User:Maximilian Janisch/latexlist/latex/10
List
1. ; $A , B \in K$ ; confidence 0.882
2. ; $4$ ; confidence 0.882
3. ; $S _ { E } = \{ \omega \in \hat { G } : E + \omega \subseteq E \}$ ; confidence 0.881
4. ; $F _ { + } ( x + i 0 ) - F _ { - } ( x - i 0 )$ ; confidence 0.881
5. ; $y _ { 2 } = ( x _ { 1 } + x _ { 3 } ) ( x _ { 2 } + x _ { 4 } )$ ; confidence 0.881
6. ; $t _ { \lambda } ^ { \prime }$ ; confidence 0.881
7. ; $r$ ; confidence 0.881
8. ; $i , j = 1,2$ ; confidence 0.881
9. ; $F _ { q }$ ; confidence 0.880
10. ; $P K$ ; confidence 0.879
11. ; $\langle y _ { 1 } - y _ { 2 } , x _ { 1 } - x _ { 2 } \rangle \geq 0$ ; confidence 0.879
12. ; $945 = 3 ^ { 3 } .5 .7$ ; confidence 0.879
13. ; $w _ { N } ( \alpha ) \geq n$ ; confidence 0.879
14. ; $F \equiv \operatorname { grad } \phi$ ; confidence 0.879
15. ; $| I | = \operatorname { card } ( R / I )$ ; confidence 0.879
16. ; $r$ ; confidence 0.879
17. ; $X _ { \delta }$ ; confidence 0.879
18. ; $P _ { q }$ ; confidence 0.879
19. ; $\omega ^ { k } = d x ^ { k }$ ; confidence 0.878
20. ; $\alpha _ { i } < b _ { i }$ ; confidence 0.878
21. ; $H \phi$ ; confidence 0.878
22. ; $Q _ { 1 } \cup \square \ldots \cup Q _ { m }$ ; confidence 0.878
23. ; $\forall x _ { i } \in D ( A )$ ; confidence 0.878
24. ; $T ^ { \# } ( n )$ ; confidence 0.878
25. ; $C ^ { 2 } : 1 E$ ; confidence 0.878
26. ; $Z _ { q } ( y ) = \sum _ { n = 0 } ^ { \infty } q ^ { n } y ^ { n } = ( 1 - q y ) ^ { - 1 }$ ; confidence 0.877
27. ; $| w | < 1 / 16$ ; confidence 0.877
28. ; $e _ { \lambda } ^ { 1 } \in X$ ; confidence 0.877
29. ; $B O$ ; confidence 0.877
30. ; $d j \neq 0$ ; confidence 0.877
31. ; $3$ ; confidence 0.876
32. ; $: C ( K ) \rightarrow L _ { p } ( K , \mu )$ ; confidence 0.876
33. ; $R [ F ( t ) ] = ( 1 - t ^ { 2 } ) F ^ { \prime \prime } - ( 2 \rho - 1 ) t F ^ { \prime \prime }$ ; confidence 0.876
34. ; $z = z 0$ ; confidence 0.876
35. ; $| x ( t ) \| \leq c \| x _ { 0 } \| \text { for all } t \in [ 0 , \tau ]$ ; confidence 0.875
36. ; $n \times 1$ ; confidence 0.875
37. ; $p ^ { * } y \leq \lambda ^ { * } p ^ { * } x$ ; confidence 0.875
38. ; $( K / k )$ ; confidence 0.875
39. ; $z _ { k } \in L$ ; confidence 0.875
40. ; $( X ^ { \omega } \chi ^ { - 1 } ) = \pi ^ { \mu _ { \chi } ^ { * } } g _ { \chi } ^ { * } ( T )$ ; confidence 0.875
41. ; $\tau = \{ t _ { i } \} _ { i = 0 } ^ { i = n }$ ; confidence 0.875
42. ; $\operatorname { inv } ( x )$ ; confidence 0.875
43. ; $g _ { n } ( \Omega )$ ; confidence 0.875
44. ; $Q = \sum _ { j = 0 } ^ { \infty } Q _ { j } z ^ { - j } , Q _ { j } = \left( \begin{array} { c c } { h _ { j } } & { e _ { j } } \\ { f _ { j } } & { - h _ { j } } \end{array} \right)$ ; confidence 0.875
45. ; $R ^ { N }$ ; confidence 0.875
46. ; $m$ ; confidence 0.874
47. ; $c = 0$ ; confidence 0.874
48. ; $| w | = \rho < 1$ ; confidence 0.874
49. ; $p = - \infty$ ; confidence 0.874
50. ; $f ( \alpha + h ) = \sum _ { n = 0 } ^ { \infty } P _ { n } ( h )$ ; confidence 0.873
51. ; $R ^ { \prime }$ ; confidence 0.873
52. ; $AO ( G )$ ; confidence 0.873
53. ; $y _ { i j k }$ ; confidence 0.873
54. ; $\tau ( S )$ ; confidence 0.873
55. ; $b ( x ) = \sum _ { j = 1 } ^ { m } n _ { j } ( x ) a _ { j } ( x )$ ; confidence 0.872
56. ; $L _ { p } ( E )$ ; confidence 0.872
57. ; $S \cap R ( G ) = ( e )$ ; confidence 0.872
58. ; $O ( n ) / O ( m )$ ; confidence 0.872
59. ; $P _ { n } ^ { ( k ) } ( \lambda _ { k } ) = 0 , \quad k = 0 , \ldots , n - 1 ; \quad P _ { n } ^ { ( n ) } ( z ) \equiv 1$ ; confidence 0.872
60. ; $\int _ { L } * \phi _ { i }$ ; confidence 0.871
61. ; $P _ { m } ( x , h ) \neq 0$ ; confidence 0.871
62. ; $\psi = \sum _ { i = 1 } ^ { r } d _ { i } \zeta _ { i }$ ; confidence 0.871
63. ; $p _ { U } ( x ) = \operatorname { sup } \{ \mu ( x ) : \mu \in U ^ { \circ } \}$ ; confidence 0.871
64. ; $R ^ { 2 p }$ ; confidence 0.871
65. ; $m = 2 i + 1$ ; confidence 0.871
66. ; $P ^ { \prime }$ ; confidence 0.871
67. ; $Y = C$ ; confidence 0.871
68. ; $f \circ \pi$ ; confidence 0.871
69. ; $( n \times m )$ ; confidence 0.870
70. ; $\Theta = E ( Z _ { 12 } )$ ; confidence 0.870
71. ; $f \in C ^ { \delta } ( [ 0 , T ] ; X )$ ; confidence 0.870
72. ; $M _ { A g }$ ; confidence 0.870
73. ; $\| \hat { f } \| = \| f \| _ { 1 }$ ; confidence 0.870
74. ; $L _ { \cap } \Gamma = 0$ ; confidence 0.870
75. ; $I _ { n } ( \theta ) = n I ( \theta )$ ; confidence 0.870
76. ; $S _ { P }$ ; confidence 0.869
77. ; $\xi = I ( \partial _ { r } )$ ; confidence 0.869
78. ; $P ^ { ( l ) }$ ; confidence 0.869
79. ; $H _ { m }$ ; confidence 0.869
80. ; $A _ { n } x _ { n } = y _ { n }$ ; confidence 0.869
81. ; $Y \times X$ ; confidence 0.869
82. ; $A u \in C ( ( 0 , T ] ; X )$ ; confidence 0.869
83. ; $y ( t ) = e ^ { - t A } x = S ( t ) x$ ; confidence 0.869
84. ; $X$ ; confidence 0.869
85. ; $\zeta _ { r + 1 } = \ldots = \zeta _ { n } = 0$ ; confidence 0.868
86. ; $S$ ; confidence 0.868
87. ; $\Omega _ { p _ { 1 } n _ { 1 } } ( t ^ { \prime } t ^ { \prime } )$ ; confidence 0.868
88. ; $l _ { n } = \# \{ s \in S : d ( s ) = n \}$ ; confidence 0.868
89. ; $\phi * : H ^ { * } ( B / S ) = H ^ { * } ( T M ) \rightarrow H ^ { * } ( M )$ ; confidence 0.867
90. ; $M N$ ; confidence 0.867
91. ; $x ^ { ( n ) } + \alpha _ { 1 } ( t ) x ^ { ( n - 1 ) } + \ldots + \alpha _ { n } ( t ) x = 0$ ; confidence 0.867
92. ; $C ^ { * }$ ; confidence 0.866
93. ; $z = r \operatorname { cos } \theta$ ; confidence 0.866
94. ; $K = \overline { K } \cap L _ { m } ( G )$ ; confidence 0.866
95. ; $\phi ^ { - 1 } ( b ) \cong P ^ { \prime } ( C )$ ; confidence 0.866
96. ; $y _ { j } \delta \theta$ ; confidence 0.866
97. ; $P _ { s } ^ { l } ( k )$ ; confidence 0.866
98. ; $O ( r )$ ; confidence 0.866
99. ; $N ^ { * * } = \operatorname { card } ( U _ { n } ^ { * * } ) / p$ ; confidence 0.865
100. ; $\int \int K d S$ ; confidence 0.865
101. ; $M _ { H } M _ { E } ^ { - 1 }$ ; confidence 0.865
102. ; $H ^ { 1 } ( X , Z _ { 2 } ) = 0$ ; confidence 0.864
103. ; $y _ { n } + 1$ ; confidence 0.864
104. ; $\sigma ^ { 2 }$ ; confidence 0.864
105. ; $\Theta f$ ; confidence 0.864
106. ; $\infty \rightarrow \alpha / c$ ; confidence 0.864
107. ; $F \mapsto F ( P )$ ; confidence 0.864
108. ; $L \subset Z ^ { 0 }$ ; confidence 0.864
109. ; $\Pi ^ { * } \in C$ ; confidence 0.864
110. ; $g = R ^ { \alpha } f$ ; confidence 0.864
111. ; $A W ^ { * }$ ; confidence 0.863
112. ; $20$ ; confidence 0.863
113. ; $T : X \rightarrow Y$ ; confidence 0.863
114. ; $0 \leq t _ { 1 } \leq \ldots \leq t _ { k } \leq T$ ; confidence 0.863
115. ; $O ( X ) = \oplus _ { n = - \infty } ^ { + \infty } O ^ { n } ( X )$ ; confidence 0.863
116. ; $x _ { 0 } ^ { 2 } + \ldots + x _ { n } ^ { 2 } = 0$ ; confidence 0.863
117. ; $z | < R$ ; confidence 0.863
118. ; $h | v _ { 1 } \| ( \partial f / \partial y ) \| < 1$ ; confidence 0.863
119. ; $\operatorname { arg } f$ ; confidence 0.862
120. ; $\| g _ { \alpha \beta } \|$ ; confidence 0.862
121. ; $F ^ { k }$ ; confidence 0.862
122. ; $r _ { 2 } \in R$ ; confidence 0.862
123. ; $y ^ { \prime } = f ( x , y ) , \quad y ( x _ { 0 } ) = y 0$ ; confidence 0.862
124. ; $x - x 0 \in K$ ; confidence 0.861
125. ; $A _ { \alpha } ( x ) = \operatorname { card } \{ n \leq x :$ ; confidence 0.861
126. ; $e X$ ; confidence 0.861
127. ; $E _ { 8 }$ ; confidence 0.860
128. ; $\epsilon < \epsilon ^ { \prime } < \ldots$ ; confidence 0.860
129. ; $\operatorname { gr } ( A _ { 1 } ( K ) )$ ; confidence 0.860
130. ; $e ^ { \lambda z }$ ; confidence 0.860
131. ; $R$ ; confidence 0.859
132. ; $L ] = \lambda$ ; confidence 0.859
133. ; $Z , \Gamma , F$ ; confidence 0.859
134. ; $n = p$ ; confidence 0.858
135. ; $\alpha = d t + \sum p _ { i } d q _ { i }$ ; confidence 0.858
136. ; $\varphi$ ; confidence 0.858
137. ; $\int \int K d S \leq 2 \pi ( \chi - k )$ ; confidence 0.858
138. ; $j 2 ^ { - k - l }$ ; confidence 0.858
139. ; $( M _ { H } M _ { E } ^ { - 1 } ) >$ ; confidence 0.858
140. ; $q \geq 2$ ; confidence 0.857
141. ; $A h ^ { - } q$ ; confidence 0.857
142. ; $8$ ; confidence 0.857
143. ; $E ( Z _ { 2 } )$ ; confidence 0.857
144. ; $z = \operatorname { ln } \alpha = \operatorname { ln } | \alpha | + i \operatorname { Arg } \alpha$ ; confidence 0.857
145. ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } ( f _ { 1 } ( x ) / f _ { 2 } ( x ) )$ ; confidence 0.857
146. ; $\langle p _ { k } , A p _ { k - 1 } \rangle = 0$ ; confidence 0.856
147. ; $\{ \sigma = 0 \} \subset P ^ { 4 }$ ; confidence 0.856
148. ; $a$ ; confidence 0.856
149. ; $\kappa ( \eta ^ { q } ) \in H ^ { 2 q } ( B )$ ; confidence 0.856
150. ; $\alpha : G \rightarrow \operatorname { Aut } A$ ; confidence 0.856
151. ; $2 ^ { n } p$ ; confidence 0.856
152. ; $T _ { 2 }$ ; confidence 0.856
153. ; $F _ { n } ( z )$ ; confidence 0.855
154. ; $\Lambda = \frac { \partial } { \partial x } + i \frac { \partial } { \partial y }$ ; confidence 0.855
155. ; $k _ { 0 } ( A )$ ; confidence 0.855
156. ; $\cup _ { z \subset Z } \{ \sum _ { i } ( Y _ { z } \cap A _ { i } ) \}$ ; confidence 0.854
157. ; $( M )$ ; confidence 0.854
158. ; $b _ { i }$ ; confidence 0.854
159. ; $| F _ { 0 } ^ { \prime } ( \zeta _ { 0 } ) | \leq | F ^ { \prime } ( \zeta _ { 0 } ) | \leq | F _ { \pi / 2 } ^ { \prime } ( \zeta _ { 0 } ) |$ ; confidence 0.854
160. ; $V < 0$ ; confidence 0.854
161. ; $c ( G )$ ; confidence 0.853
162. ; $( A ) = \| A \| A ^ { - 1 } \|$ ; confidence 0.853
163. ; $\delta ^ { * } ( x ) = \left\{ \begin{array} { l l } { d _ { 1 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \leq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \\ { d _ { 2 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \geq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \end{array} \right.$ ; confidence 0.853
164. ; $\{ \nu _ { k } \} \cap \{ \mu _ { n } \} = \emptyset$ ; confidence 0.853
165. ; $f : V ( G ) \rightarrow \{ 1 , \ldots , k \}$ ; confidence 0.853
166. ; $x \operatorname { exp } ( - 8 ( \operatorname { log } x \operatorname { log } \operatorname { log } x ) ^ { 1 / 2 } ) < A _ { 2 } ( x ) <$ ; confidence 0.852
167. ; $x = A ^ { - 1 } b$ ; confidence 0.852
168. ; $\hat { \eta } \omega$ ; confidence 0.852
169. ; $\sum _ { m = 1 } ^ { \infty } u _ { m n n }$ ; confidence 0.852
170. ; $\Sigma - 1$ ; confidence 0.852
171. ; $B = I _ { p }$ ; confidence 0.852
172. ; $\beta _ { 0 }$ ; confidence 0.851
173. ; $w _ { 2 } = f ( r _ { 1 } ) \ldots f ( r _ { n } )$ ; confidence 0.851
174. ; $l _ { 2 } u = \phi _ { 2 } ( t )$ ; confidence 0.851
175. ; $( K _ { p } ) _ { i n s }$ ; confidence 0.851
176. ; $X \in S ( t )$ ; confidence 0.850
177. ; $| b | \leq \| A |$ ; confidence 0.850
178. ; $S 5$ ; confidence 0.850
179. ; $Y _ { j } = i$ ; confidence 0.850
180. ; $S = \frac { K } { 3 }$ ; confidence 0.850
181. ; $h : A \rightarrow B$ ; confidence 0.850
182. ; $A _ { k } ^ { 1 } = \alpha _ { 2 k - 1 } + \alpha _ { 2 k }$ ; confidence 0.850
183. ; $X \leftarrow m + T s E$ ; confidence 0.850
184. ; $N \gg n$ ; confidence 0.849
185. ; $\alpha ( x ) - b ( x ) = f ( x ) g ( x ) + p h ( x )$ ; confidence 0.849
186. ; $x _ { n } = n$ ; confidence 0.849
187. ; $k _ { 1 } + \ldots + k _ { n } = k$ ; confidence 0.849
188. ; $( Z / d _ { 1 } Z ) ^ { 2 } \times ( Z / d _ { 2 } Z ) ^ { 2 }$ ; confidence 0.848
189. ; $\operatorname { lim } _ { n \rightarrow \infty } \frac { P ^ { \# } ( n ) } { G ^ { \# } ( n ) } = 1$ ; confidence 0.848
190. ; $\psi \circ \phi = \phi ^ { \prime } \circ \psi$ ; confidence 0.848
191. ; $v = 1.1 m / sec$ ; confidence 0.848
192. ; $\phi _ { x y } a \leq b$ ; confidence 0.847
193. ; $H = C ^ { n }$ ; confidence 0.847
194. ; $= 0$ ; confidence 0.847
195. ; $\partial ( \alpha ) = \operatorname { deg } ( \alpha )$ ; confidence 0.846
196. ; $CPC$ ; confidence 0.846
197. ; $K P$ ; confidence 0.846
198. ; $= v : q$ ; confidence 0.846
199. ; $\Gamma _ { q }$ ; confidence 0.846
200. ; $L _ { q } ( X )$ ; confidence 0.846
201. ; $W E = R . F . I$ ; confidence 0.845
202. ; $\tau _ { n } ^ { ( B ) }$ ; confidence 0.845
203. ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } f ( x ) = \alpha$ ; confidence 0.845
204. ; $f _ { E } ^ { \prime } ( \zeta )$ ; confidence 0.845
205. ; $E$ ; confidence 0.845
206. ; $\pi G ( x ) = b$ ; confidence 0.845
207. ; $| x _ { i } | \leq 1$ ; confidence 0.845
208. ; $\operatorname { ln } k$ ; confidence 0.845
209. ; $P _ { n } ( x ) = \delta ^ { n } f ( 0 , x ) / n !$ ; confidence 0.844
210. ; $\cap$ ; confidence 0.844
211. ; $C ^ { p } / \Gamma$ ; confidence 0.843
212. ; $\Gamma \vDash S _ { P } \varphi$ ; confidence 0.843
213. ; $I _ { 1 }$ ; confidence 0.843
214. ; $\Lambda _ { n } ( \theta ) - h ^ { \prime } \Delta _ { n } ( \theta ) \rightarrow - \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h$ ; confidence 0.843
215. ; $\operatorname { log } F \leq 100$ ; confidence 0.843
216. ; $q IL$ ; confidence 0.843
217. ; $2 ^ { X }$ ; confidence 0.843
218. ; $= \| ( I - ( I - B A ) ) ^ { - 1 } B r \| \leq$ ; confidence 0.843
219. ; $n - r \geq p$ ; confidence 0.843
220. ; $\varphi ( \alpha , b , 0 ) = \alpha + b$ ; confidence 0.842
221. ; $K _ { 0 } ( \varphi ) = K _ { 0 } ( \psi )$ ; confidence 0.842
222. ; $- \infty < r < \infty$ ; confidence 0.842
223. ; $\mathfrak { M } \in S _ { 1 }$ ; confidence 0.842
224. ; $x | < e$ ; confidence 0.841
225. ; $y _ { n } \leq x _ { n } \leq z _ { n }$ ; confidence 0.841
226. ; $k ( A ) = 10 ^ { p }$ ; confidence 0.841
227. ; $| \frac { d } { d t } A ( t ) ^ { - 1 } - \frac { d } { d s } A ( s ) ^ { - 1 } \| \leq K _ { 2 } | t - s | ^ { \eta }$ ; confidence 0.840
228. ; $L u = \operatorname { div } ( p ( x ) \operatorname { grad } u ) + q ( x ) u$ ; confidence 0.840
229. ; $x _ { i } ^ { 2 } = 0$ ; confidence 0.840
230. ; $| \varphi ( z ) | ^ { 2 } e ^ { \delta | z | }$ ; confidence 0.840
231. ; $m \equiv 4$ ; confidence 0.840
232. ; $\zeta _ { 2 n } = \sqrt { - 2 \operatorname { ln } \xi _ { 2 n } } \operatorname { sin } 2 \pi \xi _ { 2 n - 1 }$ ; confidence 0.840
233. ; $A l ( z ) = A l ( z _ { 1 } , \dots , z _ { p } ) =$ ; confidence 0.840
234. ; $F ( . | \theta ( S ) )$ ; confidence 0.840
235. ; $M _ { i } = \{ z : | z - \lambda _ { i } | \leq \| T ^ { - 1 } \| \| T \| \delta A \| \}$ ; confidence 0.839
236. ; $e \in E$ ; confidence 0.839
237. ; $C$ ; confidence 0.838
238. ; $0 \leq S \leq T$ ; confidence 0.838
239. ; $\Lambda \in N ^ { t }$ ; confidence 0.838
240. ; $y _ { i j k }$ ; confidence 0.838
241. ; $s = \eta c / \omega$ ; confidence 0.837
242. ; $\leq K _ { 0 } \sum _ { i = 1 } ^ { k } ( t - s ) ^ { \alpha _ { i } } | \lambda | ^ { \beta _ { i } - 1 } , \lambda \in S _ { \theta _ { 0 } } \backslash \{ 0 \} , \quad 0 \leq s \leq t \leq T$ ; confidence 0.837
243. ; $u | _ { \Sigma } = 0$ ; confidence 0.837
244. ; $v \in ( 1 - t ) V$ ; confidence 0.837
245. ; $f _ { t } = h _ { t } \circ f _ { 0 } \circ k _ { t }$ ; confidence 0.837
246. ; $\zeta ^ { \phi } \in C ^ { d }$ ; confidence 0.837
247. ; $f ^ { ( r ) } ( \lambda )$ ; confidence 0.837
248. ; $\alpha , = 0$ ; confidence 0.837
249. ; $\varphi \equiv \psi ( \operatorname { mod } \Lambda _ { S 5 } T )$ ; confidence 0.837
250. ; $S _ { \alpha } = W _ { 1 } , \quad W _ { \alpha } = W _ { 1 } , \quad 0 \leq \alpha < \infty$ ; confidence 0.837
251. ; $\operatorname { log } \beta _ { \gamma }$ ; confidence 0.836
252. ; $h _ { \theta } ^ { * } = \nabla h ( \theta ^ { * } )$ ; confidence 0.836
253. ; $y = y _ { 0 } - a n$ ; confidence 0.836
254. ; $H _ { 2 } = \prod _ { m = 1 } ^ { \infty } ( 1 + e ^ { ( 2 m - 1 ) i \pi \tau } )$ ; confidence 0.836
255. ; $\square x \rightarrow y$ ; confidence 0.836
256. ; $\| A \| _ { E } = ( \sum a _ { i j } ^ { 2 } ) ^ { 1 / 2 }$ ; confidence 0.835
257. ; $\| T \| T ^ { - 1 } \| \geq c n$ ; confidence 0.835
258. ; $D ^ { + } = \cup _ { k = 1 } ^ { m } D _ { k }$ ; confidence 0.835
259. ; $\{ X _ { t } : t \in T \}$ ; confidence 0.835
260. ; $\Theta$ ; confidence 0.834
261. ; $\forall x _ { k }$ ; confidence 0.834
262. ; $C x ^ { - 1 }$ ; confidence 0.834
263. ; $z \rightarrow w = L ( z ) = \frac { a z + b } { c z + d }$ ; confidence 0.834
264. ; $\mathfrak { A } _ { s _ { 1 } }$ ; confidence 0.833
265. ; $\alpha _ { i } \in \Omega$ ; confidence 0.833
266. ; $\operatorname { ord } ( \theta ) = \sum e$ ; confidence 0.833
267. ; $B = 0$ ; confidence 0.833
268. ; $90 > 1$ ; confidence 0.833
269. ; $D \subset C$ ; confidence 0.833
270. ; $\partial L = a$ ; confidence 0.832
271. ; $d ( A _ { i } )$ ; confidence 0.832
272. ; $p _ { i } = \nu ( \alpha _ { i } )$ ; confidence 0.832
273. ; $\overline { \sum _ { g } n ( g ) g } = \sum w ( g ) n ( g ) g ^ { - 1 }$ ; confidence 0.832
274. ; $\sum _ { i = 0 } ^ { \infty } X _ { i } z ^ { - i }$ ; confidence 0.831
275. ; $\partial M$ ; confidence 0.831
276. ; $X ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 2 } ^ { \prime \prime } = L _ { 2 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime } = L _ { 1 } ^ { \prime \prime } \cap L _ { 3 } ^ { \prime \prime }$ ; confidence 0.831
277. ; $L ^ { 1 } ( R ) \cap L ^ { \infty } ( R )$ ; confidence 0.831
278. ; $\frac { \partial u } { \partial t } = L ( t , x , D _ { x } ) u + f ( t , x ) \text { in } [ 0 , T ] \times \Omega$ ; confidence 0.831
279. ; $L \subset D$ ; confidence 0.831
280. ; $K ( M )$ ; confidence 0.831
281. ; $u \mapsto \rho ( u ) - \operatorname { Tr } ( \text { ad } u ) \in \operatorname { End } _ { K } ( M )$ ; confidence 0.830
282. ; $\lambda _ { 1 } < \lambda _ { 2 } < \ldots$ ; confidence 0.830
283. ; $\varphi ( \alpha , 0 , i ) = \alpha \text { for } i \geq 3 , \varphi ( \alpha , b , i ) = \varphi ( \alpha , \varphi ( \alpha , b - 1 , i ) , i - 1 ) \text { for } i \geq 1 , b \geq 1$ ; confidence 0.829
284. ; $1 / m$ ; confidence 0.829
285. ; $A ; \in A$ ; confidence 0.829
286. ; $+ \frac { \alpha } { u } [ \alpha ( \frac { \partial u } { \partial x } ) ^ { 2 } + 2 b \frac { \partial u } { \partial x } \frac { \partial u } { \partial y } + c ( \frac { \partial u } { \partial y } ) ^ { 2 } ] +$ ; confidence 0.828
287. ; $q _ { 2 } \neq q _ { 1 }$ ; confidence 0.828
288. ; $\rho ^ { ( j ) }$ ; confidence 0.828
289. ; $D _ { n } X _ { 1 }$ ; confidence 0.828
290. ; $g ^ { \prime } = \phi ^ { 4 / ( n - 2 ) } g$ ; confidence 0.828
291. ; $g \mapsto g ^ { t }$ ; confidence 0.827
292. ; $\| \omega \| ^ { 2 } = i \sum _ { j = 1 } ^ { g } ( A _ { j } \overline { B } _ { j } - B _ { j } \overline { A } _ { j } ) \geq 0$ ; confidence 0.827
293. ; $CW ( 9.63 )$ ; confidence 0.827
294. ; $( p \supset ( q \supset r ) ) \supset ( ( p \supset q ) \supset ( p \supset r ) )$ ; confidence 0.827
295. ; $a \vee b$ ; confidence 0.827
296. ; $\operatorname { lim } _ { n \rightarrow \infty } P \{ \frac { \alpha - \alpha } { \sigma _ { n } ( \alpha ) } < x \} = \frac { 1 } { \sqrt { 2 \pi } } \int _ { - \infty } ^ { x } e ^ { - t ^ { 2 } / 2 } d t \equiv \Phi ( x )$ ; confidence 0.827
297. ; $f ( h ) = g ( ( h , h _ { 1 } ) , \ldots , ( h , h _ { j } ) )$ ; confidence 0.827
298. ; $\overline { \theta } _ { n } = \overline { \theta } _ { n - 1 } + \frac { 1 } { n } ( \theta _ { n - 1 } - \overline { \theta } _ { n - 1 } )$ ; confidence 0.827
299. ; $x _ { j } = \operatorname { cos } ( \pi j / N )$ ; confidence 0.826
300. ; $y = K _ { n } ( x )$ ; confidence 0.826
Maximilian Janisch/latexlist/latex/10. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/10&oldid=43900