Namespaces
Variants
Actions

User:Maximilian Janisch/latexlist/latex/NoNroff/59

From Encyclopedia of Mathematics
< User:Maximilian Janisch‎ | latexlist‎ | latex
Revision as of 00:10, 13 February 2020 by Maximilian Janisch (talk | contribs) (AUTOMATIC EDIT of page 59 out of 77 with 300 lines: Updated image/latex database (currently 22833 images latexified; order by Confidence, ascending: False.)
Jump to: navigation, search

List

1. a130240162.png ; $c ^ { \prime } \beta = \eta$ ; confidence 0.492

2. a120160160.png ; $\sum _ { i = 1 } ^ { S } \sum _ { t = 1 } ^ { T } n _ { t } q _ { i t } f ( y _ { i t } )$ ; confidence 0.492

3. g04328066.png ; $\succ$ ; confidence 0.492

4. f13024025.png ; $( \text { End } U ( \varepsilon ) ) ^ { + }$ ; confidence 0.492

5. m12015036.png ; $f _ { X | Y } ( X | Y ) = \frac { f _ { X , Y } ( X , Y ) } { f _ { Y } ( Y ) } , f _ { Y } ( Y ) > 0$ ; confidence 0.492

6. c02697030.png ; $M \geq 1$ ; confidence 0.492

7. c13025073.png ; $z _ { n }$ ; confidence 0.492

8. s13036019.png ; $l _ { 0 } = 0$ ; confidence 0.492

9. w13006026.png ; $C _ { g , n }$ ; confidence 0.492

10. a1300903.png ; $G = H _ { 1 } ^ { * } \ldots ^ { * } H _ { k }$ ; confidence 0.492

11. w13008026.png ; $\sqrt { \lambda } d \lambda + \text { (holomorphic), as } \lambda \rightarrow \infty$ ; confidence 0.492

12. t12020044.png ; $\frac { | g _ { 1 } ( k ) | } { M _ { d ^ { \prime } } ( k ) } , \frac { | g _ { 2 } ( k ) | } { M _ { d ^ { \prime } } ( k ) } \quad ( k \in S )$ ; confidence 0.491

13. k055840333.png ; $s , t \in [ \alpha , b ]$ ; confidence 0.491

14. f12023051.png ; $( i _ { K } \omega ) ( X _ { 1 } , \dots , X _ { k + 1 } ) =$ ; confidence 0.491

15. n06696025.png ; $\lambda + 2$ ; confidence 0.491

16. d12005065.png ; $- 1$ ; confidence 0.491

17. f13019024.png ; $( \frac { d } { d x } ) ^ { 2 } P _ { N } u ( x ) = \sum _ { k } ( i k ) ^ { 2 } a _ { k } e _ { i k x }$ ; confidence 0.491

18. d12028059.png ; $\operatorname { grad } \Phi ^ { m } | _ { \partial D _ { m } } \neq 0$ ; confidence 0.491

19. i12006048.png ; $( P ) = \operatorname { dim } ( \operatorname { Prsu } ( P ) )$ ; confidence 0.491

20. c0228507.png ; $N _ { 1 }$ ; confidence 0.491

21. e12024081.png ; $H ^ { 1 } ( Z [ 1 / p ] ; Z _ { p } ( n ) )$ ; confidence 0.491

22. q13002027.png ; $B P P$ ; confidence 0.491

23. z12002023.png ; $F _ { m - 1 }$ ; confidence 0.491

24. j13004066.png ; $P _ { \varphi } ( D _ { 1 } * D _ { 2 } ) ( v ) = P _ { \varphi } ( D _ { 1 } ) ( v ) P _ { \varphi } ( D _ { 2 } ) ( v )$ ; confidence 0.491

25. k13001013.png ; $\langle D \rangle$ ; confidence 0.491

26. b120150114.png ; $k \in N \cup \{ 0 \}$ ; confidence 0.490

27. b11034013.png ; $e$ ; confidence 0.490

28. s12016028.png ; $X ^ { i } = \{ x _ { 1 } ^ { i } , \ldots , x ^ { i m _ { i } } \} \subset [ 0,1 ]$ ; confidence 0.490

29. k055840171.png ; $A | _ { R } ( E _ { \overline { \lambda } } )$ ; confidence 0.490

30. l11003041.png ; $L ^ { \prime } ( E ) = \{ \mu \in \operatorname { ca } ( \Omega , F ) : | \mu | \leq \sum _ { i = 1 } ^ { n } \alpha _ { i } P _ { i }$ ; confidence 0.490

31. e12024078.png ; $c _ { L } \in H ^ { 1 } ( Q ( \mu _ { L } ) ; Z / M ( n ) )$ ; confidence 0.490

32. f120110196.png ; $\tilde { o }$ ; confidence 0.490

33. d120280118.png ; $B ^ { x , x - 1 }$ ; confidence 0.490

34. t130140172.png ; $q _ { C } : Z ^ { ( l _ { C } ) } \rightarrow Z$ ; confidence 0.490

35. c1201704.png ; $\gamma _ { i j } = \overline { \gamma } _ { i }$ ; confidence 0.490

36. a12022036.png ; $\sigma _ { ess } ( T )$ ; confidence 0.490

37. c130160138.png ; $[ ( t ( n ) ) ^ { Q ( 1 ) } ] = \operatorname { DSPACE } [ ( t ( n ) ) ^ { Q ( 1 ) } ]$ ; confidence 0.490

38. m12016035.png ; $X _ { 1 } \sim E _ { Y , n } ( M _ { 1 } , \Sigma _ { 11 } \otimes \Phi , \psi )$ ; confidence 0.490

39. o13005054.png ; $x \in \mathfrak { H } +$ ; confidence 0.490

40. b1106709.png ; $5$ ; confidence 0.489

41. c12008076.png ; $x _ { i j } ^ { k } \in R ^ { n _ { 1 } }$ ; confidence 0.489

42. a130040175.png ; $\Lambda _ { D } F$ ; confidence 0.489

43. d12031016.png ; $f ( \lambda ) = \sum _ { n = 0 } ^ { \infty } \alpha _ { n } \lambda ^ { n }$ ; confidence 0.489

44. t12014068.png ; $T _ { \phi / | \phi | }$ ; confidence 0.489

45. w1100608.png ; $E ( B ( t ) ) \equiv 0 , \quad E ( B ( t ) . B ( s ) ) = \operatorname { min } ( t , s )$ ; confidence 0.489

46. r130070138.png ; $= ( F ( . ) , h ( . , y ) ) _ { H } = f ( y )$ ; confidence 0.489

47. w12011018.png ; $v ( x ) = v ( - x )$ ; confidence 0.489

48. b120210102.png ; $\{ \mu _ { i } \} _ { i = 1 } ^ { s - 1 } = \{ w . \lambda \} _ { w \in W ^ { ( k ) } }$ ; confidence 0.489

49. b13023050.png ; $G ( u )$ ; confidence 0.489

50. e120020102.png ; $V \not \equiv W$ ; confidence 0.489

51. s12024033.png ; $h ^ { S * } ( . ) \approx \overline { E } \times ( . )$ ; confidence 0.489

52. i12008055.png ; $T < T _ { c }$ ; confidence 0.489

53. l13006091.png ; $( u _ { i } , u _ { t } + 1 , u _ { t } + 2 )$ ; confidence 0.489

54. b12040059.png ; $n ^ { + } = \oplus _ { \alpha \in S } + \mathfrak { g } _ { \alpha }$ ; confidence 0.489

55. i13002025.png ; $S _ { k } = E [ \left( \begin{array} { l } { X } \\ { k } \end{array} \right) ]$ ; confidence 0.489

56. b12014051.png ; $t \geq \operatorname { deg } s _ { i } > \operatorname { deg } r _ { i }$ ; confidence 0.489

57. b120150158.png ; $i , j \in \{ 1 , \ldots , n \}$ ; confidence 0.489

58. c13016022.png ; $NP = NTIME [ n ^ { Q ( 1 ) } ]$ ; confidence 0.489

59. p13013055.png ; $S \lambda$ ; confidence 0.489

60. b1205306.png ; $( f \mapsto \int K ( t , . ) f ( t ) d \mu ( t ) = T f ) \in L ^ { p } ( \nu )$ ; confidence 0.489

61. f1300406.png ; $d _ { k }$ ; confidence 0.489

62. w12007098.png ; $i \overline { \xi A }$ ; confidence 0.489

63. d032450388.png ; $1 \in V$ ; confidence 0.489

64. b12055045.png ; $\iota : M \rightarrow C * ( M )$ ; confidence 0.488

65. p12017084.png ; $A = \alpha + i b$ ; confidence 0.488

66. i12005053.png ; $\operatorname { lim } _ { n \rightarrow \infty } \alpha _ { n } = 0 = \operatorname { lim } _ { n \rightarrow \infty } n ^ { - 1 } \operatorname { log } \alpha _ { n }$ ; confidence 0.488

67. b1203004.png ; $[ 0,2 \pi [ ^ { N } ] ^ { N }$ ; confidence 0.488

68. l11003023.png ; $\operatorname { ca } ( \Omega , F )$ ; confidence 0.488

69. d12028042.png ; $K \subset C ^ { x }$ ; confidence 0.488

70. o1300809.png ; $x \in R _ { + } , \varphi _ { m } ( 0 , k ) = 0 , \varphi _ { m } ^ { \prime } ( 0 , k ) = 1$ ; confidence 0.488

71. s1304008.png ; $X ^ { P } = \{ x \in X : g x = x , \forall g \in P \}$ ; confidence 0.488

72. i13005047.png ; $f ( x , i k j ) \in L ^ { 2 } ( R )$ ; confidence 0.488

73. n066630105.png ; $\| f - q \| _ { L _ { p } ( R ^ { n } ) } \leq c \sum _ { i = 1 } ^ { n } M _ { i }$ ; confidence 0.488

74. b13019013.png ; $S ( \alpha / q )$ ; confidence 0.488

75. d12002046.png ; $= \operatorname { min } _ { k \in P } c ^ { T } x ^ { ( k ) } + u _ { 1 } ^ { T } ( A _ { 1 } x ^ { ( k ) } - b _ { 1 } )$ ; confidence 0.488

76. b120040112.png ; $\{ x _ { n } \}$ ; confidence 0.488

77. a12027085.png ; $W ( \rho ) . W ( \overline { \rho } ) = 1$ ; confidence 0.488

78. d11022037.png ; $i = 0 , \dots , r _ { j } - 1$ ; confidence 0.488

79. a130240246.png ; $F = MS _ { H } / MS$ ; confidence 0.488

80. c11016010.png ; $[ a , b ]$ ; confidence 0.488

81. c02327033.png ; $s p ( A )$ ; confidence 0.488

82. b13028051.png ; $H * \Omega ^ { \infty } X$ ; confidence 0.488

83. f13029069.png ; $f ^ { t }$ ; confidence 0.488

84. g120040145.png ; $t < s$ ; confidence 0.487

85. w12001036.png ; $k \in N _ { 0 }$ ; confidence 0.487

86. d120020244.png ; $\overline { u } 1 , \overline { q }$ ; confidence 0.487

87. b12044092.png ; $a \in R G$ ; confidence 0.487

88. a11032021.png ; $B _ { j }$ ; confidence 0.487

89. w13012021.png ; $d _ { H } ( A , B ) = \operatorname { sup } \{ | d ( x , A ) - d ( x , B ) | : x \in X \}$ ; confidence 0.487

90. s090190149.png ; $X ( t _ { 2 } )$ ; confidence 0.487

91. s12004080.png ; $X \in G L$ ; confidence 0.487

92. s12004060.png ; $s \lambda$ ; confidence 0.487

93. c12031027.png ; $\alpha \in N _ { 0 } ^ { \phi }$ ; confidence 0.487

94. w120090342.png ; $\left( \begin{array} { c } { h } \\ { i } \end{array} \right) = \frac { h ( h - 1 ) \ldots ( h - i + 1 ) } { i ! }$ ; confidence 0.487

95. s08602019.png ; $\Phi ^ { + } ( t _ { 0 } ) - \Phi ^ { - } ( t _ { 0 } ) = \phi ( t _ { 0 } )$ ; confidence 0.487

96. m12012017.png ; $[ A , f ] + [ B , g ] = [ A \cap B , f + g ]$ ; confidence 0.487

97. f120110203.png ; $f ( x ) \in \tilde { Q } ( D ^ { n } )$ ; confidence 0.487

98. s12023053.png ; $B _ { \delta } ( . )$ ; confidence 0.487

99. q12003034.png ; $\operatorname { Fun } ( M )$ ; confidence 0.487

100. a13028022.png ; $c _ { k } = a _ { k } ^ { 2 } - b _ { k } ^ { 2 } , s _ { k } = s _ { k - 1 } - 2 ^ { k } c _ { k } , p _ { k } = 2 s _ { k } ^ { - 1 } a _ { k } ^ { 2 }$ ; confidence 0.487

101. q12008065.png ; $F$ ; confidence 0.487

102. s13045061.png ; $= 12 \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { 1 } [ C _ { X , Y } ( u , v ) - u v ] d u d v$ ; confidence 0.487

103. g1200102.png ; $\hat { f } ( \omega )$ ; confidence 0.486

104. z13011049.png ; $\{ p _ { i x } \} \frac { N } { 1 }$ ; confidence 0.486

105. s1306509.png ; $\Phi _ { N } ( z ) = \sum _ { k = 0 } ^ { n } b _ { n k } z ^ { k }$ ; confidence 0.486

106. m13026073.png ; $\lambda / x \swarrow b _ { \mu }$ ; confidence 0.486

107. a01138077.png ; $R$ ; confidence 0.486

108. b13011025.png ; $p \in \Pi _ { x }$ ; confidence 0.486

109. t12020096.png ; $1 / P _ { m , n }$ ; confidence 0.486

110. f110160110.png ; $8.5$ ; confidence 0.486

111. m120110100.png ; $z [ \pi _ { 1 } ( M ) ]$ ; confidence 0.486

112. e12012042.png ; $h _ { i } = ( h _ { i 1 } , \dots , h _ { i N } )$ ; confidence 0.486

113. m06222084.png ; $( x x _ { t } x _ { \lambda } x _ { v } ) = 0$ ; confidence 0.486

114. s13059030.png ; $\{ Q _ { n } ( z ) \in \Lambda _ { n } : n = 0,1 , \ldots \}$ ; confidence 0.486

115. a01046051.png ; $h \in X$ ; confidence 0.486

116. c12026049.png ; $\| \Delta V ^ { n } \| ^ { 2 } \leq \| \Delta V ^ { 0 } \| ^ { 2 } + \sum _ { m = 1 } ^ { n } k \| ( L _ { h k } V ) ^ { m } \| ^ { 2 }$ ; confidence 0.486

117. l12015034.png ; $x _ { j }$ ; confidence 0.485

118. c120180346.png ; $\{ M , g \} \in S ^ { 1 }$ ; confidence 0.485

119. a01220050.png ; $z \in M$ ; confidence 0.485

120. f04151073.png ; $k \neq 1$ ; confidence 0.485

121. a12023027.png ; $\operatorname { limsup } _ { k \rightarrow \infty } \sqrt [ k x ] { k } = 1$ ; confidence 0.485

122. a130240308.png ; $\hat { \eta } _ { \Omega } = X \hat { \beta }$ ; confidence 0.485

123. e12009012.png ; $R _ { \mu \nu } - \frac { 1 } { 2 } R g _ { \mu \nu } - \Lambda g _ { \mu \nu } = \chi T _ { \mu \nu }$ ; confidence 0.485

124. b12037066.png ; $L \cap \{ 0,1 \} ^ { x }$ ; confidence 0.485

125. w13010013.png ; $W ^ { x } ( t )$ ; confidence 0.485

126. r13010029.png ; $z \vec { \Delta } / G$ ; confidence 0.485

127. b12031014.png ; $L ^ { p } ( R ^ { n } )$ ; confidence 0.485

128. a13029044.png ; $HF _ { * } ^ { symp } ( M ( P ) , L _ { 0 } , L _ { 1 } )$ ; confidence 0.485

129. w12001015.png ; $[ z ^ { n } f ( D ) , z ^ { m } g ( D ) ] =$ ; confidence 0.485

130. c12026037.png ; $\| V ^ { n } \| ^ { 2 } \leq \| V ^ { 0 } \| ^ { 2 } + C \sum _ { m = 1 } ^ { n } k \| ( L _ { k k } V ) ^ { m } \| ^ { 2 }$ ; confidence 0.484

131. e120240129.png ; $l \notin S$ ; confidence 0.484

132. f12016014.png ; $\chi T$ ; confidence 0.484

133. a130040279.png ; $\Gamma , \varphi \operatorname { log } \psi$ ; confidence 0.484

134. d13018075.png ; $A ( \vec { G } )$ ; confidence 0.484

135. v12006033.png ; $k ^ { n } B _ { N } ( h / k )$ ; confidence 0.484

136. s13001039.png ; $v \in \{ p _ { 1 } , \dots , p _ { x } , \infty \}$ ; confidence 0.484

137. c02583041.png ; $T ^ { * n } \rightarrow 0$ ; confidence 0.484

138. b12042087.png ; $V = \oplus _ { i = 0 } ^ { n - 1 } V _ { i }$ ; confidence 0.484

139. d12024034.png ; $\mathfrak { g } ( f )$ ; confidence 0.484

140. t130050130.png ; $\sigma _ { T } ( A , X ) = \hat { A } ( M _ { \sigma _ { T } } ( B , X ) )$ ; confidence 0.484

141. a110010266.png ; $2$ ; confidence 0.484

142. h12001043.png ; $V ^ { 2 x }$ ; confidence 0.484

143. b12050050.png ; $( t , x ) \mapsto l ( t , x )$ ; confidence 0.484

144. j120020196.png ; $E [ | Y _ { \infty } - Y _ { T } | ^ { 2 } | F _ { T } ] = w ( B _ { \operatorname { min } } ( T , \tau ) )$ ; confidence 0.484

145. z12002017.png ; $F _ { x _ { 2 } }$ ; confidence 0.484

146. s12004012.png ; $\delta = ( l - 1 , l - 2 , \ldots , 0 )$ ; confidence 0.484

147. a130050237.png ; $v < 1$ ; confidence 0.483

148. l120120113.png ; $V ( O _ { M } )$ ; confidence 0.483

149. b110220148.png ; $H _ { D } ^ { 2 } ( X / R , R ( 2 ) )$ ; confidence 0.483

150. l11003098.png ; $P = \{ \delta _ { X } : x \in [ 0,1 ] \}$ ; confidence 0.483

151. i13006029.png ; $s _ { j } : = \| f ( x , i k _ { j } ) \| ^ { - 2 } L ^ { 2 } ( R _ { + } )$ ; confidence 0.483

152. a01012030.png ; $n = 0,1 , \dots$ ; confidence 0.483

153. a13020016.png ; $K ( a , b ) c = \langle a c b \rangle - \langle b c a \rangle$ ; confidence 0.483

154. i13007075.png ; $83$ ; confidence 0.483

155. f12004044.png ; $( R , + , \leq )$ ; confidence 0.483

156. s13064053.png ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { \operatorname { det } T _ { n } ( a ) } { G ( b ) ^ { n } n ^ { \Omega } } = E$ ; confidence 0.483

157. e1200404.png ; $l : R \rightarrow R$ ; confidence 0.483

158. p1201304.png ; $P ( x ) = x ^ { n } + a _ { 1 } x ^ { n - 1 } + \ldots + a _ { n }$ ; confidence 0.483

159. b1202004.png ; $f ( z ) = \sum _ { x = 0 } ^ { \infty } a _ { x } z ^ { x }$ ; confidence 0.483

160. b1108405.png ; $b \in R ^ { m }$ ; confidence 0.483

161. w13008094.png ; $d \omega j \sim$ ; confidence 0.483

162. b130290128.png ; $R ( q ^ { N } )$ ; confidence 0.483

163. a130040374.png ; $F , G \in Fi _ { D } A$ ; confidence 0.483

164. a130240311.png ; $\hat { \eta } _ { i j } = y _ { i j }$ ; confidence 0.483

165. b13010050.png ; $\tilde { \varphi } = \varphi$ ; confidence 0.483

166. w13017033.png ; $\{ y _ { s } ^ { ( i ) } : s < t , i = 1 , \dots , n \}$ ; confidence 0.483

167. d13005010.png ; $K ( m ) \subseteq DG ( m , r ) \subseteq RM ( 2 , m )$ ; confidence 0.483

168. b12042082.png ; $k ^ { * }$ ; confidence 0.482

169. c13016042.png ; $= \operatorname { DSPACE } [ n ^ { O ( 1 ) } ]$ ; confidence 0.482

170. c02117010.png ; $\pm \infty$ ; confidence 0.482

171. e120230107.png ; $D _ { i } = \frac { \partial } { \partial x _ { i } } + \sum _ { | \alpha | = 0 } ^ { 2 k } y _ { \alpha + e _ { i } } ^ { b } \frac { \partial } { \partial y _ { \alpha } ^ { b } }$ ; confidence 0.482

172. a13008084.png ; $8$ ; confidence 0.482

173. q12002043.png ; $\operatorname { Fun } _ { q } ( M ) \rightarrow \operatorname { Fun } _ { q } ( M ) \otimes \operatorname { Fun } _ { q } ( SU ( n ) )$ ; confidence 0.482

174. b13020028.png ; $a _ { i j } \in Z$ ; confidence 0.482

175. a12028093.png ; $X$ ; confidence 0.482

176. f13029079.png ; $f | _ { \sigma } ^ { \leftarrow } : \tau \leftarrow \sigma$ ; confidence 0.482

177. n12002049.png ; $\mu = \sum _ { x = 1 } ^ { \infty } n ^ { - 3 } \delta _ { n }$ ; confidence 0.482

178. a12017041.png ; $s ^ { x }$ ; confidence 0.482

179. s12018031.png ; $\langle x , y \rangle \in K$ ; confidence 0.482

180. f130100135.png ; $\operatorname { supp } T = \{ x _ { 1 } , \dots , x _ { N } \}$ ; confidence 0.482

181. a130240123.png ; $i = 1,2 , \dots$ ; confidence 0.482

182. i13009023.png ; $\dot { k } _ { \infty }$ ; confidence 0.482

183. c0200307.png ; $X \backslash P$ ; confidence 0.482

184. m12010029.png ; $\alpha \in \Delta _ { \gamma }$ ; confidence 0.482

185. a1200609.png ; $\Omega$ ; confidence 0.482

186. b12027056.png ; $\{ p ; \} _ { 0 } ^ { \infty }$ ; confidence 0.482

187. v12002043.png ; $f ^ { * } : \overline { H } \square ^ { q } ( Y , G ) \rightarrow \overline { H } \square ^ { q } ( X , G )$ ; confidence 0.481

188. l12019034.png ; $\dot { x } = A x$ ; confidence 0.481

189. s13044019.png ; $E _ { k } ( X )$ ; confidence 0.481

190. t13004025.png ; $D y _ { N } ^ { * } ( x ) = \tau T _ { N } ^ { * } ( x )$ ; confidence 0.481

191. o13005036.png ; $5$ ; confidence 0.481

192. i13005078.png ; $R _ { + } ( x ) : = \frac { 1 } { 2 \pi } \int _ { - \infty } ^ { \infty } r _ { + } ( k ) e ^ { i k x } d k$ ; confidence 0.481

193. t120200223.png ; $1 / P _ { m } , K$ ; confidence 0.481

194. s1203208.png ; $x \in V _ { I }$ ; confidence 0.481

195. a130240519.png ; $Z _ { 13 }$ ; confidence 0.481

196. e12011050.png ; $q f = 0$ ; confidence 0.481

197. a130240501.png ; $9$ ; confidence 0.481

198. f13009044.png ; $U _ { n + 1 } ^ { ( k ) } ( x ) = \sum \frac { ( n _ { 1 } + \ldots + n _ { k } ) ! } { n _ { 1 } ! \ldots n _ { k } ! } x ^ { k ( x _ { 1 } + \ldots + n _ { k } ) - n }$ ; confidence 0.481

199. m13013080.png ; $\sum _ { j } b _ { j } = 0$ ; confidence 0.481

200. a11025021.png ; $E _ { 1 }$ ; confidence 0.481

201. e1200903.png ; $\nabla \times E = - \frac { 1 } { c ^ { 2 } } \frac { \partial H } { \partial t }$ ; confidence 0.481

202. f13021038.png ; $00 ( G ; C )$ ; confidence 0.481

203. f130290146.png ; $( f , \phi ) \rightarrow \dashv ( f , \phi )$ ; confidence 0.481

204. v12002035.png ; $f ^ { * } : \overline { H } \square ^ { * } ( Y , G ) \rightarrow \overline { H } \square ^ { * } ( X , G )$ ; confidence 0.481

205. t13014056.png ; $A _ { Q } ( v ) = \prod _ { i , j \in Q _ { 0 } } \prod _ { \langle \beta : j \rightarrow i \rangle \in Q _ { 1 } } M _ { v _ { i } \times v _ { j } } ( K ) _ { \beta }$ ; confidence 0.481

206. z13011057.png ; $\frac { \mu _ { n } ( x ) } { n } \stackrel { P } { \rightarrow } - \int _ { 0 } ^ { \infty } \frac { \lambda ^ { x } } { x ! } e ^ { - \lambda } G ( d \lambda )$ ; confidence 0.480

207. l057000144.png ; $( x : \sigma ) \in \Gamma \vdash x : \sigma$ ; confidence 0.480

208. n13005046.png ; $( S , r )$ ; confidence 0.480

209. f120110202.png ; $\Gamma ^ { 0 }$ ; confidence 0.480

210. w120030115.png ; $K _ { 1 } , K _ { 2 } , \ldots$ ; confidence 0.480

211. m120100121.png ; $\operatorname { Aut } ( G , c )$ ; confidence 0.480

212. g13003083.png ; $x \in \Omega \backslash \Gamma$ ; confidence 0.480

213. i1300108.png ; $G = S _ { y }$ ; confidence 0.480

214. g12005046.png ; $\frac { \partial A } { \partial \tau } = \frac { \partial \mu _ { 0 } } { \partial R } ( k _ { c } , R _ { c } ) A +$ ; confidence 0.480

215. t130140136.png ; $\pi$ ; confidence 0.480

216. e12001049.png ; $10 p$ ; confidence 0.480

217. i12001021.png ; $\sigma ( t ) = \int _ { t ^ { - n } g \Phi } ^ { \infty } ( s ) d s$ ; confidence 0.480

218. a13018056.png ; $3 A$ ; confidence 0.480

219. a130040720.png ; $S = \{ S _ { P } : \text { Pa set } \}$ ; confidence 0.480

220. a130240472.png ; $i = 1 , \ldots , m$ ; confidence 0.480

221. b13026047.png ; $U _ { \lambda } = \{ x \in R ^ { n } : ( x , \lambda ) \in U \}$ ; confidence 0.480

222. t120200233.png ; $c _ { m , n } = 2 ^ { - n } ( \frac { 1 + \rho } { 2 } ) ^ { m } ( \frac { 1 - \rho } { 2 } ) ^ { n + k }$ ; confidence 0.480

223. o0680808.png ; $B _ { i \alpha } \beta$ ; confidence 0.480

224. b12004083.png ; $g \in X$ ; confidence 0.480

225. f13010094.png ; $L _ { C } ^ { 1 } ( \hat { G } )$ ; confidence 0.479

226. c130160118.png ; $B \in C$ ; confidence 0.479

227. b1203408.png ; $U _ { 1 } = \{ z : | z _ { j } | < 1 , j = 1 , \ldots , n \}$ ; confidence 0.479

228. l13001024.png ; $C ( T ^ { x } )$ ; confidence 0.479

229. l13006073.png ; $( 20 , \dots , z _ { r } - 1 ) \neq ( 0 , \dots , 0 )$ ; confidence 0.479

230. b1201207.png ; $( M ) \geq \alpha ( n ) ( \frac { \operatorname { inj } M } { \pi } ) ^ { n }$ ; confidence 0.479

231. s13044016.png ; $[ X , Y ] * \simeq [ D Y , D X ] \times$ ; confidence 0.479

232. s0857908.png ; $\omega _ { j }$ ; confidence 0.479

233. l11003027.png ; $( \Omega , F ) +$ ; confidence 0.479

234. c120180132.png ; $\otimes ^ { r } E$ ; confidence 0.479

235. w13006040.png ; $^ { + } ( S ^ { 1 } ) / \operatorname { Mob } ( S ^ { 1 } )$ ; confidence 0.479

236. t12015057.png ; $A _ { 0 } \equiv \{ \xi \in A ^ { \prime \prime } : \xi \in \cap _ { \alpha \in C } D ( \Delta ^ { \alpha } ) \}$ ; confidence 0.479

237. l05700073.png ; $X \equiv ( \lambda x . F ( x x ) ) W = F ( W W ) \equiv F X$ ; confidence 0.479

238. f120210104.png ; $= \sum _ { i = 0 } ^ { \infty } \sum _ { k = 0 } ^ { \infty } c _ { k } ( \lambda ) z ^ { i } \sum _ { n = 0 } ^ { N } a _ { i } ^ { n } z ^ { n } ( \frac { \partial } { \partial z } ) ^ { n } z ^ { \lambda + k } =$ ; confidence 0.479

239. d120230144.png ; $J = ( I _ { p } \oplus - l _ { q } )$ ; confidence 0.479

240. d03127016.png ; $T _ { X }$ ; confidence 0.479

241. t12015053.png ; $\xi \rightarrow \xi ^ { \# } \equiv S \xi$ ; confidence 0.478

242. f03847013.png ; $W ( )$ ; confidence 0.478

243. c12026019.png ; $( x ; ( n + 1 / 2 ) k )$ ; confidence 0.478

244. b12022032.png ; $M _ { f } ( v ) = \frac { \rho f } { ( 2 \pi T _ { f } ) ^ { N / 2 } } e ^ { - p - u } f | ^ { 2 } / 2 T _ { f }$ ; confidence 0.478

245. l120170237.png ; $K _ { P }$ ; confidence 0.478

246. a13004074.png ; $5$ ; confidence 0.478

247. a01055054.png ; $x ^ { G }$ ; confidence 0.478

248. l06005052.png ; $u ^ { 1 } , \ldots , u ^ { n }$ ; confidence 0.478

249. f120110214.png ; $151$ ; confidence 0.478

250. z13003014.png ; $z f$ ; confidence 0.478

251. a11041067.png ; $K _ { X }$ ; confidence 0.478

252. d03399068.png ; $\alpha _ { 1 } = 0$ ; confidence 0.478

253. a13024019.png ; $y$ ; confidence 0.478

254. v1301109.png ; $x = \frac { \Gamma } { l \sqrt { 8 } }$ ; confidence 0.478

255. c1203105.png ; $F _ { d }$ ; confidence 0.478

256. c12002025.png ; $\int _ { 0 } ^ { \infty } \frac { f ^ { * } \mu _ { t } } { t } d t \equiv \operatorname { lim } _ { \epsilon \rightarrow 0 , \rho \rightarrow \infty } \int _ { \epsilon } ^ { \rho } \frac { f ^ { * } \mu _ { t } } { t } d t = c _ { \mu } f$ ; confidence 0.478

257. s12016010.png ; $a ^ { i } \in R$ ; confidence 0.478

258. o0680804.png ; $q _ { i } ( z , t )$ ; confidence 0.478

259. i13007027.png ; $q ( \xi ) : = \int _ { R ^ { 3 } } e ^ { - i \xi x } q ( x ) d x$ ; confidence 0.478

260. l057000190.png ; $d \cdot e = \{ b \in B : \exists \beta \subseteq e ( b , \beta ) \in d \}$ ; confidence 0.477

261. i050840280.png ; $C ^ { 3 }$ ; confidence 0.477

262. d12011014.png ; $\operatorname { lim } _ { x \rightarrow \infty } f ( x ; ) = 0$ ; confidence 0.477

263. v096900141.png ; $p = 1 , \ldots , N _ { 0 }$ ; confidence 0.477

264. m13014040.png ; $B _ { R }$ ; confidence 0.477

265. e12026034.png ; $P ( \theta , \mu ) ( d x ) = \sum _ { k = 0 } ^ { n } \left( \begin{array} { l } { n } \\ { k } \end{array} \right) p ^ { k } q ^ { n - k } \delta _ { k } ( d x )$ ; confidence 0.477

266. c02583035.png ; $u ( \lambda ) \not \equiv 0$ ; confidence 0.477

267. o130060149.png ; $S : \mathfrak { E } \rightarrow \hat { \mathfrak { C } }$ ; confidence 0.477

268. r1300101.png ; $f , f _ { 1 } , \dots , f _ { m } \in R : = k [ x _ { 1 } , \dots , x _ { n } ]$ ; confidence 0.477

269. m13002038.png ; $T _ { i } ( S )$ ; confidence 0.477

270. b130290158.png ; $A \backslash \{ m \}$ ; confidence 0.477

271. i12005086.png ; $\{ \theta _ { n } \}$ ; confidence 0.477

272. m13023099.png ; $K _ { X } + + B ^ { + }$ ; confidence 0.477

273. a11032024.png ; $\lambda _ { j } ^ { ( l ) } \in R$ ; confidence 0.477

274. l1201707.png ; $\underline { C } ( \overline { R } )$ ; confidence 0.477

275. c13005034.png ; $H = \{ \sigma \in \operatorname { Aut } \Gamma : v ^ { \sigma } = v \}$ ; confidence 0.477

276. a130050250.png ; $Z _ { G } ( - q ^ { - 1 } ) \neq 0$ ; confidence 0.477

277. t130050172.png ; $\sigma _ { T } ( N , K ) \subseteq \sigma _ { T } ( S , H ) \subseteq \hat { \sigma } ( N , K )$ ; confidence 0.477

278. k05584044.png ; $( K , ( . . ) )$ ; confidence 0.477

279. h13006035.png ; $\sum c _ { \alpha } D \alpha D$ ; confidence 0.477

280. a11064014.png ; $\Omega$ ; confidence 0.477

281. m13013086.png ; $\vec { i j }$ ; confidence 0.477

282. a0106405.png ; $k$ ; confidence 0.477

283. m130260161.png ; $b _ { 1 } \ldots b _ { n } = 0$ ; confidence 0.476

284. l12006060.png ; $h ^ { I I } ( z ) = h ( z ) + 2 \pi i W ( z )$ ; confidence 0.476

285. m130140130.png ; $r j , 2$ ; confidence 0.476

286. n06752073.png ; $d _ { i } = e _ { 1 } ^ { n _ { i 1 } } \ldots e _ { s } ^ { n _ { i s } } , \quad i = 1 , \dots , r$ ; confidence 0.476

287. a01071045.png ; $x \in M$ ; confidence 0.476

288. z13001069.png ; $f ( z ^ { 2 } - 2 z \operatorname { cos } w + 1 )$ ; confidence 0.476

289. a13013032.png ; $\phi$ ; confidence 0.476

290. s12005011.png ; $S _ { B B } ( z ) \equiv 0$ ; confidence 0.476

291. m13023046.png ; $v ^ { \prime } \in \overline { N E } ( X / S )$ ; confidence 0.476

292. f120110164.png ; $\Gamma j$ ; confidence 0.476

293. b13026079.png ; $B [ R ] \subset R ^ { n }$ ; confidence 0.476

294. a130040518.png ; $\Omega$ ; confidence 0.476

295. j12002090.png ; $E [ | Y _ { \infty } - Y _ { T } | | F _ { T } ] \leq c$ ; confidence 0.475

296. a130240305.png ; $4$ ; confidence 0.475

297. k055840329.png ; $x ( . ) \rightarrow \int _ { a } ^ { b } K ( , s ) x ( s ) d \sigma ( s )$ ; confidence 0.475

298. m062160160.png ; $\dot { x } = A x + B u$ ; confidence 0.475

299. m13013089.png ; $[ \delta _ { i j } \alpha _ { i } - k j ] _ { \nu \times \nu }$ ; confidence 0.475

300. b13011024.png ; $p = \sum _ { j = 0 } ^ { n } a _ { j } b _ { j } ^ { n }$ ; confidence 0.475

How to Cite This Entry:
Maximilian Janisch/latexlist/latex/NoNroff/59. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/59&oldid=44469