User:Maximilian Janisch/latexlist/latex/3
List
1. ; $t _ { + } < + \infty$ ; confidence 0.793
2. ; $p < .5$ ; confidence 1.000
3. ; $Y _ { i } = 2 X _ { i } - 1$ ; confidence 0.991
4. ; $\{ A \rangle$ ; confidence 0.294
5. ; $\epsilon - \delta$ ; confidence 0.998
6. ; $| x$ ; confidence 0.207
7. ; $e$ ; confidence 0.314
8. ; $A ( \iota X A ( x ) )$ ; confidence 0.456
9. ; $\exists x A$ ; confidence 0.894
10. ; $x ^ { * } ( x ^ { * } y ) = x \wedge y$ ; confidence 0.991
11. ; $( x ^ { * } y ) ^ { * } z = ( x ^ { * } z ) ^ { * } ( y ^ { * } z )$ ; confidence 0.974
12. ; $\mathfrak { p } \supset b$ ; confidence 0.356
13. ; $( L ( \lambda ) )$ ; confidence 1.000
14. ; $\rho = ( 1 / 2 ) \sum _ { \alpha \in \Delta ^ { + } } \alpha$ ; confidence 0.628
15. ; $\{ \mu _ { i } \} _ { i = 1 } ^ { s - 1 } = \{ w . \lambda \} _ { w \in W ^ { ( k ) } }$ ; confidence 0.489
16. ; $\mathfrak { F } _ { \lambda }$ ; confidence 0.661
17. ; $L _ { p } ( R )$ ; confidence 0.962
18. ; $\left( \begin{array} { l l } { A } & { B } \\ { C } & { D } \end{array} \right)$ ; confidence 0.965
19. ; $V ^ { * } - V$ ; confidence 0.998
20. ; $V _ { n } = H _ { n } / \Gamma$ ; confidence 0.724
21. ; $\mu = \delta _ { X }$ ; confidence 0.951
22. ; $U ( y ) = \int _ { \Gamma } f ( x ) d \beta _ { Y } ( x )$ ; confidence 0.820
23. ; $x \in J$ ; confidence 0.908
24. ; $V ^ { \pm } \times V ^ { - } \times V ^ { \pm } \rightarrow V ^ { \pm }$ ; confidence 0.809
25. ; $T _ { K } ( K )$ ; confidence 0.995
26. ; $\frac { c _ { 1 } } { n } \leq ( | K | | K ^ { \circlearrowright } | ) ^ { 1 / n } \leq \frac { c _ { 2 } } { n }$ ; confidence 0.421
27. ; $\| T \| T ^ { - 1 } \| \geq c n$ ; confidence 0.835
28. ; $T : L _ { \infty } \rightarrow L _ { \infty }$ ; confidence 0.978
29. ; $| x _ { y } \| \rightarrow 0$ ; confidence 0.611
30. ; $l ^ { \infty } ( N )$ ; confidence 0.759
31. ; $\left( \begin{array} { c } { y - p } \\ { \vdots } \\ { y - 1 } \\ { y _ { 0 } } \end{array} \right) = \Gamma ^ { - 1 } \left( \begin{array} { c } { 0 } \\ { \vdots } \\ { 0 } \\ { 1 } \end{array} \right)$ ; confidence 0.427
32. ; $f ( \zeta ) > 0$ ; confidence 0.996
33. ; $m _ { 1 } \in M _ { 1 }$ ; confidence 0.998
34. ; $M _ { d } ^ { * } = M _ { d }$ ; confidence 0.900
35. ; $v ( \lambda ) = ( y _ { 0 } + \lambda ^ { - 1 } y _ { - 1 } + \ldots + \lambda ^ { - p } y - p ) y _ { 0 } ^ { - 1 / 2 }$ ; confidence 0.241
36. ; $E _ { 2 }$ ; confidence 0.994
37. ; $\alpha \in S _ { \alpha }$ ; confidence 0.784
38. ; $D \cup \Gamma$ ; confidence 0.999
39. ; $\lambda _ { 0 } + \ldots + \lambda _ { n } = 1$ ; confidence 0.986
40. ; $X _ { s } = X \times s s$ ; confidence 0.533
41. ; $\alpha _ { i } \in \Omega$ ; confidence 0.833
42. ; $\{ \xi _ { t } \}$ ; confidence 0.990
43. ; $\{ \xi _ { t } ( s ) \}$ ; confidence 1.000
44. ; $\delta _ { i k } = 0$ ; confidence 0.900
45. ; $f ( x ) = a x + b$ ; confidence 0.931
46. ; $f ( n ) \equiv 0 ( \operatorname { mod } p )$ ; confidence 1.000
47. ; $\| A \| _ { \infty }$ ; confidence 0.981
48. ; $b _ { i }$ ; confidence 0.854
49. ; $\pi ( m )$ ; confidence 0.999
50. ; $A _ { i } \Gamma \cap A _ { j } = \emptyset$ ; confidence 0.946
51. ; $\operatorname { inf } _ { d } \int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta )$ ; confidence 0.420
52. ; $\theta = \theta _ { i }$ ; confidence 0.949
53. ; $D = \{ d _ { 1 } , d _ { 2 } \}$ ; confidence 0.998
54. ; $P _ { \theta } ( d x ) = p ( x | \theta ) d \mu ( x )$ ; confidence 0.550
55. ; $\delta ( x ) \in D$ ; confidence 0.997
56. ; $\pi ( \theta _ { 1 } ) = \pi _ { 1 }$ ; confidence 0.999
57. ; $\pi ( \theta _ { 2 } ) = \pi _ { 2 }$ ; confidence 0.999
58. ; $( X , B X )$ ; confidence 0.566
59. ; $\delta ^ { * } ( x ) = \left\{ \begin{array} { l l } { d _ { 1 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \leq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \\ { d _ { 2 } , } & { \text { if } \frac { p ( x | \theta _ { 2 } ) } { p ( x | \theta _ { 1 } ) } \geq \frac { \pi _ { 1 } } { \pi _ { 2 } } \frac { L _ { 12 } - L _ { 11 } } { L _ { 21 } - L _ { 22 } } } \end{array} \right.$ ; confidence 0.853
60. ; $\int _ { \Theta } L ( \theta , d ) \frac { p ( x | \theta ) \pi ( \theta ) } { p ( x ) } d \nu ( \theta ) = E [ L ( \theta , d ) | x ]$ ; confidence 0.885
61. ; $\rho ( \pi , \delta ) = \int _ { \Theta } \rho ( \theta , \delta ) \pi ( d \theta )$ ; confidence 0.993
62. ; $\delta ^ { * } = \delta ^ { * } ( x )$ ; confidence 0.998
63. ; $= \int _ { X } d \mu ( x ) [ \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \nu ( \theta ) ]$ ; confidence 0.736
64. ; $( \Theta , B _ { \Theta } )$ ; confidence 0.937
65. ; $d ^ { x }$ ; confidence 0.785
66. ; $\int \int _ { \Theta } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x ) \pi ( d \theta ) =$ ; confidence 0.604
67. ; $L _ { i j } = L = ( \theta _ { i } , d _ { j } )$ ; confidence 0.694
68. ; $p ( x ) = \int _ { \Theta } p ( x | \theta ) \pi ( \theta ) d \nu ( \theta )$ ; confidence 0.972
69. ; $\rho ( \theta , \delta ) = \int _ { Y } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x )$ ; confidence 0.192
70. ; $L _ { 22 } < L _ { 21 }$ ; confidence 0.945
71. ; $\rho ( \pi , \delta ) = \int _ { X } [ \pi _ { 1 } p ( x | \theta _ { 1 } ) L ( \theta _ { 1 } , \delta ( x ) ) +$ ; confidence 0.977
72. ; $\rho ( \theta , \delta )$ ; confidence 1.000
73. ; $\pi _ { 1 } + \pi _ { 2 } = 1$ ; confidence 0.992
74. ; $= \int \int _ { \Theta } L ( \theta , \delta ( x ) ) p ( x | \theta ) \pi ( \theta ) d \mu ( x ) d \nu ( \theta ) =$ ; confidence 0.774
75. ; $E [ L ( \theta , d ) | x ]$ ; confidence 0.361
76. ; $\delta \rho ( \pi , \delta )$ ; confidence 0.650
77. ; $( D , B _ { D } )$ ; confidence 0.999
78. ; $\rho ( \pi , \delta _ { \epsilon } ^ { * } ) \leq \operatorname { inf } _ { \delta } \rho ( \pi , \delta ) + \epsilon$ ; confidence 0.972
79. ; $\pi = \pi ( d \theta )$ ; confidence 0.979
80. ; $\delta = \delta ( x )$ ; confidence 0.981
81. ; $\rho ( \pi , \delta ^ { * } ) = \operatorname { inf } _ { \delta } \int _ { \Theta } \int _ { X } L ( \theta , \delta ( x ) ) P _ { \theta } ( d x ) \pi ( d \theta )$ ; confidence 0.586
82. ; $( \epsilon > 0 )$ ; confidence 0.999
83. ; $+ \pi _ { 2 } p ( x | \theta _ { 2 } ) L ( \theta _ { 2 } , \delta ( x ) ) ] d \mu ( x )$ ; confidence 0.612
84. ; $\{ P _ { \theta } : \theta \in \Theta \}$ ; confidence 0.633
85. ; $\rho ( \pi , \delta )$ ; confidence 1.000
86. ; $i , j = 1,2$ ; confidence 0.881
87. ; $\pi ( d \theta ) = \pi ( \theta ) d \nu ( \theta )$ ; confidence 0.998
88. ; $= \{ \theta _ { 1 } , \theta _ { 2 } \}$ ; confidence 1.000
89. ; $\delta ^ { * } ( x )$ ; confidence 0.978
90. ; $x \in X , \delta ^ { * } ( x )$ ; confidence 0.710
91. ; $\delta _ { \epsilon } ^ { * }$ ; confidence 0.648
92. ; $L ( \theta , d )$ ; confidence 0.992
93. ; $L _ { 11 } < L _ { 12 }$ ; confidence 0.994
94. ; $s ( z ) = q ( z )$ ; confidence 1.000
95. ; $s ( z )$ ; confidence 1.000
96. ; $\Psi _ { 1 } ( Y ) / \hat { q } ( Y ) \leq \psi ( Y ) \leq \Psi _ { 2 } ( Y ) / \hat { q } ( Y )$ ; confidence 0.236
97. ; $x = ( x _ { 1 } + \ldots + x _ { n } ) / n$ ; confidence 0.514
98. ; $| f ( z ) | < 1$ ; confidence 0.992
99. ; $f \in B ( m / n )$ ; confidence 0.956
100. ; $L ( r ) = \int _ { 0 } ^ { 2 \pi } | z f ^ { \prime } ( z ) | d \theta = O ( \operatorname { log } \frac { 1 } { 1 - r } )$ ; confidence 0.970
101. ; $E X _ { 2 j } = \mu _ { 2 }$ ; confidence 0.517
102. ; $X _ { 1 }$ ; confidence 0.637
103. ; $L ( t )$ ; confidence 0.967
104. ; $\phi = \Pi ^ { \prime } \Pi ^ { - 1 }$ ; confidence 0.997
105. ; $P ( s S ) = P ( S )$ ; confidence 0.219
106. ; $k _ { z } = K _ { z } / \| K _ { z } \|$ ; confidence 0.674
107. ; $D \times D \in \Gamma ^ { 2 }$ ; confidence 0.230
108. ; $a ( z )$ ; confidence 0.948
109. ; $p _ { i } = \nu ( \alpha _ { i } )$ ; confidence 0.832
110. ; $d : N \cup \{ 0 \} \rightarrow R$ ; confidence 0.953
111. ; $x = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } x$ ; confidence 0.315
112. ; $\Omega = S ^ { D } = \{ \omega _ { i } \} _ { i \in D }$ ; confidence 0.591
113. ; $P ^ { \prime }$ ; confidence 0.871
114. ; $p \leq 2$ ; confidence 1.000
115. ; $B _ { n } ( x + 1 ) - B _ { n } ( x ) = n x ^ { n - 1 }$ ; confidence 0.672
116. ; $/ N = T$ ; confidence 0.692
117. ; $\alpha = ( k + 1 / 2 )$ ; confidence 0.643
118. ; $1 - \frac { 2 } { \sqrt { 2 \pi } } \int _ { 0 } ^ { \alpha / T } e ^ { - z ^ { 2 } / 2 } d z = \frac { 2 } { \sqrt { 2 \pi } } \int _ { \alpha / \sqrt { T } } ^ { \infty } e ^ { - z ^ { 2 } / 2 } d z$ ; confidence 0.722
119. ; $\nu = a + x + 2 [ \frac { n - t - x - \alpha } { 2 } ] + 1$ ; confidence 0.213
120. ; $2 \operatorname { exp } \{ - \frac { 1 } { 2 } n \epsilon ^ { 2 } \}$ ; confidence 0.999
121. ; $K ( t ) \equiv 1$ ; confidence 0.999
122. ; $= 0 \text { as. } \cdot P _ { \theta _ { 0 } } ]$ ; confidence 0.233
123. ; $0 < \epsilon < i ( \theta _ { 0 } )$ ; confidence 0.998
124. ; $\omega ( x y ) = \omega ( x ) \omega ( y )$ ; confidence 0.999
125. ; $+ \frac { \alpha } { u } [ \alpha ( \frac { \partial u } { \partial x } ) ^ { 2 } + 2 b \frac { \partial u } { \partial x } \frac { \partial u } { \partial y } + c ( \frac { \partial u } { \partial y } ) ^ { 2 } ] +$ ; confidence 0.828
126. ; $x _ { i } ^ { \prime \prime } = x _ { i } ^ { \prime }$ ; confidence 0.895
127. ; $w = \pi ( z )$ ; confidence 0.987
128. ; $\Theta f$ ; confidence 0.864
129. ; $K > 0$ ; confidence 0.999
130. ; $F ^ { 2 } = \beta ^ { 2 } \operatorname { exp } \{ \frac { I \gamma } { \beta } \}$ ; confidence 0.990
131. ; $F . C _ { i j k } = I m$ ; confidence 0.621
132. ; $( 1 - \Delta ) ^ { m } P _ { \alpha } ( x ) = P _ { \alpha - 2 m } ( x )$ ; confidence 0.951
133. ; $V _ { k } \varphi ( x ) = \varphi ( x - h )$ ; confidence 0.922
134. ; $\mu \in R$ ; confidence 0.990
135. ; $\overline { B } ^ { \nu }$ ; confidence 0.987
136. ; $( Id - \Delta ) ^ { \nu }$ ; confidence 0.560
137. ; $\overline { \Xi } \epsilon = 0$ ; confidence 0.326
138. ; $P _ { 1 }$ ; confidence 0.928
139. ; $E _ { \theta } \{ T \}$ ; confidence 0.560
140. ; $b ( \theta ) \equiv 0$ ; confidence 0.580
141. ; $\hat { R } ( c )$ ; confidence 0.613
142. ; $0 < c < 1$ ; confidence 0.979
143. ; $\operatorname { Re } _ { c _ { N } } = n$ ; confidence 0.069
144. ; $F _ { n } ( z _ { 0 } ) = 0$ ; confidence 0.993
145. ; $| w | < r _ { 0 }$ ; confidence 0.478
146. ; $F _ { n } ( z )$ ; confidence 0.855
147. ; $\sum _ { n = 1 } ^ { \infty } l _ { k } ^ { 2 } \operatorname { exp } ( l _ { 1 } + \ldots + l _ { n } ) = \infty$ ; confidence 0.545
148. ; $x \in G _ { n }$ ; confidence 0.415
149. ; $( \tau = \text { const } )$ ; confidence 0.589
150. ; $w _ { 2 } ( F )$ ; confidence 0.966
151. ; $B = \{ b _ { i } : i \in I \}$ ; confidence 0.985
152. ; $H _ { m }$ ; confidence 0.869
153. ; $H _ { k } \circ \operatorname { exp } ( X _ { F } ) = \operatorname { exp } ( X _ { F } ) ( H _ { k } )$ ; confidence 0.992
154. ; $\mu _ { n } ( t ) = 0$ ; confidence 0.990
155. ; $\lambda _ { n } ( t ) = v$ ; confidence 0.997
156. ; $u = q ( x ) \text { on } g$ ; confidence 0.462
157. ; $\vec { u } = A _ { j } ^ { i } u ^ { j }$ ; confidence 0.648
158. ; $R _ { y } ^ { t }$ ; confidence 0.060
159. ; $S _ { T }$ ; confidence 0.992
160. ; $U ( t ) = \sum _ { 1 } ^ { \infty } P ( S _ { k } \leq t ) = \sum _ { 1 } ^ { \infty } F ^ { ( k ) } ( t )$ ; confidence 0.917
161. ; $K ^ { * }$ ; confidence 0.777
162. ; $2 \int \int _ { G } ( x \frac { \partial y } { \partial u } \frac { \partial y } { \partial v } ) d u d v = \oint _ { \partial G } ( x y d y )$ ; confidence 0.204
163. ; $q \in Z ^ { N }$ ; confidence 0.950
164. ; $0 \leq \lambda _ { 1 } ( \eta ) \leq \ldots \leq \lambda _ { m } ( \eta ) \leq \ldots \rightarrow \infty$ ; confidence 0.714
165. ; $A A ^ { T } = ( r - \lambda ) E + \lambda J$ ; confidence 0.999
166. ; $n _ { 1 } = 9$ ; confidence 0.822
167. ; $X _ { 1 } \times X _ { 2 }$ ; confidence 0.987
168. ; $0 \leq \delta \leq ( n - 1 ) / 2 ( n + 1 )$ ; confidence 0.999
169. ; $\tau ^ { n }$ ; confidence 0.408
170. ; $r ^ { 3 } / v \ll 1$ ; confidence 0.747
171. ; $\leq \frac { 1 } { N } \langle U _ { 1 } - U _ { 2 } \} _ { U _ { 2 } }$ ; confidence 0.419
172. ; $M _ { A g }$ ; confidence 0.870
173. ; $P T ( C ) \in G$ ; confidence 0.971
174. ; $\| x + y \| _ { p } = \| u + v \| _ { p }$ ; confidence 0.572
175. ; $n ( z ) = n _ { 0 } e ^ { - m g z / k T }$ ; confidence 0.985
176. ; $H = \sum _ { i } \frac { p _ { i } ^ { 2 } } { 2 m } + \sum _ { i } U ( r _ { i } )$ ; confidence 0.992
177. ; $E = \sum _ { i = 1 } ^ { M } \epsilon _ { i } N _ { i }$ ; confidence 0.900
178. ; $N = \sum _ { i = 1 } ^ { M } N$ ; confidence 0.965
179. ; $E$ ; confidence 0.999
180. ; $F ( x ) = f ( M x )$ ; confidence 1.000
181. ; $d s ^ { 2 } = \frac { d u ^ { 2 } + d v ^ { 2 } } { ( U + V ) ^ { 2 } }$ ; confidence 0.972
182. ; $\Omega _ { M } ( \rho ) \in V _ { M } ^ { V ^ { n } }$ ; confidence 0.820
183. ; $( x \vee C x ) \wedge y = y$ ; confidence 0.985
184. ; $( M )$ ; confidence 1.000
185. ; $h \in \Omega$ ; confidence 0.914
186. ; $\sum \frac { 1 } { 1 }$ ; confidence 0.251
187. ; $\partial ^ { k } f / \partial x : B ^ { m } \rightarrow B$ ; confidence 0.717
188. ; $99$ ; confidence 0.271
189. ; $\tilde { \mathfrak { N } } = \mathfrak { N } \backslash ( V _ { j = 1 } ^ { t } \mathfrak { A } ^ { \prime \prime } )$ ; confidence 0.082
190. ; $\omega _ { i } = 1$ ; confidence 0.972
191. ; $M _ { 1 } \cup M _ { 2 }$ ; confidence 0.994
192. ; $x ^ { \sigma } = x$ ; confidence 0.948
193. ; $t _ { f } ( n )$ ; confidence 0.917
194. ; $\frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n \cdot \operatorname { log } _ { 2 } \operatorname { log } _ { 2 } n } < l _ { f } ( n ) < \frac { 2 ^ { n } } { \operatorname { log } _ { 2 } n }$ ; confidence 0.504
195. ; $\beta \neq - \alpha$ ; confidence 0.992
196. ; $\Delta _ { - } = - \Delta _ { + }$ ; confidence 0.970
197. ; $[ e _ { i } f _ { j } ] = h _ { i }$ ; confidence 0.684
198. ; $\alpha _ { i j } \neq 0$ ; confidence 0.797
199. ; $\alpha _ { i } \in R$ ; confidence 0.443
200. ; $\operatorname { lim } \mathfrak { g } ^ { \alpha } = 1$ ; confidence 0.737
201. ; $9 -$ ; confidence 0.467
202. ; $\alpha _ { k } = a _ { k k } - v _ { k } A _ { k - 1 } ^ { - 1 } u _ { k }$ ; confidence 0.522
203. ; $\mathfrak { M } _ { n }$ ; confidence 0.373
204. ; $\mathfrak { h } \subset \mathfrak { g }$ ; confidence 0.959
205. ; $A = R ( X )$ ; confidence 0.988
206. ; $\partial M _ { A } \subset X \subset M _ { A }$ ; confidence 0.891
207. ; $\Gamma \subset M _ { A }$ ; confidence 0.920
208. ; $| \hat { \alpha } ( \xi ) | > | \hat { \alpha } ( \eta ) |$ ; confidence 0.745
209. ; $\hat { G } \backslash G$ ; confidence 0.582
210. ; $f ( e ^ { i \theta } ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r e ^ { i \theta } )$ ; confidence 0.451
211. ; $N ^ { * } ( D )$ ; confidence 0.999
212. ; $F ^ { \prime } ( w )$ ; confidence 0.999
213. ; $U ^ { N }$ ; confidence 0.743
214. ; $N ^ { * } ( \Omega )$ ; confidence 0.996
215. ; $\Phi ( \theta )$ ; confidence 1.000
216. ; $f ^ { * } ( z ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r z )$ ; confidence 0.445
217. ; $B = H ^ { \infty } \subset H _ { \psi } \subset N ^ { * }$ ; confidence 0.752
218. ; $n ^ { \prime } = - n + m - 1$ ; confidence 0.993
219. ; $t _ { 0 } \in \partial S$ ; confidence 0.816
220. ; $C _ { \alpha }$ ; confidence 0.664
221. ; $K$ ; confidence 0.981
222. ; $K ^ { + }$ ; confidence 0.992
223. ; $L u = \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } - \frac { \partial u } { \partial t } = 0$ ; confidence 0.466
224. ; $t \in S$ ; confidence 0.474
225. ; $k ^ { \prime } = 1$ ; confidence 0.991
226. ; $\pi _ { i } / ( \pi _ { i } + \pi _ { j } )$ ; confidence 0.304
227. ; $1 \rightarrow K ( n ) \rightarrow B ( n ) \rightarrow S ( n ) \rightarrow 1$ ; confidence 0.993
228. ; $( i i + 1 )$ ; confidence 0.886
229. ; $\Pi ^ { \prime \prime }$ ; confidence 0.914
230. ; $P _ { 1 / 2 }$ ; confidence 0.996
231. ; $\omega ^ { - 1 }$ ; confidence 0.909
232. ; $H ^ { * } ( O ( n ) ) \rightarrow H ^ { * } ( B ( n ) )$ ; confidence 0.999
233. ; $\sum h _ { ( 1 ) } \otimes h _ { ( 2 ) }$ ; confidence 0.516
234. ; $\lambda _ { W } : V \otimes W \rightarrow W \otimes V$ ; confidence 0.988
235. ; $U _ { q } ( \mathfrak { g } )$ ; confidence 0.626
236. ; $L _ { p } ( T )$ ; confidence 0.938
237. ; $X$ ; confidence 0.601
238. ; $G ( u )$ ; confidence 0.489
239. ; $P \{ \mu ( t + t _ { 0 } ) = j | \mu ( t _ { 0 } ) = i \}$ ; confidence 0.724
240. ; $t _ { 1 } + t$ ; confidence 0.973
241. ; $P \{ \xi _ { t } \equiv 0 \} = 1$ ; confidence 0.670
242. ; $\int _ { 0 } ^ { 1 } \frac { 1 - G ( s ) } { F ( s ) - s } d s < \infty$ ; confidence 0.998
243. ; $P _ { C } ^ { 1 }$ ; confidence 0.433
244. ; $r ^ { 2 }$ ; confidence 1.000
245. ; $\operatorname { dim } ( V / K ) = 1$ ; confidence 0.998
246. ; $R [ H \times H$ ; confidence 0.981
247. ; $( \oplus _ { b } G _ { E B } b )$ ; confidence 0.179
248. ; $P _ { I } ^ { f } : C ^ { \infty } \rightarrow L$ ; confidence 0.321
249. ; $\alpha ^ { i }$ ; confidence 0.739
250. ; $f ( x ) = x ^ { t } M x$ ; confidence 0.999
251. ; $\frac { \partial N _ { i } } { \partial t } + u _ { i } \nabla N _ { i } = G _ { i } - L _ { i }$ ; confidence 0.250
252. ; $B \otimes K ( H )$ ; confidence 0.796
253. ; $Q ( H ) = B ( H ) / K ( H )$ ; confidence 0.959
254. ; $M _ { t } : = \operatorname { sup } _ { s \leq t } W _ { s }$ ; confidence 0.396
255. ; $\operatorname { lim } _ { n \rightarrow \infty } \nabla f ( x _ { n } ) = 0$ ; confidence 0.985
256. ; $x _ { + } = x _ { c } + \lambda d$ ; confidence 0.719
257. ; $\nu : Z ( K ) \rightarrow V \subset \operatorname { Aff } ( A )$ ; confidence 0.915
258. ; $\operatorname { dim } A = 2$ ; confidence 0.998
259. ; $0 \leq i \leq d - 1$ ; confidence 0.993
260. ; $d = \operatorname { dim } A$ ; confidence 0.989
261. ; $P _ { \alpha }$ ; confidence 0.384
262. ; $V _ { Q }$ ; confidence 0.244
263. ; $A$ ; confidence 0.535
264. ; $F _ { m }$ ; confidence 0.945
265. ; $n \geq 2 ^ { 13 }$ ; confidence 0.999
266. ; $n = p$ ; confidence 0.858
267. ; $d \geq n$ ; confidence 0.956
268. ; $2 ^ { 12 }$ ; confidence 0.999
269. ; $\frac { \partial v } { \partial t } - 6 v ^ { 2 } \frac { \partial v } { \partial x } + \frac { \partial ^ { 3 } v } { \partial x ^ { 3 } } = 0$ ; confidence 0.944
270. ; $\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$ ; confidence 0.185
271. ; $h : H \rightarrow ( C \bigotimes T M ) / ( H \oplus \overline { H } )$ ; confidence 0.332
272. ; $D ^ { \perp }$ ; confidence 0.893
273. ; $T : A _ { j } \rightarrow A$ ; confidence 0.526
274. ; $v = u ^ { 2 } +$ ; confidence 0.633
275. ; $X _ { t } = 2.632 + 1.492 X _ { t - 1 } - 1.324 X _ { t - 2 } + \epsilon _ { t } ^ { ( 2 ) }$ ; confidence 0.949
276. ; $CW ( 9.63 )$ ; confidence 0.827
277. ; $\Sigma _ { 12 } = \Sigma _ { 2 } ^ { T }$ ; confidence 0.747
278. ; $K _ { X } K _ { X }$ ; confidence 0.800
279. ; $C A$ ; confidence 0.232
280. ; $X \backslash K _ { X }$ ; confidence 0.934
281. ; $E ( \lambda )$ ; confidence 1.000
282. ; $\underline { C } ( E ) = \operatorname { sup } C ( K )$ ; confidence 0.963
283. ; $f$ ; confidence 0.647
284. ; $0 \leq j < k$ ; confidence 0.995
285. ; $( f \in H _ { C } ( D ) )$ ; confidence 0.513
286. ; $f \in H _ { c } ( D )$ ; confidence 0.898
287. ; $\rho \in C ^ { 2 } ( \overline { \Omega } )$ ; confidence 0.996
288. ; $E \times E$ ; confidence 0.999
289. ; $\nabla ^ { \prime } = \nabla$ ; confidence 0.998
290. ; $s _ { m } = r - s - \operatorname { rank } M _ { m } - 1$ ; confidence 0.443
291. ; $\epsilon ( \sigma ) = 1$ ; confidence 0.993
292. ; $1$ ; confidence 0.897
293. ; $t \otimes _ { k } K$ ; confidence 0.618
294. ; $\mu = \beta \nu$ ; confidence 0.406
295. ; $\lambda : V \rightarrow P$ ; confidence 0.999
296. ; $1 / \mu = d S / d \sigma$ ; confidence 0.936
297. ; $\psi ( z ) : = \frac { d } { d z } \{ \operatorname { log } \Gamma ( z ) \} = \frac { \Gamma ^ { \prime } ( z ) } { \Gamma ( z ) }$ ; confidence 0.998
298. ; $\operatorname { log } \Gamma ( z ) = \int _ { 1 } ^ { z } \psi ( t ) d t$ ; confidence 0.962
299. ; $F ( 1 _ { A } ) = 1 _ { F A }$ ; confidence 0.901
300. ; $( \alpha \circ \beta ) ( c ) _ { d x } = \sum _ { b } \alpha ( b ) _ { a } \beta ( c ) _ { b }$ ; confidence 0.330
Maximilian Janisch/latexlist/latex/3. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/3&oldid=43810