User:Maximilian Janisch/latexlist/latex/8
List
1. ; $+ \frac { 1 } { N ! } \int _ { t _ { 0 } } ^ { t } ( t - \tau ) ^ { N _ { r } ( N + 1 ) } ( \tau ) d \tau$ ; confidence 0.696
2. ; $\operatorname { Sp } ( ( m + 1 ) / 4 )$ ; confidence 0.694
3. ; $g = \sum g _ { \alpha \overline { \beta } } d z ^ { \alpha } \otimes d z \square ^ { \beta }$ ; confidence 0.694
4. ; $L _ { i j } = L = ( \theta _ { i } , d _ { j } )$ ; confidence 0.694
5. ; $S ( p )$ ; confidence 0.693
6. ; $\operatorname { Arg } f$ ; confidence 0.692
7. ; $/ N = T$ ; confidence 0.692
8. ; $\alpha \equiv f ( x _ { 0 } - ) \leq f ( x _ { 0 } + ) \equiv b$ ; confidence 0.692
9. ; $GL _ { 2 } ( R )$ ; confidence 0.691
10. ; $\lambda _ { m } ( t )$ ; confidence 0.691
11. ; $b \in \overline { C }$ ; confidence 0.690
12. ; $x ^ { \prime } > x$ ; confidence 0.689
13. ; $1 ^ { 1 } = 1 ^ { 1 } ( N )$ ; confidence 0.689
14. ; $x 0$ ; confidence 0.689
15. ; $\overline { Q } _ { p }$ ; confidence 0.689
16. ; $p + q \leq \operatorname { dim } _ { C } M$ ; confidence 0.688
17. ; $H \rightarrow TOP$ ; confidence 0.688
18. ; $\int _ { \alpha } ^ { b } p ( t ) \operatorname { ln } | t - t _ { 0 } | d t = f ( t _ { 0 } ) + C$ ; confidence 0.687
19. ; $u ^ { k } = u ^ { k - 1 } - \Delta \lambda _ { k } \phi ^ { \prime } ( u ^ { k - 1 } ) ^ { - 1 } \phi ( u ^ { 0 } )$ ; confidence 0.687
20. ; $| X$ ; confidence 0.687
21. ; $\mathfrak { F } \subset \mathfrak { P }$ ; confidence 0.687
22. ; $A < \alpha < b < B$ ; confidence 0.686
23. ; $[ e _ { i } f _ { j } ] = h _ { i }$ ; confidence 0.684
24. ; $D$ ; confidence 0.683
25. ; $m s$ ; confidence 0.683
26. ; $\overline { 9 } _ { 42 }$ ; confidence 0.683
27. ; $J ( y ) \leq J ( y )$ ; confidence 0.683
28. ; $E ^ { \alpha } ( L ) ( \sigma ^ { 2 } ( x ) ) = 0$ ; confidence 0.682
29. ; $| \lambda | = \Sigma _ { i } \lambda$ ; confidence 0.682
30. ; $\lambda _ { 4 n }$ ; confidence 0.681
31. ; $E Y _ { i } = ( \alpha + \beta \overline { t } ) + \beta ( t _ { i } - \overline { t } )$ ; confidence 0.681
32. ; $\nabla _ { Y } ( f X ) = ( Y f ) X + f \nabla _ { Y } X$ ; confidence 0.681
33. ; $M _ { E }$ ; confidence 0.680
34. ; $\approx ( 2 \pi ) ^ { - n } \int _ { R ^ { n } \times R ^ { n } } [ p ^ { 2 } + V ( x ) ] _ { - } ^ { \gamma } d p d x =$ ; confidence 0.680
35. ; $\underline { \mathfrak { U } } \square _ { \phi } = - \overline { \mathfrak { U } } _ { \phi }$ ; confidence 0.680
36. ; $\operatorname { sup } _ { x \in \mathfrak { M } } \| x - A x \|$ ; confidence 0.679
37. ; $k [ ( T _ { i j } ) _ { 1 \leq i \leq d } ]$ ; confidence 0.679
38. ; $W _ { X } ^ { S }$ ; confidence 0.678
39. ; $\pi = n \sqrt { 1 + \sum p ^ { 2 } }$ ; confidence 0.678
40. ; $\partial N$ ; confidence 0.677
41. ; $p _ { 01 } p _ { 23 } + p _ { 02 } p _ { 31 } + p _ { 03 } p _ { 12 } = 0$ ; confidence 0.676
42. ; $\int _ { 0 } ^ { t } I _ { \partial D } ( Y _ { s } ) d l _ { s } = 1 _ { t }$ ; confidence 0.676
43. ; $R _ { T ^ { \prime \prime } }$ ; confidence 0.675
44. ; $Z _ { 0 } = Z _ { 12 } - Z _ { 13 } R$ ; confidence 0.674
45. ; $P _ { 1 }$ ; confidence 0.674
46. ; $k _ { z } = K _ { z } / \| K _ { z } \|$ ; confidence 0.674
47. ; $f : S \rightarrow C$ ; confidence 0.674
48. ; $O _ { 3 } = O _ { 6 } \cap O _ { 7 }$ ; confidence 0.673
49. ; $2$ ; confidence 0.672
50. ; $B _ { n } ( x + 1 ) - B _ { n } ( x ) = n x ^ { n - 1 }$ ; confidence 0.672
51. ; $( \xi ) _ { R }$ ; confidence 0.672
52. ; $U ( 1 ) _ { \tau } \subset \operatorname { SU } ( 2 )$ ; confidence 0.671
53. ; $r \in F$ ; confidence 0.671
54. ; $R _ { i } = F _ { q } [ x ] / ( f _ { i } )$ ; confidence 0.671
55. ; $U = \cup _ { i } \operatorname { Im } f$ ; confidence 0.671
56. ; $P \{ \xi _ { t } \equiv 0 \} = 1$ ; confidence 0.670
57. ; $X = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } X$ ; confidence 0.670
58. ; $\alpha = E X _ { 1 }$ ; confidence 0.670
59. ; $z _ { 1 }$ ; confidence 0.669
60. ; $x \in A ^ { p } ( X ) = A ^ { * } ( X ) \cap H ^ { 2 p } ( X )$ ; confidence 0.669
61. ; $/ t \rightarrow \lambda$ ; confidence 0.669
62. ; $\| \eta ( \cdot ) \| ^ { 2 } = \int _ { 0 } ^ { \infty } | \eta ( t ) | ^ { 2 } d t$ ; confidence 0.669
63. ; $f | _ { A } = \phi$ ; confidence 0.668
64. ; $m \geq 3$ ; confidence 0.668
65. ; $0 = + \infty$ ; confidence 0.667
66. ; $c ( I ) = \frac { 1 } { 2 }$ ; confidence 0.667
67. ; $\frac { a _ { 0 } } { 4 } x ^ { 2 } - \sum _ { k = 1 } ^ { \infty } \frac { a _ { k } \operatorname { cos } k x + b _ { k } \operatorname { sin } k x } { k ^ { 2 } }$ ; confidence 0.667
68. ; $= \frac { ( n _ { 1 } + l ) ! } { ! ! } ( \operatorname { log } z ) ^ { l } z ^ { \lambda _ { 2 } } + \ldots$ ; confidence 0.665
69. ; $C _ { \alpha }$ ; confidence 0.664
70. ; $Q / Z$ ; confidence 0.664
71. ; $\Gamma _ { F }$ ; confidence 0.663
72. ; $Z _ { 24 }$ ; confidence 0.663
73. ; $X = \xi ^ { i }$ ; confidence 0.662
74. ; $Ab ^ { Z C } \approx Ab ^ { C }$ ; confidence 0.662
75. ; $M _ { i } ^ { * } = c _ { i } \sum _ { j = 1 } ^ { n } M _ { j }$ ; confidence 0.662
76. ; $D$ ; confidence 0.661
77. ; $\mathfrak { F } _ { \lambda }$ ; confidence 0.661
78. ; $\alpha \sum _ { i \in I } b _ { i } = \sum _ { i \in I } a b _ { i }$ ; confidence 0.661
79. ; $\theta ( z + \tau ) = \operatorname { exp } ( - 2 \pi i k z ) . \theta ( z )$ ; confidence 0.660
80. ; $\alpha _ { i } + 1$ ; confidence 0.659
81. ; $r \uparrow 1$ ; confidence 0.659
82. ; $\operatorname { lim } _ { x \rightarrow \infty } e ^ { - x } \sum _ { n = 0 } ^ { \infty } \frac { s _ { n } x ^ { n } } { n ! }$ ; confidence 0.659
83. ; $\gamma = 7 / 4$ ; confidence 0.659
84. ; $\Delta ^ { r + 1 } v _ { j } = \Delta ^ { r } v _ { j + 1 } - \Delta ^ { r } v _ { j }$ ; confidence 0.659
85. ; $x \in K$ ; confidence 0.658
86. ; $\mathfrak { R } _ { \mu } ( \Pi _ { 0 } ) = \operatorname { inf } _ { \Pi } \Re _ { \mu } ( \Pi )$ ; confidence 0.658
87. ; $0 \leq S \leq T \in L ( X )$ ; confidence 0.657
88. ; $K ( y ) = \operatorname { sgn } y . | y | ^ { \alpha }$ ; confidence 0.655
89. ; $T$ ; confidence 0.652
90. ; $\varphi H G$ ; confidence 0.652
91. ; $B$ ; confidence 0.651
92. ; $\sum _ { d ( e ) = Q } f _ { e }$ ; confidence 0.651
93. ; $\| x \| _ { 1 }$ ; confidence 0.650
94. ; $\delta \rho ( \pi , \delta )$ ; confidence 0.650
95. ; $\overline { \overline { A } } = \vec { A }$ ; confidence 0.649
96. ; $\vec { u } = A _ { j } ^ { i } u ^ { j }$ ; confidence 0.648
97. ; $e ^ { i k x }$ ; confidence 0.648
98. ; $\delta _ { \epsilon } ^ { * }$ ; confidence 0.648
99. ; $f$ ; confidence 0.647
100. ; $B _ { \mu } ^ { 1 } \subset B \subset B _ { \mu } ^ { 2 }$ ; confidence 0.646
101. ; $I _ { T } ( \lambda ) = \frac { 1 } { 2 \pi T } | \int _ { 0 } ^ { T } e ^ { - i t \lambda } x ( t ) d t |$ ; confidence 0.646
102. ; $G = SU ( k )$ ; confidence 0.645
103. ; $\psi ( t ) = a * ( t ) g ( t ) +$ ; confidence 0.645
104. ; $h$ ; confidence 0.644
105. ; $\Omega _ { * } ^ { SO }$ ; confidence 0.644
106. ; $X = x _ { 0 } + V$ ; confidence 0.644
107. ; $\alpha = ( k + 1 / 2 )$ ; confidence 0.643
108. ; $r _ { u } \times r _ { v } \neq 0$ ; confidence 0.643
109. ; $s \times p$ ; confidence 0.642
110. ; $\eta \in \operatorname { ln } t \Gamma ^ { \prime }$ ; confidence 0.642
111. ; $\nu _ { 1 } ^ { S }$ ; confidence 0.641
112. ; $f ^ { em } = q _ { f } E + \frac { 1 } { c } J \times B + ( \nabla E ) P + ( \nabla B ) M +$ ; confidence 0.640
113. ; $Q _ { i - 1 } / Q _ { i }$ ; confidence 0.640
114. ; $y ^ { \prime } + \alpha _ { 1 } y = 0$ ; confidence 0.639
115. ; $P ( x ) = a _ { 0 } + \alpha _ { 1 } x + \ldots + \alpha _ { n } x ^ { n }$ ; confidence 0.639
116. ; $G _ { l }$ ; confidence 0.639
117. ; $F ( m ) = f _ { m } ( m )$ ; confidence 0.639
118. ; $t$ ; confidence 0.637
119. ; $X _ { 1 }$ ; confidence 0.637
120. ; $cd _ { l } ( Spec A )$ ; confidence 0.637
121. ; $f * g$ ; confidence 0.637
122. ; $W _ { \alpha } ( B \supset C ) = T \leftrightarrows$ ; confidence 0.637
123. ; $T _ { \Delta }$ ; confidence 0.636
124. ; $\eta _ { Y | X } ^ { 2 } = 1 - E [ \frac { D ( Y | X ) } { D Y } ]$ ; confidence 0.635
125. ; $\| x \| ^ { 2 } = \int _ { \sigma ( A ) } | f _ { \lambda } ( x ) | ^ { 2 } d \rho ( \lambda )$ ; confidence 0.635
126. ; $\mathfrak { g } = \mathfrak { a } + \mathfrak { n }$ ; confidence 0.634
127. ; $A _ { k + 1 } ( C )$ ; confidence 0.634
128. ; $S ^ { 3 } / \Gamma$ ; confidence 0.633
129. ; $v = u ^ { 2 } +$ ; confidence 0.633
130. ; $\omega = \alpha _ { 1 } \ldots \alpha _ { k }$ ; confidence 0.633
131. ; $\{ P _ { \theta } : \theta \in \Theta \}$ ; confidence 0.633
132. ; $E ( Z _ { 3 } ) = 0$ ; confidence 0.631
133. ; $C = \text { int } \Gamma$ ; confidence 0.630
134. ; $v _ { i } = \partial f / \partial t ^ { i }$ ; confidence 0.629
135. ; $H ^ { n } ( S ^ { n } )$ ; confidence 0.629
136. ; $\rho = ( 1 / 2 ) \sum _ { \alpha \in \Delta ^ { + } } \alpha$ ; confidence 0.628
137. ; $\eta = \frac { ( \alpha ^ { 2 } - \rho ^ { 2 } ) ^ { 1 / 2 } ( \alpha ^ { 2 } - \rho _ { 0 } ^ { 2 } ) ^ { 1 / 2 } } { \alpha }$ ; confidence 0.628
138. ; $\operatorname { lim } _ { x \rightarrow x _ { 0 } } + 0$ ; confidence 0.628
139. ; $R = V _ { 33 } ^ { - 1 } V _ { 32 }$ ; confidence 0.628
140. ; $S _ { 2 m + 1 } ^ { m }$ ; confidence 0.627
141. ; $F _ { j k } =$ ; confidence 0.626
142. ; $\Sigma ( A )$ ; confidence 0.626
143. ; $U _ { q } ( \mathfrak { g } )$ ; confidence 0.626
144. ; $V _ { 0 } ^ { n } = V _ { j } ^ { n } = 0$ ; confidence 0.626
145. ; $\omega ^ { \beta }$ ; confidence 0.626
146. ; $M$ ; confidence 0.626
147. ; $x \# y = x y + y x - \frac { 2 } { n + 1 } ( \operatorname { Tr } x y ) l$ ; confidence 0.625
148. ; $\phi _ { \alpha \alpha } = 1 _ { A _ { \alpha } }$ ; confidence 0.624
149. ; $V = V ( \infty ) = \{ x \in R ^ { n } : | x | > R \}$ ; confidence 0.624
150. ; $\dot { x } = f ( t )$ ; confidence 0.623
151. ; $d _ { k } = rd _ { Y } M _ { k }$ ; confidence 0.623
152. ; $\mu _ { f } ( E ) = \int _ { E } f d x$ ; confidence 0.622
153. ; $G / G 1$ ; confidence 0.622
154. ; $F ( z ) = - \frac { 1 } { 2 \pi i } \int \frac { \operatorname { exp } e ^ { \zeta ^ { 2 } } } { \zeta - z } d \zeta$ ; confidence 0.622
155. ; $P \{ s ^ { 2 } < \frac { \sigma ^ { 2 } x } { n - 1 } \} = G _ { n - 1 } ( x ) = D _ { n - 1 } \int _ { 0 } ^ { x } v ^ { ( n - 3 ) } / 2 e ^ { - v / 2 } d v$ ; confidence 0.622
156. ; $F . C _ { i j k } = I m$ ; confidence 0.621
157. ; $\square ^ { 01 } S _ { 3 } ^ { 1 }$ ; confidence 0.621
158. ; $f \times ( O _ { X } )$ ; confidence 0.620
159. ; $| K _ { i } | = | i K _ { V ^ { J } } |$ ; confidence 0.620
160. ; $x \in D _ { B }$ ; confidence 0.620
161. ; $P ( N _ { k } = n ) = p ^ { n } F _ { n + 1 - k } ^ { ( k ) } ( \frac { q } { p } )$ ; confidence 0.620
162. ; $\hbar \square ^ { * } ( M )$ ; confidence 0.620
163. ; $\operatorname { Ai } ( x )$ ; confidence 0.619
164. ; $F ( z ) = z + \alpha _ { 0 } + \frac { \alpha _ { 1 } } { z } + \ldots$ ; confidence 0.619
165. ; $= f ( N _ { * } ) + f ^ { \prime } ( N _ { * } ) n + \frac { f ^ { \prime \prime } ( N _ { * } ) } { 2 } n ^ { 2 } + \ldots$ ; confidence 0.619
166. ; $t \otimes _ { k } K$ ; confidence 0.618
167. ; $\tau _ { 2 } \Theta = - \Theta$ ; confidence 0.618
168. ; $[ V ] = \operatorname { limsup } ( \operatorname { log } d _ { V } ( n ) \operatorname { log } ( n ) ^ { - 1 } )$ ; confidence 0.618
169. ; $T ^ { n }$ ; confidence 0.616
170. ; $u _ { n } + 1 - k$ ; confidence 0.616
171. ; $\operatorname { sch } / S$ ; confidence 0.616
172. ; $\pi \Gamma$ ; confidence 0.616
173. ; $j = 1 , \ldots , p$ ; confidence 0.616
174. ; $G _ { 2 } / \operatorname { Sp } ( 1 ) , \quad F _ { 4 } / \operatorname { Sp } ( 3 ) , E _ { 6 } / SU ( 6 ) , \quad E _ { 7 } / \operatorname { Spin } ( 12 ) , \quad E _ { 8 } / E _ { 7 }$ ; confidence 0.614
175. ; $\hat { R } ( c )$ ; confidence 0.613
176. ; $m / m ^ { 2 }$ ; confidence 0.612
177. ; $6$ ; confidence 0.612
178. ; $+ \pi _ { 2 } p ( x | \theta _ { 2 } ) L ( \theta _ { 2 } , \delta ( x ) ) ] d \mu ( x )$ ; confidence 0.612
179. ; $| x _ { y } \| \rightarrow 0$ ; confidence 0.611
180. ; $\overline { P _ { 8 } }$ ; confidence 0.610
181. ; $\dot { x } = A x$ ; confidence 0.608
182. ; $\gamma = \operatorname { ind } _ { g } a$ ; confidence 0.608
183. ; $A _ { I l }$ ; confidence 0.608
184. ; $a$ ; confidence 0.607
185. ; $L u \equiv \frac { \partial u } { \partial t } - \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = 0$ ; confidence 0.607
186. ; $d E$ ; confidence 0.607
187. ; $\frac { 1 } { 2 \pi } \sum _ { t = - T + 1 } ^ { T - 1 } e ^ { - i t \lambda } r ^ { * } ( t ) c T ( t )$ ; confidence 0.607
188. ; $\overline { \Pi } _ { k } \subset \Pi _ { k + 1 }$ ; confidence 0.606
189. ; $n \equiv a ( \operatorname { mod } b )$ ; confidence 0.605
190. ; $( 1 , t _ { j } , \ldots , t _ { j } ^ { k } ) ^ { \prime }$ ; confidence 0.604
191. ; $E \| X _ { k } \| ^ { 3 + \alpha } < \infty$ ; confidence 0.604
192. ; $\int \int _ { \Theta } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x ) \pi ( d \theta ) =$ ; confidence 0.604
193. ; $a x + b y = 1$ ; confidence 0.602
194. ; $p f$ ; confidence 0.602
195. ; $T _ { n }$ ; confidence 0.602
196. ; $i : A \rightarrow X$ ; confidence 0.601
197. ; $X$ ; confidence 0.601
198. ; $w ^ { S } ( u ) = \operatorname { sup } _ { v \leq u } ( X ( u ) - X ( v ) )$ ; confidence 0.601
199. ; $\{ p _ { i } ^ { - 1 } U _ { i } : U _ { i } \in \mu _ { i \square } \text { and } i \in I \}$ ; confidence 0.601
200. ; $\lambda < \alpha$ ; confidence 0.600
201. ; $\delta \varepsilon$ ; confidence 0.600
202. ; $X = H$ ; confidence 0.599
203. ; $e _ { i } = \partial / \partial x ^ { i } | _ { p }$ ; confidence 0.599
204. ; $- w$ ; confidence 0.598
205. ; $\alpha ( \lambda ) = \alpha _ { - } ( \lambda ) \alpha _ { + } ( \lambda )$ ; confidence 0.598
206. ; $K = \nu - \nu$ ; confidence 0.596
207. ; $\Gamma _ { n } ^ { \alpha } ( H ) _ { \alpha } ^ { 8 }$ ; confidence 0.595
208. ; $\operatorname { li } x / \phi ( d )$ ; confidence 0.594
209. ; $X _ { 3 }$ ; confidence 0.593
210. ; $C [ t ] = C [ t _ { 1 } , t _ { 2 } , \ldots$ ; confidence 0.593
211. ; $s _ { i } : X _ { n } \rightarrow X _ { n } + 1$ ; confidence 0.593
212. ; $8$ ; confidence 0.593
213. ; $1 ^ { \circ }$ ; confidence 0.592
214. ; $\Lambda _ { S 5 } T$ ; confidence 0.591
215. ; $h \in \operatorname { Diff } ^ { + } ( M )$ ; confidence 0.591
216. ; $\Omega = S ^ { D } = \{ \omega _ { i } \} _ { i \in D }$ ; confidence 0.591
217. ; $\Gamma ( H ) = \sum _ { n = 0 } ^ { \infty } H ^ { \otimes n }$ ; confidence 0.591
218. ; $12$ ; confidence 0.590
219. ; $\approx 3$ ; confidence 0.590
220. ; $X \subset Y$ ; confidence 0.590
221. ; $\left. \begin{array} { c c c } { R } & { \stackrel { \pi _ { 2 } \mu } { \rightarrow } } & { B } \\ { \pi _ { 1 } \mu \downarrow } & { \square } & { \downarrow \beta } \\ { A } & { \vec { \alpha } } & { C } \end{array} \right.$ ; confidence 0.590
222. ; $S \square ^ { * }$ ; confidence 0.590
223. ; $( \tau = \text { const } )$ ; confidence 0.589
224. ; $\gamma$ ; confidence 0.589
225. ; $d [ ( \omega ) ] = 2 g - 2$ ; confidence 0.588
226. ; $c ( A ) \subset R \cup \{ \infty \}$ ; confidence 0.588
227. ; $p | D _ { i }$ ; confidence 0.587
228. ; $E = \frac { m } { 2 } ( \dot { x } \square _ { 1 } ^ { 2 } + \dot { x } \square _ { 2 } ^ { 2 } + \dot { x } \square _ { 3 } ^ { 2 } ) + \frac { \kappa } { r }$ ; confidence 0.586
229. ; $\rho ( \pi , \delta ^ { * } ) = \operatorname { inf } _ { \delta } \int _ { \Theta } \int _ { X } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x ) \pi ( d \theta )$ ; confidence 0.586
230. ; $\tau ( t ) = ( \tau _ { l } ( t ) ) _ { l \in Z }$ ; confidence 0.585
231. ; $E [ Z _ { 32 } , Z _ { 33 } ] = 0$ ; confidence 0.584
232. ; $DT ( S )$ ; confidence 0.583
233. ; $\hat { G } \backslash G$ ; confidence 0.582
234. ; $( \partial w / \partial t ) + ( \partial f / \partial x ) = ( h ^ { 2 } / 2 \tau ) ( \partial ^ { 2 } w / \partial x ^ { 2 } )$ ; confidence 0.582
235. ; $\{ \psi _ { i } \} _ { 0 } ^ { m }$ ; confidence 0.581
236. ; $b _ { 2 } ( s ) \leq 1$ ; confidence 0.580
237. ; $b ( \theta ) \equiv 0$ ; confidence 0.580
238. ; $f ( x ) = \operatorname { lim } _ { N \rightarrow \infty } \frac { 4 } { \pi ^ { 2 } } \int _ { 0 } ^ { N } \operatorname { cosh } ( \pi \tau ) \operatorname { Im } K _ { 1 / 2 + i \tau } ( x ) F ( \tau ) d \tau$ ; confidence 0.580
239. ; $B \operatorname { ccos } ( \omega t + \psi )$ ; confidence 0.580
240. ; $\pi _ { i } : S \rightarrow A$ ; confidence 0.579
241. ; $K ( B - C _ { N } ) > K ( B - A ) > D$ ; confidence 0.579
242. ; $z$ ; confidence 0.578
243. ; $E | X ( t ) | ^ { n } \leq C < \infty$ ; confidence 0.578
244. ; $\alpha < p b$ ; confidence 0.578
245. ; $- \infty < z < \infty$ ; confidence 0.577
246. ; $B s$ ; confidence 0.576
247. ; $\alpha > a ^ { * }$ ; confidence 0.575
248. ; $X _ { ( \tau _ { 1 } + \ldots + \tau _ { j - 1 } + 1 ) } = \ldots = X _ { ( \tau _ { 1 } + \ldots + \tau _ { j } ) }$ ; confidence 0.575
249. ; $( f _ { i } : B _ { i } \rightarrow B ) _ { i \in l }$ ; confidence 0.575
250. ; $5$ ; confidence 0.574
251. ; $T ( 0 ) = 0$ ; confidence 0.574
252. ; $\| x + y \| _ { p } = \| u + v \| _ { p }$ ; confidence 0.572
253. ; $E ( T ) = \int \int _ { T } \frac { d x d y } { | x - y | }$ ; confidence 0.572
254. ; $K = - ( \frac { 4 | d g | } { ( 1 + | g | ^ { 2 } ) ^ { 2 } | \eta | } \} ^ { 2 }$ ; confidence 0.571
255. ; $5$ ; confidence 0.571
256. ; $i$ ; confidence 0.570
257. ; $( S _ { \omega } ^ { c } ( e ) T ) [ M ] \in Z$ ; confidence 0.570
258. ; $s \in E ^ { n }$ ; confidence 0.570
259. ; $x \in Y ( u )$ ; confidence 0.570
260. ; $R _ { L } = H ( V )$ ; confidence 0.569
261. ; $f _ { B } ( x ) = \frac { \lambda ^ { x } } { x ! } e ^ { - \lambda } \{ 1 + \frac { \mu _ { 2 } - \lambda } { \lambda ^ { 2 } } [ \frac { x ^ { [ 2 ] } } { 2 } - \lambda x ^ { [ 1 ] } + \frac { \lambda ^ { 2 } } { 2 } ] +$ ; confidence 0.569
262. ; $a \rightarrow a b d ^ { 6 }$ ; confidence 0.569
263. ; $\sum _ { j = 1 } ^ { n } | b _ { j j } | \leq \rho$ ; confidence 0.569
264. ; $\forall v \exists u ( \forall w \varphi \leftrightarrow u = w )$ ; confidence 0.569
265. ; $O ( n ^ { 2 } \operatorname { log } n )$ ; confidence 0.568
266. ; $f _ { 1 } = ( P _ { n } \ldots P _ { 1 } ) ^ { 1 } f$ ; confidence 0.568
267. ; $z \in N$ ; confidence 0.568
268. ; $B d K$ ; confidence 0.567
269. ; $\beta$ ; confidence 0.566
270. ; $( X , B X )$ ; confidence 0.566
271. ; $dn ^ { 2 } u + k ^ { 2 } sn ^ { 2 } u = 1$ ; confidence 0.565
272. ; $\{ f ( x ) \overline { \phi } _ { \lambda } ( x ) \}$ ; confidence 0.564
273. ; $\geq 7$ ; confidence 0.562
274. ; $S _ { 2 } ^ { \gamma }$ ; confidence 0.562
275. ; $K _ { j } \times R ^ { N j }$ ; confidence 0.562
276. ; $( \partial ^ { 2 } / \partial x \partial t ) u = \operatorname { sin } u$ ; confidence 0.562
277. ; $A _ { n } : E _ { n } \rightarrow F _ { n }$ ; confidence 0.561
278. ; $\int _ { S } \omega$ ; confidence 0.561
279. ; $( Id - \Delta ) ^ { \nu }$ ; confidence 0.560
280. ; $E _ { \theta } \{ T \}$ ; confidence 0.560
281. ; $III _ { 0 }$ ; confidence 0.560
282. ; $x _ { i + 1 } = x _ { i } - ( \alpha _ { i } \nabla \nabla f ( x _ { j } ) + \beta _ { i } I ) ^ { - 1 } \nabla f ( x _ { i } )$ ; confidence 0.559
283. ; $\psi = \Psi ^ { \prime }$ ; confidence 0.559
284. ; $e ^ { \prime }$ ; confidence 0.559
285. ; $k \geq n - i t$ ; confidence 0.558
286. ; $J _ { \nu }$ ; confidence 0.556
287. ; $\kappa _ { k } = a _ { n n } ^ { ( k ) }$ ; confidence 0.556
288. ; $X = 0$ ; confidence 0.554
289. ; $| r _ { + } ( k ) | \leq 1 - c k ^ { 2 } ( 1 + k ^ { 2 } ) ^ { - 1 }$ ; confidence 0.554
290. ; $R ^ { n } \times R ^ { n }$ ; confidence 0.554
291. ; $\overline { E } * ( X )$ ; confidence 0.554
292. ; $x _ { n } \in D _ { A }$ ; confidence 0.553
293. ; $b _ { i + 1 } \ldots b _ { j }$ ; confidence 0.553
294. ; $\overline { w }$ ; confidence 0.553
295. ; $+ \frac { n } { p _ { 1 } p _ { 2 } } + \ldots + \frac { n } { p _ { k - 1 } p _ { k } } + - \frac { n } { p _ { 1 } p _ { 2 } p _ { 3 } } - \ldots + ( - 1 ) ^ { k } \frac { n } { p _ { 1 } \ldots p _ { k } }$ ; confidence 0.552
296. ; $\frac { \| ( A + \delta A ) ^ { + } - A ^ { + } \| } { \| ( A + \delta A ) ^ { + } \| _ { 2 } } \leq \mu \| A ^ { + } \| _ { 2 } \| \delta A _ { 2 }$ ; confidence 0.551
297. ; $P \{ \xi ( 0 ) = j \} = p _ { j }$ ; confidence 0.551
298. ; $e _ { 3 } = ( \alpha + d ) + ( b + c )$ ; confidence 0.551
299. ; $P _ { \theta } ( d x ) = p ( x | \theta ) d \mu ( x )$ ; confidence 0.550
300. ; $74$ ; confidence 0.550
Maximilian Janisch/latexlist/latex/8. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/8&oldid=43826