 2 } + \tilde { y } ^ { 2 } } e ^ { ( \operatorname { arctan } \tilde{y} / X + k \pi ) \rho / \omega } - X _ { H } + \tilde{x},$ ; confidence 0.068
178. ; $T ( a ) = ( a _ { j - k} ) _ { j , k = 0} ^ { \infty }$ ; confidence 0.068
179. ; $\varphi _ { 0 } , \ldots , \varphi _ { n - 1 } \rhd \varphi _ { n }$ ; confidence 0.068
180. ; $ \tilde {x} = \tilde { y } = 0$ ; confidence 0.068
181. ; $\mathsf{S} ^ { 2 } \mathcal{E} \otimes \mathsf{S} ^ { 2 } \mathcal{E} \subset \bigotimes ^ { 4 } \mathcal{E}$ ; confidence 0.068
182. ; $a | _ { T ^{*} M ^{ g }}$ ; confidence 0.068
183. ; $= \left\{ z : \sum _ { l = 1 } ^ { n } b _ { j } ^ { l } | c _ { l1 } ^ { p } ( z _ { 1 } - a _ { 1 } ) + \ldots + c _ { l n } ^ { p } ( z _ { n } - a _ { n } ) | ^ { 2 } < r _ { j , k } ^ { 2 } \right\} , b _ { j } ^ { l } > 0 ; j = 1 , \ldots , n ; k = 1,2 ; p = 1 , \ldots , n.$ ; confidence 0.067
184. ; $\chi ( G ; \lambda ) = \lambda ^ { c ( G ) } ( - 1 ) ^ { v ( G ) - c ( G ) } t ( M _ { G } , 1 - \lambda , 0 ),$ ; confidence 0.067
185. ; $\mathcal{L} _ { n } = \mathcal{L} ( \Lambda _ { n } | P _ { n } )$ ; confidence 0.067
186. ; $d _{( n )} ( A ) = \operatorname { per } ( A ) = \sum _ { \sigma \in S _ { n } } \prod _ { i = 1 } ^ { n } a _ { i \sigma ( i ) }.$ ; confidence 0.067
187. ; $eAe$ ; confidence 0.067
188. ; $y _ { 1 } , \dots , \hat{y} _ { p } , \dots ; x _ { p } - y _ { p } , x _ { 2 p} - y _ { 2 p} , \dots )$ ; confidence 0.067
189. ; $\overline { \mathcal{M}_ { g , n } }$ ; confidence 0.067
190. ; $t_{1} , \dots , t _ { \rho ( f ) } \in T$ ; confidence 0.067
191. ; $\rho _ { \operatorname { max } } = \operatorname { sup } \{ \rho = \rho ( B ) : T \text { star shaped w. } r . t . B \}.$ ; confidence 0.067
192. ; $\operatorname { max } _ { r = 1 , \ldots , c n } \frac { | z _ { 1 } ^ { r } + \ldots + z _ { n } ^ { r } | } { \operatorname { min } _ { k = 1 , \ldots , n } | z _ { k } ^ { r } | } \geq m.$ ; confidence 0.067
193. ; $\left\{ u \in \cap _ { q \in ( n , \infty ) } W ^ { 2 m , q } ( \Omega ) : \begin{array}{l} { L(t, . , D_x) u \in C ( \overline { \Omega } ), } \\ {B _ { j } ( t , . , D _ { x } ) u=0 \ \text{on} \partial \Omega,} \\ {j=1, \dots , m} \end{array} \right\}, A(t)u=L(. , t , D_x)u \ \text{for} \ u \in D(A(t)),$ ; confidence 0.067
194. ; $b \mapsto I ^ { \kappa_a } ( b )$ ; confidence 0.067
195. ; $( X \leftrightarrows _{f} ^{\nabla } Y , \phi ).$ ; confidence 0.067
196. ; $\lambda ^ { p } ( \mu ) [ \varphi ] = [ \varphi * \Delta _ { G } ^ { 1 / p ^ { \prime } } \check{\mu} ]$ ; confidence 0.066
197. ; $\mathcal{R} = \mathcal{R} _ { q ^ { 2 } } e _ { q ^ { - 2 } } ^ { ( q - q ^ { - 1 } ) E \bigotimes F },$ ; confidence 0.066
198. ; $( N + 1 ) ^ { - 1 } \left\| \sum _ { k = 0 } ^ { N } c _ { k } D _ { k } \right\| _ { L^{1} } \leq \operatorname { max } _ { 0 \leq k \leq N } | c _ { k } |,$ ; confidence 0.066
199. ; $\sum h_{ ( 1 )} v ^ { \overline{( 1 )} } \bigotimes h_{ ( 2 )} \rhd v ^ { \overline{( 2 )} } =$ ; confidence 0.066
200. ; $\mathbf{Z} _ { \text { tot } S } = \tilde{\mathbf{Z}}$ ; confidence 0.066
201. ; $r _ { t \text{l}} ^ { s k } \in k $ ; confidence 0.066
202. ; $= 2 ^ { 5 / 4 } 3 ^ { - 3 / 4 } ( t ( 1 - t ) ) ^ { 1 / 4 } \text { a.s., } n ^ { 1 / 4 } ( \alpha _ { n } ( t ) + \beta _ { n } ( t ) ) \stackrel { d } { \rightarrow } Z [ B ( t ) ] ^ { 1 / 2 },$ ; confidence 0.066
203. ; $\tilde { x } _ { i } = ( x _ { i } , u _ { i } )$ ; confidence 0.065
204. ; $K ( z , \delta ) : = \left\{ \begin{array}{l} {} & { t _ { i } = z _ { i }, }\\{ ( t _ { 1 } , t _ { 2 } ) :} &{ | z _ { j } - t _ { j } | < \delta, }\\{} & { i , j = 1,2 , i \neq j }\end{array} \right\}$ ; confidence 0.065
205. ; $\text{l} _ { \alpha p} : = \{ x : \alpha . x = p \}$ ; confidence 0.065
206. ; $T_{\text{W}d}$ ; confidence 0.065
207. ; $\mathcal{V}$ ; confidence 0.065
208. ; $\left\{ \begin{array} { r l r l } { X _ { N } = H ( N , X _ { N - 1 } , y ( N ) , u ( N ) ), } \\ { \hat{\theta}_{N} = h ( X _ { N } ), } \end{array} \right.$ ; confidence 0.065
209. ; $C ^ { \prime }$ ; confidence 0.065
210. ; $\operatorname{Bel} ( . | | B ) =\operatorname{Bel} \bigoplus \operatorname{Bel}_B .$ ; confidence 0.065
211. ; $\mathbf{t} ^ { \text{em.}f }$ ; confidence 0.065
212. ; $\langle \mathbf{A} , F \rangle \in \operatorname{Mod} ^ { * \text{L}} \mathcal{D}$ ; confidence 0.065
213. ; $dm \times dv$ ; confidence 0.065
214. ; $\gamma _ { i + l , j + k}$ ; confidence 0.064
215. ; $\Delta = \frac { 1 } { c_0 } \left( \begin{array} { c c c } { c_0^ { 2 } - c_ { 1 } ^ { 2 } } & { \square } & { c _ { 1 } c_{0} - c _ { 1 } c _ { 2 } } \\ { c _ { 1 } c _ { 0 } - c _ { 1 } c _ { 2 } } & { \square } & { c _ { 0 } ^ { 2 } - c _ { 2 } ^ { 2 } } \end{array} \right).$ ; confidence 0.064
216. ; $x, v$ ; confidence 0.064
217. ; $\mathcal{C} \text{rs}$ ; confidence 0.064
218. ; $\operatorname { lim } _ { t \rightarrow s } U ( t , s ) u _ { 0 } = u _ { 0 } \text { for } u _ { 0 } \in \overline { D ( A ( s ) ) }.$ ; confidence 0.064
219. ; $\Omega G$ ; confidence 0.064
220. ; $i_{w _ { 1 } , w_ { 2 }}$ ; confidence 0.064
221. ; $E_{v_ { 1 } , \ldots , v _ { n }} ( f ) \leq c \sum _ { i = 1 } ^ { n } \frac { M _ { i } } { v _ { i } ^ { r _ { i } } }$ ; confidence 0.064
222. ; $\frac { 1 } { p } : = \frac { \operatorname { log } a _ { m }} { \operatorname { log } m } = \frac { \operatorname { log } a _ { n } } { \operatorname { log } n } \text { for all } m , n \geq 2.$ ; confidence 0.063
223. ; $\mu _ { l^{n} , X}$ ; confidence 0.063
224. ; $n_j$ ; confidence 0.063
225. ; $d \xi = c d v I ^ { d- 1 } d I$ ; confidence 0.063
226. ; $\limsup_{\varepsilon \rightarrow 0} \frac { 1 } { \varepsilon } \text { meas } \{ x : \rho ( x , \partial B ) < \varepsilon \} < \infty,$ ; confidence 0.063
227. ; $y _ { i } \in A \langle X _ { 1 } , \dots , X _ { s_i } \rangle$ ; confidence 0.063
228. ; $\mathbf{\mathsf{RCA}}_n$ ; confidence 0.063
229. ; $\operatorname { Bel } _ { X } ^ { \downarrow Z \bigcup Y } = \operatorname { Bel } _ { Z | Y } \bigoplus \operatorname { Bel } _ { X } ^ { \downarrow Y }.$ ; confidence 0.063
230. ; $[ ( a _ { 1 } , \dots , a _ { i - 1 } ) : a _ { i } ] / ( a _ { 1 } , \dots , a _ { i - 1 } ) , 1 \leq i \leq d,$ ; confidence 0.063
231. ; $\overline { c } ^ { a } ( x )$ ; confidence 0.063
232. ; $\tilde { x }_{ + }= ( x _ { + } , u _{+} )$ ; confidence 0.062
233. ; $\Xi _ { 1 } , \dots , \Xi _ { n }$ ; confidence 0.062
234. ; $\int _ { z } ^ { \xi } \frac { 1 - a i } { s } d s = \operatorname { ln } ( \frac { \xi } { z } ) ^ { 1 - a i }$ ; confidence 0.062
235. ; $y ^ { ( r ) } = \{ y _ { \alpha } ^ { a } \} _ { | \alpha | = r } ^ { a = 1 , \ldots , m }$ ; confidence 0.062
236. ; $T _ { E } R ^ { * } = \prod _ { \text { Hom}_{ \text{grp} } ( E , V ) } H ^ { * } B V,$ ; confidence 0.062
237. ; $\gamma _ { w }$ ; confidence 0.062
238. ; $= \left\{ \left( \begin{array} { l l } { a } & { b } \\ { c } & { d } \end{array} \right) \in \operatorname{SL} ( 2 , \mathbf{Z} ) : \left( \begin{array} { c c } { a } & { b } \\ { c } & { d } \end{array} \right) \equiv \left( \begin{array} { l l } { 1 } & { 0 } \\ { 0 } & { 1 } \end{array} \right) ( \operatorname { mod } n ) \right\},$ ; confidence 0.062
239. ; $B ( \operatorname{CRS} ( \pi ( X_{ * } ) , C ) ) \rightarrow ( B C ) ^ { X }$ ; confidence 0.062
240. ; $m$ ; confidence 0.061
241. ; $\| f _ { m } \| _ { C ^{ 2 , \lambda}} \leq c _ { 0 } = \text{const } > 0$ ; confidence 0.061
242. ; $d \omega$ ; confidence 0.061
243. ; $h _ { M } ( x ) = t ( x , 1 )$ ; confidence 0.061
244. ; $\| g \| = \operatorname { max } _ { x \in [ a , b ] } | g ( x ) |$ ; confidence 0.061
245. ; $\operatorname{Mod} ^ { * \text{L}} \mathcal{D} = \mathbf{SPP} _ { \text{U} } \operatorname{Mod} ^ { * \text{L}} \mathcal{D} $ ; confidence 0.061
246. ; $\mathbf{CP} ^ { n }$ ; confidence 0.060
247. ; $a _ { v,n}$ ; confidence 0.060
248. ; $R _ { ab } \equiv R ^ { c } \square _ { a c b }$ ; confidence 0.060
249. ; $s\operatorname{log} \alpha$ ; confidence 0.060
250. ; $( \text{S} ) g ( \overline { u } _ { 1 } ) = \left\{ \begin{array} { c l } { \operatorname { min } } & { c ^ { T } x + \overline { u } _{1} ^ { T } ( A _ { 1 } x - b _ { 1 } ) } \\ { \text { s.t. } } & { A _ { 2 } x \leq b _ { 2 }, } \\ { } & { x \geq 0, } \end{array} \right.$ ; confidence 0.060
251. ; $\mathbf{C}P ^ { n }$ ; confidence 0.060
252. ; $= \sum _ { n = 0 } ^ { \infty } \int d x _ { s + 1} \cdots d x _ { s + n} U ^ { ( n )_t } F _ { s + n} ( 0 , x _ { 1 } , \dots , x _ { s + n} ),$ ; confidence 0.060
253. ; $ud v$ ; confidence 0.060
254. ; $K _ { \text { tot }S } = \tilde { \mathbf{Q} }$ ; confidence 0.060
255. ; $d _ { n } ^ { * } \in \cap _ { \mathsf{P} \in \mathcal{P} } L _ { 2 } ( \Omega , \mathcal{A} , \mathsf{P} )$ ; confidence 0.060
256. ; $T , \varphi \vdash_{\text{S}5} \psi$ ; confidence 0.060
257. ; $r _ { S }$ ; confidence 0.060
258. ; $\times \alpha ( x_0 , \dots , x _ { i - 1} , [ x _ { i } , x _ { j } ] , x _ { i + 1} , \dots , \widehat{x _ { j }} , \dots , x _ { n } ).$ ; confidence 0.060
259. ; $p _ { 1 } ( f , \tau ) = p ( e ^ { i a \text{ln} \tau } f , \tau ).$ ; confidence 0.060
260. ; $\mathcal{E} ( L ) = \mathcal{E} ^ { a } ( L ) \omega ^ { a } \otimes \Delta$ ; confidence 0.060
261. ; $\left( \text{sign det} \left( \begin{array} { c c c c } { 1 } & { p _ { i_0 } ^ { 1 } } & { \dots } & { p _ { i_0 } ^ { k } } \\ { \vdots } & { \vdots } & { \ddots } & { \vdots } \\ { 1 } & { p _ { i_k } ^ { 1 } } & { \cdots } & { p _ { i_ k } ^ { k } } \end{array} \right) \right) _ { 1 \leq i _ { 0 } < \ldots < i _ { k } \leq n } .$ ; confidence 0.059
262. ; $u.v = \sum _ { w } \mu ( u . v , w ) w$ ; confidence 0.059
263. ; $\mathbf{z} ^ { n } = \{ z _ { i } ^ { n } , x _ { i } ^ { n + 1 } \}$ ; confidence 0.059
264. ; $= 12 \mathsf{E} [ F_{ X} ( X ) F _ { Y } ( Y ) ] - 3.$ ; confidence 0.059
265. ; $h ^ {\prime }$ ; confidence 0.059
266. ; $\left. \begin{array} { c c c c c } { \square } & { \square } & { C ( \mathcal{S} ) } & { \square } & { \square } \\ { \square } & { \swarrow } & { \square } & { \searrow } & { \square } \\ { \mathcal{Z} } & { \square } & { } & { \square } & { \mathcal{S}. } \\ { \square } & { \searrow } & { \square } & { \swarrow } & { \square } \\ { \square } & { \square } & { \mathcal{O} } & { \square } & { \square } \end{array} \right.$ ; confidence 0.059
267. ; $L / N$ ; confidence 0.059
268. ; $\rho _ { u } ( z ) = \limsup _ { t \in \text{C} } ( u ( t z ) - \operatorname { log } | t z | ).$ ; confidence 0.058
269. ; $c_{m,n}$ ; confidence 0.058
270. ; $M_ { \Gamma \varphi}$ ; confidence 0.058
271. ; $a ^ { w } = \text{Op} ( J ^ { 1 / 2 } a )$ ; confidence 0.058
272. ; $\| I _ { n } ( g ) \| _ { L ^{ 2} ( \mu ) } = \sqrt { n ! } | \hat{g} | _ { L ^{ 2} ( [ 0,1 ] ^ { n } )}$ ; confidence 0.058
273. ; $e _ { n } ( H _ { d } ^ { k } ) \asymp n ^ { - k } . ( \operatorname { log } n ) ^ { ( d - 1 ) / 2 }.$ ; confidence 0.058
274. ; $\left| \sum _ { n \in l \atop ( h ( n ) , q ) = 1 } e ^ { 2 \pi i g ( n ) \overline { h ( n )} / q } \right| \leq ( \operatorname { deg } ( g ) + \operatorname { deg } ( h ) ) \sqrt { q },$ ; confidence 0.058
275. ; $\kappa _ { a } = a ^ { d - 2 } 2 \pi ^ { d / 2 } / \Gamma ( ( d - 2 ) / 2 )$ ; confidence 0.058
276. ; $\mathbf{t} ^ { \text{em} }$ ; confidence 0.057
277. ; $g_{ t }$ ; confidence 0.057
278. ; $E ^{ \otimes r}$ ; confidence 0.057
279. ; $[ . , . ]$ ; confidence 0.057
280. ; $\sigma_{ V , V } = \tau_{ V , V} R _ { V }$ ; confidence 0.057
281. ; $\| \Delta _ { h _ { i } } ^ { 1 } f _ { x _ { i } } ^ { ( r _ { i } ^ { * } ) } \| _ { L _ { p } ( \Omega _ { | h _ { i }| } ) } \leq M _ { i } | h _ { i } | ^ { \alpha _ { i } },$ ; confidence 0.057
282. ; $F _ { n } = \frac { H _ { n } ^ { ( - n ) } H _ { n-2 } ^ { ( - n + 3 ) } } { H _ { n-1 } ^ { ( - n + 2 ) } H _ { n - 1 } ^ { ( - n + 1 ) } },$ ; confidence 0.057
283. ; $\psi - \psi _ { 0 } = \varepsilon A ( \xi , \tau ) f _ { c } ( y ) e ^ { i ( ( k _ { c } , x ) + \mu _ { c } t ) } + \text { c.c. } + \text{h.o.t.} \ .$ ; confidence 0.057
284. ; $\hat { \sigma } = S _ { n } = \operatorname {MAD} _ { i = 1 } ^ { n } ( x _ { i } )$ ; confidence 0.057
285. ; $\mathcal{S} _ { P } = \langle P , \operatorname { Mod } _ { \mathcal{S} _ { P } } , \operatorname { mng } _ { \mathcal{S} _ { P } } , \models _{ \mathcal{S} _ { P }} \rangle$ ; confidence 0.056
286. ; $\operatorname {Bel} ( . | | B )$ ; confidence 0.056
287. ; $\operatorname { inf } _ { z _ { j } , w _ { j } } \operatorname { max } _ { k \in S _ { 1 } , \atop m \in S _ { 2 } } \frac { | h ( m , k ) | } { M _ { d ^ { \prime } } ( k ) M _ { d^ { \prime \prime } } ( m ) }$ ; confidence 0.056
288. ; $\operatorname {contr} ( \tilde { \nabla } ^ { q _ { 1 } } R ( \tilde{g} ) \otimes \ldots \otimes \tilde { \nabla } ^ { q _ { m } } R ( \tilde{g} ) )$ ; confidence 0.056
289. ; $G = \left( \begin{array} { c c c c c c c } { x _ { 0 } } & { \square \ldots \square} & { x _ { p - 1 } } & { y _ { 0 } } & { \square \ldots \square } & { y _ { q - 1 } } \end{array} \right),$ ; confidence 0.056
290. ; $S _ { M } ( i t )$ ; confidence 0.056
291. ; $\sigma _ { \text{Te} } ( A , \mathcal{H} ) = \sigma _ { \text{T} } ( L _ { a } , \mathcal{Q} ( \mathcal{H} ) )$ ; confidence 0.056
292. ; $x \in \tilde { \mathbf{Q} } ^ { n }$ ; confidence 0.055
293. ; $=e ^{-\frac { m } { 1 + a ^ { 2 } } \int _ { z } ^ { \xi } \frac { p _ { 0 } ( s ) - a i } { s } d s} \times \times \left\{ \int _ { z } ^ { \xi } \frac { p _ { 1 } ( s ) - p _ { 0 } ( s ) } { s } e^{ \frac { m } { 1 + a ^ { 2 } } \int _ { z } ^ { s } \frac { p _ { 0 } ( t ) - a i } { t } d t } d s - \frac { 1 + a ^ { 2 } } { m } \right\}.$ ; confidence 0.055
294. ; $\int _ { \mathbf{T} ^ { 2 } } | \hat { \chi }_{ NB} ( x ) | d x$ ; confidence 0.055
295. ; $= \left\langle x _ { 1 } , \ldots , x _ { m } | x ^ { l_i } x ^ { k _ { i + 1} } = x ^ { l _ { i + 2 } } ; \text { indices } ( \operatorname { mod } m ) \right\rangle.$ ; confidence 0.055
296. ; $\& \{ \exists x _ { n + 1} \psi _ { \mathfrak{A} } ^ { l } \overline { a } a : a \in A \}$ ; confidence 0.055
297. ; $ \operatorname { MS } _{\mathcal{H}}=\operatorname {SS} _{\mathcal{H}} / q$ ; confidence 0.055
298. ; $\# \mathcal{P}$ ; confidence 0.055
299. ; $\text{l} _ { m + 1 } = j $ ; confidence 0.055
300. ; $\epsilon_{ 0,0} ( x , y , z , w ) \approx \epsilon_{ 0,1} ( x , y , z , w ) , \ldots , \epsilon _ { m - 1,0 } ( x , y , z , w ) \approx \epsilon _ { m - 1 , 1} ( x , y , z , w )$ ; confidence 0.055
Maximilian Janisch/latexlist/latex/NoNroff/76. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/76&oldid=45550