User:Maximilian Janisch/latexlist/latex
From Encyclopedia of Mathematics
< User:Maximilian Janisch | latexlist
Revision as of 09:46, 8 April 2019 by Maximilian Janisch (talk | contribs) (AUTOMATIC EDIT: Updated image/latex database (currently 525 images latexified; order by confidence, reverse: True.)
All known classifications:
List
- 2 duplicate(s) ; ; $f ^ { \prime } ( x ) = 0$ ; confidence 0.9999351516926092
- 3 duplicate(s) ; ; $T ( s )$ ; confidence 0.9998741172603259
- 4 duplicate(s) ; ; $( M )$ ; confidence 0.9998512322635735
- 1 duplicate(s) ; ; $\mu _ { 1 } = \mu _ { 2 } = \mu > 0$ ; confidence 0.9998340722154501
- 1 duplicate(s) ; ; $m \times ( n + 1 )$ ; confidence 0.9998245348394295
- 1 duplicate(s) ; ; $\{ \lambda \}$ ; confidence 0.9997978283098766
- 4 duplicate(s) ; ; $\Phi ( \theta )$ ; confidence 0.9997825751050052
- 1 duplicate(s) ; ; $r ( 1,2 )$ ; confidence 0.9997444275684667
- 2 duplicate(s) ; ; $C ( n ) = 0$ ; confidence 0.9997444185828339
- 1 duplicate(s) ; ; $\Delta ( \lambda ) ^ { \mu }$ ; confidence 0.9997101052062505
- 1 duplicate(s) ; ; $[ x , y ] = 0$ ; confidence 0.9996815056461305
- 1 duplicate(s) ; ; $A ( u ) = 0$ ; confidence 0.9996776891665473
- 1 duplicate(s) ; ; $F ( \lambda , \alpha )$ ; confidence 0.9996662936345359
- 1 duplicate(s) ; ; $0 < p , q < \infty$ ; confidence 0.9996624432322677
- 5 duplicate(s) ; ; $f : D \rightarrow \Omega$ ; confidence 0.9996395530994154
- 1 duplicate(s) ; ; $( C , A )$ ; confidence 0.9996300112572042
- 1 duplicate(s) ; ; $\phi _ { i } ( 0 ) = 0$ ; confidence 0.9996262135061289
- 1 duplicate(s) ; ; $\mu ( i , m + 1 ) - \mu ( i , m ) =$ ; confidence 0.9995594823698584
- 18 duplicate(s) ; ; $R > 0$ ; confidence 0.9995576083189429
- 4 duplicate(s) ; ; $( T , - )$ ; confidence 0.999542304500135
- 1 duplicate(s) ; ; $f ( - x ) = - f ( x )$ ; confidence 0.9995347339515249
- 1 duplicate(s) ; ; $R ( t + T , s ) = R ( t , s )$ ; confidence 0.9994412670001754
- 1 duplicate(s) ; ; $X ^ { \prime } \cap \pi ^ { - 1 } ( b )$ ; confidence 0.9994375051937255
- 1 duplicate(s) ; ; $F = \{ f ( z ) \}$ ; confidence 0.9994165065242859
- 1 duplicate(s) ; ; $B = Y \backslash 0$ ; confidence 0.9993974489929631
- 1 duplicate(s) ; ; $x > y > z$ ; confidence 0.9993955133881784
- 1 duplicate(s) ; ; $\mu ^ { - 1 }$ ; confidence 0.9993478916798418
- 1 duplicate(s) ; ; $\phi ( x ) \geq 0$ ; confidence 0.9991992146985078
- 1 duplicate(s) ; ; $( U ) = n - 1$ ; confidence 0.9991897055001819
- 1 duplicate(s) ; ; $k ^ { 2 } ( \tau ) = \lambda$ ; confidence 0.9991325098646305
- 1 duplicate(s) ; ; $F ( K , A )$ ; confidence 0.9990982721928592
- 1 duplicate(s) ; ; $y \geq x \geq 0$ ; confidence 0.9990505962281612
- 1 duplicate(s) ; ; $m ( M )$ ; confidence 0.9989820090287949
- 1 duplicate(s) ; ; $( 0 , m h )$ ; confidence 0.9989496012923708
- 1 duplicate(s) ; ; $A = \pi r ^ { 2 }$ ; confidence 0.9989476645363383
- 7 duplicate(s) ; ; $\phi ( p )$ ; confidence 0.9989210037524975
- 2 duplicate(s) ; ; $2 g - 1$ ; confidence 0.9989153310543109
- 1 duplicate(s) ; ; $< 1$ ; confidence 0.9989134216768655
- 1 duplicate(s) ; ; $I _ { \Gamma } ( x )$ ; confidence 0.9987724436352847
- 6 duplicate(s) ; ; $d \in [ 0,3 ]$ ; confidence 0.9987514230629871
- 3 duplicate(s) ; ; $P ^ { N } ( k )$ ; confidence 0.9987133323048683
- 1 duplicate(s) ; ; $A = [ A _ { 1 } , A _ { 2 } ]$ ; confidence 0.9986695325569978
- 1 duplicate(s) ; ; $f ( x ) = x ^ { t } M x$ ; confidence 0.9986429327244655
- 1 duplicate(s) ; ; $\eta \in R ^ { k }$ ; confidence 0.9986162213117556
- 1 duplicate(s) ; ; $C ^ { \prime } = 1$ ; confidence 0.9986067312742835
- 1 duplicate(s) ; ; $0 \leq \delta \leq ( n - 1 ) / 2 ( n + 1 )$ ; confidence 0.9985895509258916
- 1 duplicate(s) ; ; $M _ { \lambda , \mu } ( z ) , M _ { \lambda , - \mu } ( z )$ ; confidence 0.998551455508304
- 1 duplicate(s) ; ; $\sigma _ { i j } ( t )$ ; confidence 0.9984257696895713
- 1 duplicate(s) ; ; $\nabla ^ { \prime } = \nabla$ ; confidence 0.998307629684964
- 1 duplicate(s) ; ; $H ( q , d )$ ; confidence 0.9983058488518486
- 1 duplicate(s) ; ; $U ( \epsilon )$ ; confidence 0.9981553778972309
- 1 duplicate(s) ; ; $\psi _ { k } ( \xi )$ ; confidence 0.9981325408009
- 1 duplicate(s) ; ; $\operatorname { dim } A = 2$ ; confidence 0.9981230141357917
- 1 duplicate(s) ; ; $\mu ( 0 , x ) \neq 0$ ; confidence 0.9980944670210227
- 1 duplicate(s) ; ; $i B _ { 0 }$ ; confidence 0.9980735616545853
- 1 duplicate(s) ; ; $f \in L _ { 1 } ( X , \mu )$ ; confidence 0.9980715970738752
- 1 duplicate(s) ; ; $m _ { 1 } \in M _ { 1 }$ ; confidence 0.9980621286055976
- 1 duplicate(s) ; ; $D _ { A } ^ { 2 } = 0$ ; confidence 0.9980201986957993
- 1 duplicate(s) ; ; $( L _ { \mu } ) ^ { p }$ ; confidence 0.9980106842004159
- 1 duplicate(s) ; ; $p : X \rightarrow S$ ; confidence 0.9979840368620039
- 1 duplicate(s) ; ; $L _ { 2 } ( X \times X , \mu \times \mu )$ ; confidence 0.9979726450097132
- 1 duplicate(s) ; ; $\gamma _ { k } < \sigma < 1$ ; confidence 0.9979231293891486
- 1 duplicate(s) ; ; $p _ { i } ( \xi ) \in H ^ { 4 i } ( B )$ ; confidence 0.99791358427467
- 1 duplicate(s) ; ; $P = Q$ ; confidence 0.9978717644497841
- 1 duplicate(s) ; ; $Y ( t ) = X ( t ) C$ ; confidence 0.9978660008017339
- 1 duplicate(s) ; ; $( M N ) \in \Lambda$ ; confidence 0.9978489002242932
- 1217 duplicate(s) ; ; $H$ ; confidence 0.9978222888485107
- 1 duplicate(s) ; ; $\frac { d ^ { 2 } x } { d \tau ^ { 2 } } - \lambda ( 1 - x ^ { 2 } ) \frac { d x } { d \tau } + x = 0$ ; confidence 0.9978165539521021
- 1 duplicate(s) ; ; $0 < l < n$ ; confidence 0.997652917141953
- 1 duplicate(s) ; ; $\phi ( x ) = ( 1 - x ) ^ { \alpha } ( 1 + x ) ^ { \beta }$ ; confidence 0.9976319244241609
- 1 duplicate(s) ; ; $m : A ^ { \prime } \rightarrow A$ ; confidence 0.9973560859607404
- 1 duplicate(s) ; ; $A _ { \delta }$ ; confidence 0.9973313840386022
- 1 duplicate(s) ; ; $S ( x _ { 0 } , r )$ ; confidence 0.9973161231412642
- 2 duplicate(s) ; ; $\phi , \lambda$ ; confidence 0.9972686020034681
- 2 duplicate(s) ; ; $\theta _ { n } ( \partial \pi )$ ; confidence 0.9971430921268758
- 1 duplicate(s) ; ; $d y / d s \geq 0$ ; confidence 0.9970803384522124
- 1 duplicate(s) ; ; $\phi : B ( m , n ) \rightarrow G$ ; confidence 0.9970079595144904
- 1 duplicate(s) ; ; $T _ { 1 } T _ { 2 } ^ { - 1 } T _ { 3 }$ ; confidence 0.9969376561645402
- 1 duplicate(s) ; ; $e ( \xi \otimes C )$ ; confidence 0.99689779516829
- 1 duplicate(s) ; ; $q ( 0 ) \neq 0$ ; confidence 0.996852104355502
- 1 duplicate(s) ; ; $H ^ { 0 } ( X , F ) = F ( X )$ ; confidence 0.9968103003263874
- 1 duplicate(s) ; ; $i ^ { * } ( \phi ) = 0$ ; confidence 0.996610699246127
- 1 duplicate(s) ; ; $U _ { n } ( x ) = ( n + 1 ) F ( - n , n + 2 ; \frac { 3 } { 2 } ; \frac { 1 - x } { 2 } )$ ; confidence 0.9966049369250518
- 1 duplicate(s) ; ; $X \in V ( B )$ ; confidence 0.9963597650466635
- 1 duplicate(s) ; ; $D _ { n - 2 }$ ; confidence 0.9962704878368197
- 1 duplicate(s) ; ; $f ( x , y ) = a x ^ { 3 } + 3 b x ^ { 2 } y + 3 c x y ^ { 2 } + d y ^ { 3 }$ ; confidence 0.9962590449843017
- 1 duplicate(s) ; ; $( \operatorname { arccos } x ) ^ { \prime } = - 1 / \sqrt { 1 - x ^ { 2 } }$ ; confidence 0.9962210404610826
- 3 duplicate(s) ; ; $S ( X , Y )$ ; confidence 0.9961108949830443
- 1 duplicate(s) ; ; $\Lambda ^ { 2 } : = \sum _ { j = 1 } ^ { \infty } \lambda _ { j } < \infty$ ; confidence 0.9959227918924394
- 1 duplicate(s) ; ; $\sigma ( n ) > \sigma ( m )$ ; confidence 0.995848659246317
- 1 duplicate(s) ; ; $v _ { \nu } ( t _ { 0 } ) = 0$ ; confidence 0.9958144597610641
- 4 duplicate(s) ; ; $T ( X )$ ; confidence 0.9957822341628573
- 1 duplicate(s) ; ; $V ( \Lambda ^ { \prime } ) \otimes V ( \Lambda ^ { \prime \prime } )$ ; confidence 0.9956682193198153
- 1 duplicate(s) ; ; $z ( 1 - z ) w ^ { \prime \prime } + [ \gamma - ( \alpha + \beta + 1 ) z ] w ^ { \prime } - \alpha \beta w = 0$ ; confidence 0.9956682138248338
- 1 duplicate(s) ; ; $P _ { 1 / 2 }$ ; confidence 0.9956493318117914
- 1 duplicate(s) ; ; $O _ { X } ( 1 ) = O ( 1 )$ ; confidence 0.9955390937868168
- 2 duplicate(s) ; ; $D ( R ^ { n + k } )$ ; confidence 0.9953530221191604
- 1 duplicate(s) ; ; $U ( A ) \subset Y$ ; confidence 0.9953112913954829
- 1 duplicate(s) ; ; $x \leq z \leq y$ ; confidence 0.9951271473846911
- 1 duplicate(s) ; ; $T _ { K } ( K )$ ; confidence 0.994865348253668
- 1 duplicate(s) ; ; $\operatorname { arg } z = c$ ; confidence 0.9948425695733224
- 1 duplicate(s) ; ; $K = ( S , R , D , W )$ ; confidence 0.9948102230937678
- 1 duplicate(s) ; ; $h ^ { - 1 } ( F _ { 0 } )$ ; confidence 0.9947741681658777
- 2 duplicate(s) ; ; $\beta ( M )$ ; confidence 0.9946907310597394
- 1 duplicate(s) ; ; $\Omega \in ( H ^ { \otimes 0 } ) _ { \alpha } \subset \Gamma ^ { \alpha } ( H )$ ; confidence 0.9945958382282687
- 2 duplicate(s) ; ; $E = N$ ; confidence 0.9945844617347582
- 1 duplicate(s) ; ; $\sum _ { n = 0 } ^ { \infty } A ^ { n } f$ ; confidence 0.9941728634784863
- 1 duplicate(s) ; ; $2 - m - 1$ ; confidence 0.9939814098837717
- 1 duplicate(s) ; ; $S : \Omega \rightarrow L ( Y , X )$ ; confidence 0.9939321146895647
- 2 duplicate(s) ; ; $F \in \gamma$ ; confidence 0.9938032780743663
- 1 duplicate(s) ; ; $T ^ { * } Y \backslash 0$ ; confidence 0.9936099118272753
- 1 duplicate(s) ; ; $A \in L _ { \infty } ( H )$ ; confidence 0.9935492544546415
- 3 duplicate(s) ; ; $1 \leq i \leq n - 1$ ; confidence 0.9934317899899957
- 2 duplicate(s) ; ; $T _ { N } ( t )$ ; confidence 0.9933881680800184
- 1 duplicate(s) ; ; $\dot { y } = - A ^ { T } ( t ) y$ ; confidence 0.9932270983806135
- 1 duplicate(s) ; ; $f \phi = 0$ ; confidence 0.9931721856427278
- 1 duplicate(s) ; ; $\eta ( \epsilon ) \rightarrow 0$ ; confidence 0.9930945383534938
- 1 duplicate(s) ; ; $B _ { m } = R$ ; confidence 0.9929486919689698
- 4 duplicate(s) ; ; $0 \leq i \leq d - 1$ ; confidence 0.9928994905576037
- 1 duplicate(s) ; ; $\operatorname { lim } _ { \epsilon \rightarrow 0 } d ( E _ { \epsilon } ) = d ( E )$ ; confidence 0.9928880631148228
- 1 duplicate(s) ; ; $H ^ { i } ( X , O _ { X } ( \nu ) ) = 0$ ; confidence 0.9927252137517681
- 2 duplicate(s) ; ; $x ( t ) \in D ^ { c }$ ; confidence 0.9923769157843226
- 1 duplicate(s) ; ; $f ( t , x ) \equiv A x + f ( t )$ ; confidence 0.9918149146894151
- 1 duplicate(s) ; ; $\pi _ { 1 } ( X _ { 1 } , X _ { 0 } )$ ; confidence 0.9917013629153039
- 1 duplicate(s) ; ; $\Sigma ( \Sigma ^ { n } X ) \rightarrow \Sigma ^ { n + 1 } X$ ; confidence 0.9916975901284152
- 1 duplicate(s) ; ; $\Pi _ { p } ( X , Y )$ ; confidence 0.9915973680864115
- 1 duplicate(s) ; ; $\operatorname { Map } ( X , Y ) = [ X , Y ]$ ; confidence 0.9913042339957683
- 1 duplicate(s) ; ; $\alpha < \beta < \gamma$ ; confidence 0.9912323971264602
- 1 duplicate(s) ; ; $J ( F G / I ) = 0$ ; confidence 0.990901636718734
- 6 duplicate(s) ; ; $U = U ( x _ { 0 } )$ ; confidence 0.9908562078219828
- 1 duplicate(s) ; ; $y ^ { \prime } ( 0 ) = 0$ ; confidence 0.9903064442155347
- 1 duplicate(s) ; ; $\mu _ { i } ( X _ { i } ) = 1$ ; confidence 0.9902724405115619
- 1 duplicate(s) ; ; $D = 2 \gamma k T / M$ ; confidence 0.9898060130615762
- 1 duplicate(s) ; ; $S _ { k } ( \zeta _ { 0 } ) \backslash R ( f , \zeta _ { 0 } ; D )$ ; confidence 0.9897682598681611
- 1 duplicate(s) ; ; $[ T ^ { * } M ]$ ; confidence 0.9895549573603544
- 2 duplicate(s) ; ; $\{ \xi _ { t } \}$ ; confidence 0.9895304903560618
- 1 duplicate(s) ; ; $\int _ { X } | f ( x ) | ^ { 2 } \operatorname { ln } | f ( x ) | d \mu ( x ) \leq$ ; confidence 0.9895172018375741
- 1 duplicate(s) ; ; $\alpha _ { \epsilon } ( h ) = o ( h )$ ; confidence 0.9894606168522213
- 1 duplicate(s) ; ; $F _ { t } : M ^ { n } \rightarrow M ^ { n }$ ; confidence 0.9892303983467674
- 1 duplicate(s) ; ; $\theta _ { T } = \theta$ ; confidence 0.9890888504504705
- 1 duplicate(s) ; ; $\alpha \in \pi _ { 1 } ( X , x _ { 0 } )$ ; confidence 0.9889021400348521
- 1 duplicate(s) ; ; $H \times H \rightarrow H$ ; confidence 0.9885362335604136
- 3 duplicate(s) ; ; $A = R ( X )$ ; confidence 0.9881159073610419
- 1 duplicate(s) ; ; $X = N ( A ) + X , \quad Y = Z + R ( A )$ ; confidence 0.9876165622757166
- 1 duplicate(s) ; ; $+ \int _ { \partial S } \mu ( t ) d t + i c , \quad \text { if } m \geq 1$ ; confidence 0.9868991488845216
- 1 duplicate(s) ; ; $\frac { \partial ^ { 2 } u } { \partial x _ { 1 } ^ { 2 } } + \frac { \partial ^ { 2 } u } { \partial x _ { 2 } ^ { 2 } } = - f ( x _ { 1 } , x _ { 2 } ) , \quad ( x _ { 1 } , x _ { 2 } ) \in G$ ; confidence 0.9868050267508229
- 1 duplicate(s) ; ; $\Gamma \subset \Omega$ ; confidence 0.9867994267311585
- 1 duplicate(s) ; ; $K _ { 1 } ( O _ { 1 } , E _ { 1 } , U _ { 1 } )$ ; confidence 0.9866507274801697
- 1 duplicate(s) ; ; $c < 2$ ; confidence 0.9865942652102575
- 1 duplicate(s) ; ; $f ^ { - 1 } \circ f ( z ) = z$ ; confidence 0.9863835099245214
- 1 duplicate(s) ; ; $\Phi ^ { ( 3 ) } ( x )$ ; confidence 0.9858098626595947
- 1 duplicate(s) ; ; $E ^ { \prime } = 0$ ; confidence 0.9854507710518955
- 1 duplicate(s) ; ; $x ( t _ { 1 } ) = x ^ { 1 } \in R ^ { n }$ ; confidence 0.9854395487674904
- 1 duplicate(s) ; ; $\| x _ { k } - x ^ { * } \| \leq C q ^ { k }$ ; confidence 0.9851463226738699
- 2 duplicate(s) ; ; $I _ { p } ( L )$ ; confidence 0.9849265830743361
- 1 duplicate(s) ; ; $\Omega _ { p } ^ { * } = \Omega _ { p } \cup \{ F _ { i } ^ { * } : F _ { i } \in \Omega _ { f } \}$ ; confidence 0.9849038850600799
- 1 duplicate(s) ; ; $\kappa = \mu ^ { * }$ ; confidence 0.9845320993533536
- 2 duplicate(s) ; ; $s > - \infty$ ; confidence 0.9845208310112613
- 1 duplicate(s) ; ; $T ^ { * }$ ; confidence 0.9844626718823335
- 5 duplicate(s) ; ; $\{ U _ { i } \}$ ; confidence 0.9836893369850943
- 1 duplicate(s) ; ; $D$ ; confidence 0.9836142568793015
- 1 duplicate(s) ; ; $0 \in R ^ { 3 }$ ; confidence 0.9826279160088596
- 1 duplicate(s) ; ; $[ \mathfrak { g } ^ { \alpha } , \mathfrak { g } ^ { \beta } ] \subset \mathfrak { g } ^ { \alpha + \beta }$ ; confidence 0.9810343462221086
- 1 duplicate(s) ; ; $\phi \in H$ ; confidence 0.9809538776286444
- 2 duplicate(s) ; ; $( F , \tau _ { K , G } ( F ) )$ ; confidence 0.9803140671163942
- 1 duplicate(s) ; ; $B _ { N } A ( B _ { N } ( \lambda - \lambda _ { 0 } ) )$ ; confidence 0.980198148600406
- 1 duplicate(s) ; ; $g : ( Y , B ) \rightarrow ( Z , C )$ ; confidence 0.9799757959051938
- 1 duplicate(s) ; ; $j = 1 : n$ ; confidence 0.9799364831365193
- 1 duplicate(s) ; ; $y _ { t } = A x _ { t } + \epsilon _ { t }$ ; confidence 0.978965009142094
- 1 duplicate(s) ; ; $\alpha _ { 2 } ( \alpha ; \omega )$ ; confidence 0.9789482742406848
- 1 duplicate(s) ; ; $V _ { 0 } \subset E$ ; confidence 0.9785935677225964
- 1 duplicate(s) ; ; $g ^ { p } = e$ ; confidence 0.9783864254422098
- 2 duplicate(s) ; ; $F \subset G$ ; confidence 0.9779591590956324
- 1 duplicate(s) ; ; $D ^ { - 1 } \in \pi$ ; confidence 0.9776607137736804
- 1 duplicate(s) ; ; $E = \emptyset$ ; confidence 0.9769560892480964
- 1 duplicate(s) ; ; $F , F _ { \tau } \subset P$ ; confidence 0.9767753813241717
- 1 duplicate(s) ; ; $1 \leq u \leq 2$ ; confidence 0.97632096204764
- 1 duplicate(s) ; ; $\Delta ^ { n } f ( x )$ ; confidence 0.9761551779890966
- 1 duplicate(s) ; ; $\Omega _ { X }$ ; confidence 0.9758684878315421
- 1 duplicate(s) ; ; $t \in [ 0,2 \pi q ]$ ; confidence 0.9753697855907192
- 1 duplicate(s) ; ; $A = \sum _ { i \geq 0 } A$ ; confidence 0.9753604609604595
- 1 duplicate(s) ; ; $D ^ { 2 } f ( x ^ { * } ) = D ( D ^ { T } f ( x ^ { * } ) )$ ; confidence 0.9750684504584475
- 1 duplicate(s) ; ; $C _ { n } = C _ { 1 } + \frac { 1 } { 4 } C _ { 1 } + \ldots + \frac { 1 } { 4 ^ { n - 1 } } C _ { 1 }$ ; confidence 0.9741213188855127
- 1 duplicate(s) ; ; $E X ^ { 2 n } < \infty$ ; confidence 0.9738380370444303
- 1 duplicate(s) ; ; $L _ { \infty } ( \hat { G } )$ ; confidence 0.9734443311879037
- 1 duplicate(s) ; ; $J : T M \rightarrow T M$ ; confidence 0.9724645644509512
- 1 duplicate(s) ; ; $U , V \subset W$ ; confidence 0.9721622121996885
- 1 duplicate(s) ; ; $\frac { | z | ^ { p } } { ( 1 + | z | ) ^ { 2 p } } \leq | f ( z ) | \leq \frac { | z | ^ { p } } { ( 1 - | z | ) ^ { 2 p } }$ ; confidence 0.971973208977955
- 6 duplicate(s) ; ; $\Delta _ { q }$ ; confidence 0.9710114517498245
- 1 duplicate(s) ; ; $E _ { 1 } \rightarrow E _ { 1 }$ ; confidence 0.9701857241255903
- 1 duplicate(s) ; ; $L , R , S$ ; confidence 0.969562359947286
- 1 duplicate(s) ; ; $R ( s ) = | \frac { r ( s ) - \sqrt { 1 - s ^ { 2 } } } { r ( s ) + \sqrt { 1 - s ^ { 2 } } } | , \quad s \in [ - 1,1 ]$ ; confidence 0.9691388921416594
- 1 duplicate(s) ; ; $\tau ( x ) \cup T ( A , X )$ ; confidence 0.9682096099573331
- 1 duplicate(s) ; ; $D = R [ x ] / D$ ; confidence 0.9679769594271714
- 1 duplicate(s) ; ; $z ^ { 2 } y ^ { \prime \prime } + z y ^ { \prime } - ( i z ^ { 2 } + \nu ^ { 2 } ) y = 0$ ; confidence 0.9672829573697158
- 1 duplicate(s) ; ; $V _ { g , n }$ ; confidence 0.9660835961280579
- 1 duplicate(s) ; ; $f ( x ) = \alpha _ { n } x ^ { n } + \ldots + \alpha _ { 1 } x$ ; confidence 0.9658413073029992
- 1 duplicate(s) ; ; $t \in [ - 1,1 ]$ ; confidence 0.9658081901466191
- 1 duplicate(s) ; ; $\| x _ { 0 } \| \leq \delta$ ; confidence 0.9655042932976093
- 1 duplicate(s) ; ; $\delta : G ^ { \prime } \rightarrow W$ ; confidence 0.9650292879125926
- 1 duplicate(s) ; ; $\int | \rho _ { \varepsilon } ( x ) | d x$ ; confidence 0.964771564499889
- 1 duplicate(s) ; ; $\left( \begin{array} { l l } { A } & { B } \\ { C } & { D } \end{array} \right)$ ; confidence 0.9646336071507279
- 1 duplicate(s) ; ; $\operatorname { lim } _ { r \rightarrow 1 } \int _ { E } | f ( r e ^ { i \theta } ) | ^ { \delta } d \theta = \int _ { E } | f ( e ^ { i \theta } ) | ^ { \delta } d \theta$ ; confidence 0.9636735762236702
- 1 duplicate(s) ; ; $\lambda _ { j , k }$ ; confidence 0.9635983039923848
- 1 duplicate(s) ; ; $\| - x \| = \| x \| , \| x + y \| \leq \| x \| + \| y \|$ ; confidence 0.9632455201486047
- 1 duplicate(s) ; ; $y ^ { 2 } = x ^ { 3 } - g x - g$ ; confidence 0.9623328339321429
- 1 duplicate(s) ; ; $\alpha _ { \alpha } ^ { * } ( f ) \Omega = f$ ; confidence 0.9617933295666078
- 1 duplicate(s) ; ; $F ^ { \prime } , F ^ { \prime \prime } \in S$ ; confidence 0.9608232994376078
- 1 duplicate(s) ; ; $s = \int _ { a } ^ { b } \sqrt { 1 + [ f ^ { \prime } ( x ) ] ^ { 2 } } d x$ ; confidence 0.9607372856704428
- 1 duplicate(s) ; ; $\operatorname { sign } ( M ) = \int _ { M } L ( M , g ) - \eta _ { D } ( 0 )$ ; confidence 0.9583030996297096
- 1 duplicate(s) ; ; $W _ { p } ^ { m } ( I ^ { d } )$ ; confidence 0.9580902310115097
- 1 duplicate(s) ; ; $\sigma ^ { k } : M \rightarrow E ^ { k }$ ; confidence 0.9580454360582428
- 1 duplicate(s) ; ; $K _ { \omega }$ ; confidence 0.9577421434804869
- 1 duplicate(s) ; ; $p _ { m } ( t , x ; \tau , \xi ) = 0$ ; confidence 0.957289212650779
- 1 duplicate(s) ; ; $G = G ^ { \sigma }$ ; confidence 0.9563165478277791
- 1 duplicate(s) ; ; $| \mu _ { k } ( 0 ) = 1 ; \mu _ { i } ( 0 ) = 0 , i \neq k \}$ ; confidence 0.955091568071054
- 1 duplicate(s) ; ; $D = d / d t$ ; confidence 0.9544396487242219
- 1 duplicate(s) ; ; $q ( x ) \in L ^ { 2 } \operatorname { loc } ( R ^ { 3 } )$ ; confidence 0.9533661981123269
- 1 duplicate(s) ; ; $\in \Theta$ ; confidence 0.9526354395380029
- 1 duplicate(s) ; ; $q \in Z ^ { N }$ ; confidence 0.9499373927335432
- 1 duplicate(s) ; ; $\square ^ { 1 } S _ { 2 } ( i )$ ; confidence 0.9495605877436398
- 6 duplicate(s) ; ; $D _ { p }$ ; confidence 0.949111588895238
- 14 duplicate(s) ; ; $a ( z )$ ; confidence 0.9482394098353333
- 1 duplicate(s) ; ; $x ^ { \sigma } = x$ ; confidence 0.9478216561987443
- 1 duplicate(s) ; ; $\sum _ { i = 1 } ^ { r } \alpha _ { i } \theta ( b _ { i } ) \in Z [ G ]$ ; confidence 0.946596716885129
- 1 duplicate(s) ; ; $\sum _ { k = 1 } ^ { \infty } b _ { k } \operatorname { sin } k x$ ; confidence 0.9462546562920741
- 1 duplicate(s) ; ; $s = - 2 \nu - \delta$ ; confidence 0.9452634866599121
- 2 duplicate(s) ; ; $A . B$ ; confidence 0.9442200680004758
- 5 duplicate(s) ; ; $( X , \mathfrak { A } , \mu )$ ; confidence 0.9410835889723073
- 7 duplicate(s) ; ; $L _ { p } ( T )$ ; confidence 0.9378608117589288
- 1 duplicate(s) ; ; $\Delta = \alpha _ { 2 } c ( b ) - \beta _ { 2 } s ( b ) \neq 0$ ; confidence 0.9365362644763838
- 1 duplicate(s) ; ; $F ( x ; \alpha )$ ; confidence 0.9358880873877348
- 2 duplicate(s) ; ; $A \rightarrow w$ ; confidence 0.9339764577664699
- 1 duplicate(s) ; ; $\alpha ( x , t )$ ; confidence 0.9305783244245839
- 5 duplicate(s) ; ; $P _ { 1 }$ ; confidence 0.9282843963101783
- 1 duplicate(s) ; ; $\otimes _ { i = 1 } ^ { n } E _ { i } \rightarrow F$ ; confidence 0.9269910048495175
- 2 duplicate(s) ; ; $\mathfrak { A } \sim _ { l } \mathfrak { B }$ ; confidence 0.9222716778429716
- 1 duplicate(s) ; ; $\int f _ { 1 } ( x ) d x \quad \text { and } \quad \int f _ { 2 } ( x ) d x$ ; confidence 0.9212624695750511
- 1 duplicate(s) ; ; $n ^ { O ( n ) } M ^ { O ( 1 ) }$ ; confidence 0.9209865976179896
- 1 duplicate(s) ; ; $\lambda \neq 0,1$ ; confidence 0.920586235969596
- 1 duplicate(s) ; ; $\rightarrow H ^ { 1 } ( G , B ) \rightarrow H ^ { 1 } ( G , A )$ ; confidence 0.9197122159604656
- 1 duplicate(s) ; ; $f \in C ^ { k }$ ; confidence 0.918132164706187
- 2 duplicate(s) ; ; $K _ { X } ^ { - 1 }$ ; confidence 0.9175780820811845
- 1 duplicate(s) ; ; $U ( t ) = \sum _ { 1 } ^ { \infty } P ( S _ { k } \leq t ) = \sum _ { 1 } ^ { \infty } F ^ { ( k ) } ( t )$ ; confidence 0.9173784852068905
- 1 duplicate(s) ; ; $\Pi ^ { \prime \prime }$ ; confidence 0.9137514644139687
- 1 duplicate(s) ; ; $H ^ { p , q } ( X )$ ; confidence 0.9128683228703054
- 1 duplicate(s) ; ; $R ( x , u ) = \phi _ { x } f ( x , u ) - f ^ { 0 } ( x , u )$ ; confidence 0.9123234864934262
- 1 duplicate(s) ; ; $F : \Omega \times R ^ { n } \times R ^ { n } \times S ^ { n } \rightarrow R$ ; confidence 0.9094419922264492
- 1 duplicate(s) ; ; $e ^ { s } ( T , V )$ ; confidence 0.9087926429317619
- 1 duplicate(s) ; ; $S = o ( \# A )$ ; confidence 0.908459936532392
- 4 duplicate(s) ; ; $x \in J$ ; confidence 0.9080545659315307
- 1 duplicate(s) ; ; $f ^ { * } N = O _ { X } \otimes _ { f } - 1 _ { O _ { Y } } f ^ { - 1 } N$ ; confidence 0.906370772694196
- 1 duplicate(s) ; ; $\oplus R ( S _ { n } )$ ; confidence 0.9053981209446474
- 1 duplicate(s) ; ; $\alpha _ { k } = \frac { \Gamma ( \gamma + k + 1 ) } { \Gamma ( \gamma + 1 ) } \sqrt { \frac { \Gamma ( \alpha _ { 1 } + 1 ) \Gamma ( \alpha _ { 2 } + 1 ) } { \Gamma ( \alpha _ { 1 } + k + 1 ) \Gamma ( \alpha _ { 2 } + k + 1 ) } }$ ; confidence 0.9041210547693775
- 1 duplicate(s) ; ; $\propto \| \Sigma \| ^ { - 1 / 2 } [ \nu + ( y - \mu ) ^ { T } \Sigma ^ { - 1 } ( y - \mu ) ] ^ { - ( \nu + p ) / 2 }$ ; confidence 0.9036331820133051
- 8 duplicate(s) ; ; $h ^ { * } ( pt )$ ; confidence 0.9033282797080597
- 1 duplicate(s) ; ; $\chi _ { \pi } ( g ) = \sum _ { \{ \delta : \delta y \in H \delta \} } \chi _ { \rho } ( \delta g \delta ^ { - 1 } )$ ; confidence 0.902751217861617
- 3 duplicate(s) ; ; $N > 5$ ; confidence 0.9012613106786131
- 2 duplicate(s) ; ; $q$ ; confidence 0.8992506129785625
- 1 duplicate(s) ; ; $I ( A ) = \operatorname { Ker } ( \epsilon )$ ; confidence 0.8978897440204603
- 1 duplicate(s) ; ; $\operatorname { Set } ( E , V ( A ) ) \cong \operatorname { Ring } ( F E , A )$ ; confidence 0.8956644409053386
- 1 duplicate(s) ; ; $\partial M _ { A } \subset X \subset M _ { A }$ ; confidence 0.8905099009041714
- 1 duplicate(s) ; ; $\overline { \Omega } _ { k } \subset \Omega _ { k + 1 }$ ; confidence 0.8869814610041528
- 1 duplicate(s) ; ; $C _ { c } ^ { * } ( R , S )$ ; confidence 0.8859644220557004
- 1 duplicate(s) ; ; $P _ { n } = \{ u \in V : n = \operatorname { min } m , F ( u ) \subseteq \cup _ { i < m } N _ { i } \}$ ; confidence 0.8738256206142921
- 2 duplicate(s) ; ; $P ^ { \prime }$ ; confidence 0.8712627608171876
- 1 duplicate(s) ; ; $[ X , K ] \leftarrow [ Y , K ] \leftarrow [ Y / i ( X ) , K ] \leftarrow [ C _ { 1 } , K ]$ ; confidence 0.8712070234423249
- 1 duplicate(s) ; ; $M _ { A g }$ ; confidence 0.8701201978729208
- 1 duplicate(s) ; ; $l _ { n } = \# \{ s \in S : d ( s ) = n \}$ ; confidence 0.8675540323452766
- 1 duplicate(s) ; ; $U _ { \partial } = \{ z = x + i y \in C ^ { n } : | x - x ^ { 0 } | < r , \square y = y ^ { 0 } \}$ ; confidence 0.8673554149270226
- 1 duplicate(s) ; ; $\frac { d ^ { 2 } u } { d z ^ { 2 } } + ( \alpha + 16 q \operatorname { cos } 2 z ) u = 0 , \quad z \in R$ ; confidence 0.865307374416994
- 1 duplicate(s) ; ; $\| g _ { \alpha \beta } \|$ ; confidence 0.8617644892495737
- 1 duplicate(s) ; ; $\int \int K d S \leq 2 \pi ( \chi - k )$ ; confidence 0.8576241672490952
- 1 duplicate(s) ; ; $z = \operatorname { ln } \alpha = \operatorname { ln } | \alpha | + i \operatorname { Arg } \alpha$ ; confidence 0.8570452984255443
- 1 duplicate(s) ; ; $[ X , K ] \leftarrow [ Y , K ] \leftarrow [ C _ { f } , K ]$ ; confidence 0.8498277772782802
- 1 duplicate(s) ; ; $\Lambda _ { n } ( \theta ) - h ^ { \prime } \Delta _ { n } ( \theta ) \rightarrow - \frac { 1 } { 2 } h ^ { \prime } \Gamma ( \theta ) h$ ; confidence 0.8428428443145696
- 1 duplicate(s) ; ; $T ( r , f )$ ; confidence 0.8392015359831372
- 1 duplicate(s) ; ; $v \in ( 1 - t ) V$ ; confidence 0.8372558103075134
- 1 duplicate(s) ; ; $C x ^ { - 1 }$ ; confidence 0.8338278081003673
- 1 duplicate(s) ; ; $\overline { \psi } ( s , \alpha ) = s$ ; confidence 0.8297029833533486
- 1 duplicate(s) ; ; $y = K _ { n } ( x )$ ; confidence 0.8260774299460154
- 1 duplicate(s) ; ; $r _ { 0 } ^ { * } + \sum _ { j = 1 } ^ { q } \beta _ { j } r _ { j } ^ { * } = \sigma ^ { 2 }$ ; confidence 0.8224771141480296
- 1 duplicate(s) ; ; $X ^ { * } = \Gamma \backslash D ^ { * }$ ; confidence 0.8218537954272408
- 1 duplicate(s) ; ; $n _ { 1 } = 9$ ; confidence 0.8217276068104418
- 1 duplicate(s) ; ; $T _ { x _ { 1 } } ( M ) \rightarrow T _ { x _ { 0 } } ( M )$ ; confidence 0.8208589918947331
- 1 duplicate(s) ; ; $x _ { k + 1 } = x _ { k } - \alpha _ { k } p _ { k }$ ; confidence 0.819109754421535
- 1 duplicate(s) ; ; $\xi _ { 1 } ^ { 2 } + \ldots + \xi _ { k - m - 1 } ^ { 2 } + \mu _ { 1 } \xi _ { k - m } ^ { 2 } + \ldots + \mu _ { m } \xi _ { k - 1 } ^ { 2 }$ ; confidence 0.818133040173671
- 3 duplicate(s) ; ; $\{ \phi _ { n } \} _ { n = 1 } ^ { \infty }$ ; confidence 0.816848952249774
- 1 duplicate(s) ; ; $G ( K ) \rightarrow G ( Q )$ ; confidence 0.8167851093971935
- 3 duplicate(s) ; ; $p ^ { t } ( . )$ ; confidence 0.8165592987790539
- 1 duplicate(s) ; ; $\in \Theta _ { 0 } \beta _ { n } ( \theta ) \leq \alpha$ ; confidence 0.8148664994148382
- 1 duplicate(s) ; ; $\emptyset , X \in L$ ; confidence 0.8135930411057102
- 3 duplicate(s) ; ; $F \mu$ ; confidence 0.8134130275314073
- 1 duplicate(s) ; ; $P \{ | \frac { K _ { n } } { n } - \frac { 1 } { 2 } | < \frac { 1 } { 4 } \} = 1 - 2 P \{ \frac { K _ { n } } { n } < \frac { 1 } { 4 } \} \approx 1 - \frac { 4 } { \pi } \frac { \pi } { 6 } = \frac { 1 } { 3 }$ ; confidence 0.8120953552463961
- 1 duplicate(s) ; ; $m _ { G } = D ( u ) / 2 \pi$ ; confidence 0.8112748700162913
- 1 duplicate(s) ; ; $t + \tau$ ; confidence 0.8106066522242134
- 1 duplicate(s) ; ; $j _ { X } : F ^ { \prime } \rightarrow F$ ; confidence 0.8087502872167865
- 1 duplicate(s) ; ; $( t _ { 2 } , x _ { 2 } ^ { 1 } , \ldots , x _ { 2 } ^ { n } )$ ; confidence 0.8052147623452451
- 3 duplicate(s) ; ; $F \in Hol ( D )$ ; confidence 0.8050535485710892
- 4 duplicate(s) ; ; $I ( G _ { p } )$ ; confidence 0.8011412952828915
- 1 duplicate(s) ; ; $\operatorname { det } X ( \theta , \tau ) = \operatorname { exp } \int ^ { \theta } \operatorname { tr } A ( \xi ) d \xi$ ; confidence 0.8011337035503415
- 2 duplicate(s) ; ; $C _ { 0 }$ ; confidence 0.8004815244538365
- 1 duplicate(s) ; ; $j = g ^ { 3 } / g ^ { 2 }$ ; confidence 0.7991474537469944
- 7 duplicate(s) ; ; $P _ { 8 }$ ; confidence 0.7987695361203362
- 1 duplicate(s) ; ; $M _ { 0 } \times I$ ; confidence 0.7978049257587829
- 1 duplicate(s) ; ; $\sum _ { n < x } f ( n ) = R ( x ) + O ( x ^ { \{ ( \alpha + 1 ) ( 2 \eta - 1 ) / ( 2 \eta + 1 ) \} + \epsilon } )$ ; confidence 0.7947232878891592
- 1 duplicate(s) ; ; $X = \| x _ { i } \|$ ; confidence 0.7944081558866974
- 1 duplicate(s) ; ; $\hat { \phi } ( j ) = \alpha$ ; confidence 0.7907889944036981
- 1 duplicate(s) ; ; $\alpha \in S _ { \alpha }$ ; confidence 0.7840800108676833
- 1 duplicate(s) ; ; $\alpha \leq p b$ ; confidence 0.7839290526326103
- 1 duplicate(s) ; ; $I _ { d } ( f ) = \int _ { [ 0,1 ] ^ { d } } f ( x ) d x$ ; confidence 0.7832832898773738
- 3 duplicate(s) ; ; $( \underline { \theta } , \overline { \theta } )$ ; confidence 0.7826516263186346
- 1 duplicate(s) ; ; $N ( r , \alpha , f ) = \int _ { 0 } ^ { r } \frac { n ( t , \alpha , f ) - n ( 0 , \alpha , f ) } { t } d t + n ( 0 , \alpha , f ) \operatorname { ln } r$ ; confidence 0.7800078956786681
- 1 duplicate(s) ; ; $K ( L ^ { 2 } ( S ) )$ ; confidence 0.778656702787636
- 1 duplicate(s) ; ; $( 1 , \dots , k )$ ; confidence 0.7759125219520806
- 1 duplicate(s) ; ; $Q _ { 0 } = \{ 1 , \dots , n \}$ ; confidence 0.774493022175851
- 1 duplicate(s) ; ; $c ^ { m } ( \Omega )$ ; confidence 0.7729229059096225
- 1 duplicate(s) ; ; $H \equiv L \circ K$ ; confidence 0.7691565384285352
- 1 duplicate(s) ; ; $K . ( H X ) = ( K H ) X$ ; confidence 0.7659737865659941
- 1 duplicate(s) ; ; $e ^ { - k - s | / \mu } / \mu$ ; confidence 0.7628428272046066
- 1 duplicate(s) ; ; $\Sigma _ { S }$ ; confidence 0.7602855286138045
- 1 duplicate(s) ; ; $m ( S ) ^ { 2 } > ( 2 k + 1 ) ( n - k ) + \frac { k ( k + 1 ) } { 2 } - \frac { 2 ^ { k } n ^ { 2 k + 1 } } { m ( 2 k ) ! \left( \begin{array} { l } { n } \\ { k } \end{array} \right) }$ ; confidence 0.7526816281701467
- 1 duplicate(s) ; ; $\left. \begin{array} { l l } { L - k E } & { M - k F } \\ { M - k F } & { N - k G } \end{array} \right| = 0$ ; confidence 0.7459272923005658
- 2 duplicate(s) ; ; $S \subset T$ ; confidence 0.7431439997276681
- 1 duplicate(s) ; ; $f ( z ) = e ^ { ( \alpha - i b ) z ^ { \rho } }$ ; confidence 0.7430292005651705
- 1 duplicate(s) ; ; $F ( u ) = - \lambda ( u - \frac { u ^ { 2 } } { 3 } ) , \quad \lambda =$ ; confidence 0.7430177844611311
- 1 duplicate(s) ; ; $2 - 2 g - l$ ; confidence 0.7406393353466716
- 1 duplicate(s) ; ; $F _ { A } = * D _ { A } \phi$ ; confidence 0.7384051116139154
- 5 duplicate(s) ; ; $1 < m \leq n$ ; confidence 0.7369614629370724
- 1 duplicate(s) ; ; $\operatorname { lim } \mathfrak { g } ^ { \alpha } = 1$ ; confidence 0.7367450559530595
- 1 duplicate(s) ; ; $k < k _ { c } = \sqrt { - ( \frac { \partial ^ { 2 } f } { \partial c ^ { 2 } } ) _ { T , c = c } / K }$ ; confidence 0.7322269924308643
- 1 duplicate(s) ; ; $\varepsilon ^ { * } ( M A D ) = 1 / 2$ ; confidence 0.7310980952758453
- 1 duplicate(s) ; ; $\beta _ { n , F } = f \circ Q n ^ { 1 / 2 } ( Q _ { n } - Q )$ ; confidence 0.7272386420838101
- 2 duplicate(s) ; ; $H ^ { 2 } ( R , I )$ ; confidence 0.7258293946151223
- 1 duplicate(s) ; ; $d f ^ { j }$ ; confidence 0.7256937150662539
- 1 duplicate(s) ; ; $E ( \mu _ { n } / n )$ ; confidence 0.724860946116238
- 1 duplicate(s) ; ; $S ( B _ { n } ^ { m } )$ ; confidence 0.7188991353542298
- 1 duplicate(s) ; ; $u _ { 0 } = 1$ ; confidence 0.7161400604576643
- 41 duplicate(s) ; ; $D x$ ; confidence 0.7125899824424232
- 1 duplicate(s) ; ; $\operatorname { Fix } ( T ) \subset \mathfrak { R }$ ; confidence 0.7097136892515409
- 1 duplicate(s) ; ; $A / \eta$ ; confidence 0.7016005337400021
- 1 duplicate(s) ; ; $w ^ { \prime \prime } ( z ) = z w ( z )$ ; confidence 0.7007472423514202
- 1 duplicate(s) ; ; $\int [ 0 , t ] X \circ d X = ( 1 / 2 ) X ^ { 2 } ( t )$ ; confidence 0.6980818282530422
- 1 duplicate(s) ; ; $s _ { n } \rightarrow s$ ; confidence 0.6960417110284216
- 1 duplicate(s) ; ; $\rho _ { 1 } ^ { - 1 } , \ldots , \rho _ { k } ^ { - 1 }$ ; confidence 0.6909749053708844
- 1 duplicate(s) ; ; $W ( \zeta _ { 0 } ; \epsilon , \alpha _ { 0 } ) = \frac { 1 } { 2 \pi i } [ \int _ { \Gamma } \frac { e ^ { i \psi } d \Phi ( s ) } { \zeta - z } - \int _ { \Gamma _ { \epsilon } } \frac { e ^ { i \psi } d \Phi ( s ) } { \zeta - \zeta _ { 0 } } ]$ ; confidence 0.6898080980737358
- 3 duplicate(s) ; ; $x 0$ ; confidence 0.688636907304377
- 1 duplicate(s) ; ; $1 ^ { 1 } = 1 ^ { 1 } ( N )$ ; confidence 0.6885147090803497
- 1 duplicate(s) ; ; $\int _ { \alpha } ^ { b } p ( t ) \operatorname { ln } | t - t _ { 0 } | d t = f ( t _ { 0 } ) + C$ ; confidence 0.6870631462174843
- 1 duplicate(s) ; ; $l = 2,3 , \dots$ ; confidence 0.6834407709680578
- 1 duplicate(s) ; ; $E ^ { \alpha } ( L ) ( \sigma ^ { 2 } ( x ) ) = 0$ ; confidence 0.682225639273531
- 1 duplicate(s) ; ; $\lambda _ { 4 n }$ ; confidence 0.6809548876733875
- 1 duplicate(s) ; ; $\rho _ { M _ { 1 } } ( X , Y ) \geq \rho _ { M _ { 2 } } ( \phi ( X ) , \phi ( Y ) )$ ; confidence 0.6746325376340707
- 1 duplicate(s) ; ; $( \xi ) _ { R }$ ; confidence 0.6720972224496817
- 1 duplicate(s) ; ; $X = \frac { 1 } { n } \sum _ { j = 1 } ^ { n } X$ ; confidence 0.6700908235522093
- 1 duplicate(s) ; ; $Q / Z$ ; confidence 0.663649051291889
- 1 duplicate(s) ; ; $\Gamma _ { F }$ ; confidence 0.6632878193704423
- 2 duplicate(s) ; ; $X = \xi ^ { i }$ ; confidence 0.6624091170439768
- 1 duplicate(s) ; ; $\theta ( z + \tau ) = \operatorname { exp } ( - 2 \pi i k z ) . \theta ( z )$ ; confidence 0.6595995158977634
- 1 duplicate(s) ; ; $x \in K$ ; confidence 0.6579697488518514
- 1 duplicate(s) ; ; $L ^ { * } L X ( t ) = 0 , \quad \alpha < t < b$ ; confidence 0.6437695617198743
- 1 duplicate(s) ; ; $\nu _ { 1 } ^ { S }$ ; confidence 0.6407517957315817
- 1 duplicate(s) ; ; $( T _ { s , t } ) _ { s \leq t }$ ; confidence 0.6388596466972774
- 1 duplicate(s) ; ; $W _ { \alpha } ( B \supset C ) = T \leftrightarrows$ ; confidence 0.6374908652150932
- 1 duplicate(s) ; ; $cd _ { l } ( Spec A )$ ; confidence 0.6373297174359089
- 1 duplicate(s) ; ; $S _ { N } ( f ; x ) = \sum _ { k | \leq N } \hat { f } ( k ) e ^ { i k x }$ ; confidence 0.6326879749735163
- 1 duplicate(s) ; ; $( \phi _ { 1 } , \dots , \phi _ { n } )$ ; confidence 0.6309929140464084
- 1 duplicate(s) ; ; $C = \text { int } \Gamma$ ; confidence 0.6295239265336972
- 2 duplicate(s) ; ; $S _ { 2 m + 1 } ^ { m }$ ; confidence 0.6274165478272351
- 1 duplicate(s) ; ; $[ V ] = \operatorname { limsup } ( \operatorname { log } d _ { V } ( n ) \operatorname { log } ( n ) ^ { - 1 } )$ ; confidence 0.6182127078539607
- 1 duplicate(s) ; ; $l _ { 1 } ( P , Q )$ ; confidence 0.6109194252117595
- 1 duplicate(s) ; ; $L u \equiv \frac { \partial u } { \partial t } - \frac { \partial ^ { 2 } u } { \partial x ^ { 2 } } = 0$ ; confidence 0.6071510723584672
- 1 duplicate(s) ; ; $\overline { \Pi } _ { k } \subset \Pi _ { k + 1 }$ ; confidence 0.60605765024873
- 2 duplicate(s) ; ; $x \in H ^ { n } ( B U ; Q )$ ; confidence 0.6047274717872889
- 1 duplicate(s) ; ; $K = \nu - \nu$ ; confidence 0.5956098949350922
- 1 duplicate(s) ; ; $w \in H ^ { * * } ( BO ; Z _ { 2 } )$ ; confidence 0.5943275783977165
- 1 duplicate(s) ; ; $s _ { i } : X _ { n } \rightarrow X _ { n } + 1$ ; confidence 0.5934631829014102
- 1 duplicate(s) ; ; $\{ 1,2 , \dots \}$ ; confidence 0.5933353086312023
- 1 duplicate(s) ; ; $R = \{ R _ { 1 } > 0 , \dots , R _ { n } > 0 \}$ ; confidence 0.5913209005341337
- 1 duplicate(s) ; ; $\Omega = S ^ { D } = \{ \omega _ { i } \} _ { i \in D }$ ; confidence 0.5912397110488342
- 1 duplicate(s) ; ; $\chi ( 0 , h )$ ; confidence 0.5899431867152662
- 6 duplicate(s) ; ; $DT ( S )$ ; confidence 0.583203585588902
- 1 duplicate(s) ; ; $E _ { t t } - E _ { X x } = \delta ( x , t )$ ; confidence 0.5818225775236128
- 1 duplicate(s) ; ; $X ( t ) = ( X ^ { 1 } ( t ) , \ldots , X ^ { d } ( t ) )$ ; confidence 0.576307936212669
- 1 duplicate(s) ; ; $B s$ ; confidence 0.5762309740770465
- 1 duplicate(s) ; ; $D _ { 1 } ( x , \alpha ) = x$ ; confidence 0.5690280050194163
- 1 duplicate(s) ; ; $a \rightarrow a b d ^ { 6 }$ ; confidence 0.5686678070129293
- 1 duplicate(s) ; ; $\alpha _ { 20 } ( x _ { 1 } , x _ { 2 } ) \frac { \partial ^ { 2 } u } { \partial x _ { 1 } ^ { 2 } } + \alpha _ { 11 } ( x _ { 1 } , x _ { 2 } ) \frac { \partial ^ { 2 } u } { \partial x _ { 1 } \partial x _ { 2 } } +$ ; confidence 0.5683023802699095
- 1 duplicate(s) ; ; $A _ { n } : E _ { n } \rightarrow F _ { n }$ ; confidence 0.5614742258640782
- 2 duplicate(s) ; ; Missing ; confidence 0.5598065956832335
- 1 duplicate(s) ; ; $\sigma = ( \sigma _ { 1 } , \ldots , \sigma _ { n } ) , \quad | \sigma | = \sigma _ { 1 } + \ldots + \sigma _ { n } \leq k$ ; confidence 0.5596837246436518
- 2 duplicate(s) ; ; $e ^ { \prime }$ ; confidence 0.5593433458593632
- 1 duplicate(s) ; ; $\overline { E } * ( X )$ ; confidence 0.5537829111373315
- 1 duplicate(s) ; ; $b _ { i + 1 } \ldots b _ { j }$ ; confidence 0.5534988928545855
- 1 duplicate(s) ; ; $P \{ T _ { j } \in ( u , u + d u ) \} = \frac { 1 } { \alpha u } P \{ X ( u ) \in ( 0 , d u ) \}$ ; confidence 0.5484942898956924
- 1 duplicate(s) ; ; $E ( Y - f ( x ) ) ^ { 2 }$ ; confidence 0.5470389324901368
- 1 duplicate(s) ; ; $\sum _ { n = 1 } ^ { \infty } l _ { k } ^ { 2 } \operatorname { exp } ( l _ { 1 } + \ldots + l _ { n } ) = \infty$ ; confidence 0.5449306904566192
- 1 duplicate(s) ; ; $\dot { x } ( t ) = f ( t , x _ { t } )$ ; confidence 0.5429682760018246
- 1 duplicate(s) ; ; $\sigma A = x ^ { * } \partial \sigma ^ { * } \operatorname { lk } _ { A } \sigma + A _ { 1 }$ ; confidence 0.5413695093586899
- 1 duplicate(s) ; ; $( a _ { m } b ) ( x , \xi ) = r _ { N } ( \alpha , b ) +$ ; confidence 0.5393834422132711
- 1 duplicate(s) ; ; $A$ ; confidence 0.5346584195867841
- 33 duplicate(s) ; ; $T ^ { * }$ ; confidence 0.526929794583867
- 1 duplicate(s) ; ; $1 , \ldots , | \lambda |$ ; confidence 0.5224723416078348
- 1 duplicate(s) ; ; $A = N \oplus s$ ; confidence 0.5210690864049642
- 1 duplicate(s) ; ; $M = M \Lambda ^ { t }$ ; confidence 0.5054282353301248
- 4 duplicate(s) ; ; Missing ; confidence 0.4992488839127206
- 6 duplicate(s) ; ; $D _ { 1 } , \ldots , D _ { n }$ ; confidence 0.4988053123602627
- 1 duplicate(s) ; ; $f ( \vec { D } ( A ) ) = ( - A ^ { 3 } ) ^ { - \operatorname { Tait } ( \vec { D } ) } \langle D \rangle$ ; confidence 0.4966834443975646
- 1 duplicate(s) ; ; $\Delta ^ { i }$ ; confidence 0.4911956410000726
- 1 duplicate(s) ; ; $< \operatorname { Gdim } L < 1 +$ ; confidence 0.4850528772015917
- 1 duplicate(s) ; ; $| w | < r _ { 0 }$ ; confidence 0.4783163020352188
- 2 duplicate(s) ; ; $\Omega _ { 2 n } ^ { 2 } \rightarrow Z$ ; confidence 0.47628431460461235
- 1 duplicate(s) ; ; $x ( 0 ) \in R ^ { n }$ ; confidence 0.4731388422166153
- 1 duplicate(s) ; ; $M _ { n } = [ m _ { i } + j ] _ { i , j } ^ { n } = 0$ ; confidence 0.46928897388284957
- 1 duplicate(s) ; ; $9 -$ ; confidence 0.4672646572779488
- 1 duplicate(s) ; ; $\phi ( t ) \equiv$ ; confidence 0.4668660156026558
- 1 duplicate(s) ; ; $t \rightarrow t + w z$ ; confidence 0.4658710546714598
- 1 duplicate(s) ; ; $\zeta = \{ Z _ { 1 } , \dots , Z _ { m } \}$ ; confidence 0.4655908058873702
- 1 duplicate(s) ; ; $m = p _ { 1 } ^ { \alpha _ { 1 } } \ldots p _ { s } ^ { \alpha _ { S } }$ ; confidence 0.46249649812198196
- 1 duplicate(s) ; ; $\alpha _ { 2 } ( t ) = t$ ; confidence 0.4612059618369476
- 1 duplicate(s) ; ; $\phi ( n ) = n ( 1 - \frac { 1 } { p _ { 1 } } ) \dots ( 1 - \frac { 1 } { p _ { k } } )$ ; confidence 0.4558345289601299
- 11 duplicate(s) ; ; $M$ ; confidence 0.4548613429069519
- 1 duplicate(s) ; ; $f ( e ^ { i \theta } ) = \operatorname { lim } _ { r \rightarrow 1 - 0 } f ( r e ^ { i \theta } )$ ; confidence 0.4512600160098609
- 2 duplicate(s) ; ; $q ^ { l } ( q ^ { 2 } - 1 ) \dots ( q ^ { 2 l } - 1 ) / d$ ; confidence 0.45039414832375935
- 1 duplicate(s) ; ; $\phi ( \mathfrak { A } )$ ; confidence 0.4448209754580855
- 1 duplicate(s) ; ; $\frac { F _ { n } ( - x ) } { \Phi ( - x ) } = \operatorname { exp } \{ - \frac { x ^ { 3 } } { \sqrt { n } } \lambda ( - \frac { x } { \sqrt { n } } ) \} [ 1 + O ( \frac { x } { \sqrt { n } } ) ]$ ; confidence 0.443558997856292
- 1 duplicate(s) ; ; $\partial z / \partial y = f ^ { \prime } ( x , y )$ ; confidence 0.43958333682472145
- 1 duplicate(s) ; ; $= d ( w ^ { H _ { i } } | v ^ { H _ { i } } ) \cdot e ( w ^ { H _ { i } } | v ^ { H _ { i } } ) . f ( w ^ { H _ { i } } | v ^ { H _ { i } } )$ ; confidence 0.4351312366316399
- 1 duplicate(s) ; ; $k = k _ { 0 } \subset k _ { 1 } \subset \ldots \subset k _ { n } \subset \ldots \subset K = \cup _ { n \geq 0 } k _ { k }$ ; confidence 0.43410160727313885
- 3 duplicate(s) ; ; $X \subset M ^ { n }$ ; confidence 0.4324464093237486
- 1 duplicate(s) ; ; $GL ( 1 , K ) = K ^ { * }$ ; confidence 0.42463250453910323
- 7 duplicate(s) ; ; $x <$ ; confidence 0.42389452013573864
- 1 duplicate(s) ; ; $f = \sum _ { i = 1 } ^ { n } \alpha _ { i } \chi _ { i }$ ; confidence 0.4216475654436777
- 3 duplicate(s) ; ; $LOC$ ; confidence 0.41738274518007007
- 1 duplicate(s) ; ; $f \in L ^ { p } ( R ^ { n } ) \rightarrow \int _ { R ^ { n } } | x - y | ^ { - \lambda } f ( y ) d y \in L ^ { p ^ { \prime } } ( R ^ { n } )$ ; confidence 0.41317951515095247
- 1 duplicate(s) ; ; $f ( \lambda ) = E _ { e } ^ { i \lambda \xi } , \quad f _ { + } ( \lambda ) = e ^ { i \lambda \tau ^ { s } } , \quad f - ( \lambda ) = e ^ { - i \lambda \tau ^ { e } }$ ; confidence 0.4097812145901471
- 1 duplicate(s) ; ; $R _ { R } ( X ) = \operatorname { max } \{ d ( X , Y ) : Y \in B _ { n } \}$ ; confidence 0.40974412065328913
- 1 duplicate(s) ; ; $T _ { s ( x ) } ( E ) = \Delta _ { s ( x ) } \oplus T _ { s ( x ) } ( F _ { x } )$ ; confidence 0.40238152480385686
- 1 duplicate(s) ; ; $\phi ( \mathfrak { A } , \alpha _ { 1 } , \ldots , \alpha _ { l } , S , \mathfrak { M } ^ { * } )$ ; confidence 0.4022702433464204
- 1 duplicate(s) ; ; $D ( D , G - ) : C \rightarrow$ ; confidence 0.39755631559394916
- 1 duplicate(s) ; ; $\psi _ { \nu } ( x , \mu ) = \phi _ { \nu } ( \mu ) e ^ { - x / \nu }$ ; confidence 0.39423767404805304
- 1 duplicate(s) ; ; $x = \pm \alpha \operatorname { ln } \frac { \alpha + \sqrt { \alpha ^ { 2 } - y ^ { 2 } } } { y } - \sqrt { \alpha ^ { 2 } - y ^ { 2 } }$ ; confidence 0.3913006402000813
- 1 duplicate(s) ; ; $w ^ { \prime }$ ; confidence 0.3804323787585152
- 1 duplicate(s) ; ; $\mu , \nu \in Z ^ { n }$ ; confidence 0.37664980859716357
- 1 duplicate(s) ; ; $A _ { j } A _ { k l } = A _ { k l } A _ { j }$ ; confidence 0.3724452771321778
- 1 duplicate(s) ; ; $\frac { 1 } { 4 n } \operatorname { max } \{ \alpha _ { i } : 0 \leq i \leq t \} \leq \Delta _ { 2 } \leq \frac { 1 } { 4 n } ( \sum _ { i = 0 } ^ { t } \alpha _ { i } + 2 )$ ; confidence 0.3634160219389204
- 1 duplicate(s) ; ; $| z | > \operatorname { max } \{ R _ { 1 } , R _ { 2 } \}$ ; confidence 0.3553260162210176
- 1 duplicate(s) ; ; $m _ { k } = \dot { k }$ ; confidence 0.3515519366883033
- 1 duplicate(s) ; ; $\overline { B } = S ^ { - 1 } B = ( \overline { b } _ { 1 } , \dots , \overline { b } _ { m } )$ ; confidence 0.3472558501604031
- 1 duplicate(s) ; ; $f _ { h } ( t ) = \frac { 1 } { h } \int _ { t - k / 2 } ^ { t + k / 2 } f ( u ) d u = \frac { 1 } { h } \int _ { - k / 2 } ^ { k / 2 } f ( t + v ) d v$ ; confidence 0.3448042650180878
- 1 duplicate(s) ; ; $y _ { 0 } = A _ { x }$ ; confidence 0.34375494973028553
- 1 duplicate(s) ; ; $\alpha _ { i j } \equiv i + j - 1 ( \operatorname { mod } n ) , \quad i , j = 1 , \dots , n$ ; confidence 0.3420051348390579
- 1 duplicate(s) ; ; $\left. \begin{array} { c c c } { B _ { i } } & { \stackrel { h _ { i } } { \rightarrow } } & { A _ { i } } \\ { g _ { i } \downarrow } & { \square } & { \downarrow f _ { i } } \\ { B } & { \vec { f } } & { A } \end{array} \right.$ ; confidence 0.3418841907520063
- 1 duplicate(s) ; ; $\overline { \Xi } \epsilon = 0$ ; confidence 0.3260247782643509
- 7 duplicate(s) ; ; $c$ ; confidence 0.32421867549093975
- 1 duplicate(s) ; ; $P _ { I } ^ { f } : C ^ { \infty } \rightarrow L$ ; confidence 0.32143585152427034
- 1 duplicate(s) ; ; $\frac { x ^ { \rho + 1 } f ( x ) } { \int _ { x } ^ { x } t ^ { \sigma } f ( t ) d t } \rightarrow \sigma + \rho + 1 \quad ( x \rightarrow \infty )$ ; confidence 0.3200898597640655
- 1 duplicate(s) ; ; $\rho \otimes x ( A ) = \langle A x , \rho \rangle$ ; confidence 0.3166235981310337
- 1 duplicate(s) ; ; $p _ { m } = ( \sum _ { j = 0 } ^ { m } A _ { j } ) ^ { - 1 }$ ; confidence 0.30979148755231656
- 1 duplicate(s) ; ; $e \omega ^ { r } f$ ; confidence 0.30027793318283424
- 1 duplicate(s) ; ; $\Pi I _ { \lambda }$ ; confidence 0.2996377272936826
- 1 duplicate(s) ; ; $F ( x , y ) = a p _ { 1 } ^ { z _ { 1 } } \ldots p _ { s } ^ { z _ { S } }$ ; confidence 0.2936197993196643
- 1 duplicate(s) ; ; $t \circ \in E$ ; confidence 0.28974493268409607
- 1 duplicate(s) ; ; $S ^ { ( n ) } ( t _ { 1 } , \ldots , t _ { n } ) =$ ; confidence 0.2872911579959374
- 1 duplicate(s) ; ; $A _ { k _ { 1 } } , \ldots , A _ { k _ { n } }$ ; confidence 0.2783132729512891
- 1 duplicate(s) ; ; $s = s ^ { * } \cup ( s \backslash s ^ { * } ) ^ { * } U \ldots$ ; confidence 0.2710834896130228
- 1 duplicate(s) ; ; $w = \{ \dot { i } _ { 1 } , \ldots , i _ { k } \}$ ; confidence 0.2654822643160047
- 1 duplicate(s) ; ; $+ ( \lambda x y \cdot y ) : ( \sigma \rightarrow ( \tau \rightarrow \tau ) )$ ; confidence 0.26240483068240167
- 1 duplicate(s) ; ; $\xi _ { j } ^ { k } \in D _ { h } , h = 1 , \dots , m ; m = 1,2$ ; confidence 0.25794664571055265
- 1 duplicate(s) ; ; $D \Re \subset M$ ; confidence 0.2549096728465883
- 1 duplicate(s) ; ; $k _ { 0 } \sum _ { i = 1 } ^ { n } \lambda _ { i } ^ { 2 } \leq Q ( \lambda _ { 1 } , \ldots , \lambda _ { n } ) \leq k _ { 1 } \sum _ { i = 1 } ^ { n } \lambda _ { i } ^ { 2 }$ ; confidence 0.24875216316424534
- 1 duplicate(s) ; ; $x \mapsto ( s _ { 0 } ( x ) , \ldots , s _ { k } ( x ) ) , \quad x \in X$ ; confidence 0.24108573986383294
- 1 duplicate(s) ; ; $\Psi _ { 1 } ( Y ) / \hat { q } ( Y ) \leq \psi ( Y ) \leq \Psi _ { 2 } ( Y ) / \hat { q } ( Y )$ ; confidence 0.23609599825199817
- 1 duplicate(s) ; ; $im ( \Omega _ { S C } \rightarrow \Omega _ { O } )$ ; confidence 0.23040392825448733
- 1 duplicate(s) ; ; $\{ H , \rho \} q u _ { . } = [ H , \rho ] / ( i \hbar )$ ; confidence 0.2293157728063616
- 1 duplicate(s) ; ; $\operatorname { Aut } ( R ) / \operatorname { ln } n ( R ) \cong H$ ; confidence 0.22810850082016165
- 1 duplicate(s) ; ; $t ^ { i _ { 1 } } \cdots \dot { d p } = \operatorname { det } \| x _ { i } ^ { i _ { k } } \|$ ; confidence 0.22556711550232114
- 1 duplicate(s) ; ; $I \rightarrow \cup _ { i \in l } J _ { i }$ ; confidence 0.2249286547006985
- 1 duplicate(s) ; ; $n _ { 1 } < n _ { 2 } .$ ; confidence 0.2224218285921904
- 1 duplicate(s) ; ; $g ^ { \prime } / ( 1 - u ) g ^ { \prime } = \overline { g }$ ; confidence 0.2153324749580586
- 2 duplicate(s) ; ; $\alpha _ { 1 } , \dots , \alpha _ { n } \in A$ ; confidence 0.2145457470411465
- 1 duplicate(s) ; ; $\nu = a + x + 2 [ \frac { n - t - x - \alpha } { 2 } ] + 1$ ; confidence 0.21268052512585725
- 1 duplicate(s) ; ; $E \mu _ { X , t } ( G ) \approx K e ^ { ( \alpha - \lambda _ { 1 } ) t } \phi _ { 1 } ( x )$ ; confidence 0.2070610832487361
- 1 duplicate(s) ; ; $S _ { x , m } = \operatorname { sup } _ { | x | < \infty } | F _ { n } ( x ) - F _ { m } ( x ) |$ ; confidence 0.2014066318219743
- 1 duplicate(s) ; ; $L _ { X } [ U ] = \lambda \int _ { \mathscr { U } } ^ { b } K ( x , y ) M _ { y } [ U ] d y + f ( x )$ ; confidence 0.20081243583851513
- 1 duplicate(s) ; ; $\dot { u } = A _ { n } u$ ; confidence 0.19537946776532414
- 1 duplicate(s) ; ; $\phi _ { \mathscr { A } } ( . )$ ; confidence 0.19347190705537826
- 1 duplicate(s) ; ; $\{ f ^ { t } | \Sigma _ { X } \} _ { t \in R }$ ; confidence 0.19086243556378282
- 1 duplicate(s) ; ; $\rho _ { j \overline { k } } = \partial ^ { 2 } \rho / \partial z _ { j } \partial z _ { k }$ ; confidence 0.18521986101222374
- 1 duplicate(s) ; ; $P ^ { \perp } = \cap _ { v \in P } v ^ { \perp } = \emptyset$ ; confidence 0.18487469637812126
- 4 duplicate(s) ; ; $\hat { K } _ { i }$ ; confidence 0.17985697157618952
- 1 duplicate(s) ; ; $\tilde { Y } \square _ { j } ^ { ( k ) } \in Y _ { j }$ ; confidence 0.17197034114794676
- 1 duplicate(s) ; ; $V _ { x } 0 ( \lambda ) \sim \operatorname { exp } [ i \lambda S ( x ^ { 0 } ) ] \sum _ { k = 0 } ^ { \infty } ( \sum _ { l = 0 } ^ { N } \alpha _ { k l } \lambda ^ { - r _ { k } } ( \operatorname { ln } \lambda ) ^ { l } \}$ ; confidence 0.16729934511453728
- 1 duplicate(s) ; ; $\tilde { y } = \alpha _ { 21 } x + \alpha _ { 22 } y + \alpha _ { 23 } z + b$ ; confidence 0.16255157153243552
- 1 duplicate(s) ; ; $\operatorname { sup } _ { x _ { 1 } \in X _ { 1 } } \operatorname { inf } _ { y _ { 1 } \in Y _ { 1 } } \ldots \operatorname { sup } _ { x _ { n } \in X _ { n } } \operatorname { inf } _ { y _ { n } \in Y _ { n } } f ( x _ { 1 } , y _ { 1 } , \ldots , x _ { \gamma } , y _ { n } )$ ; confidence 0.13673978869010325
- 1 duplicate(s) ; ; $L \cup O$ ; confidence 0.12951980827520393
- 1 duplicate(s) ; ; $\operatorname { res } _ { \mathscr { d } } \frac { f ^ { \prime } ( z ) } { f ( z ) }$ ; confidence 0.128755874494968
- 1 duplicate(s) ; ; $\epsilon _ { i , 0 } ^ { A } ( \alpha , b , c , d ) = \epsilon _ { l , 1 } ^ { A } ( \alpha , b , c , d ) \text { for alli } < m$ ; confidence 0.12853845256777774
- 1 duplicate(s) ; ; $M _ { \lambda } = ( Q _ { \langle \lambda _ { i } , \lambda _ { j } ) }$ ; confidence 0.1206602343486524
- 1 duplicate(s) ; ; $\Delta ^ { n } = \{ ( t _ { 0 } , \ldots , t _ { k } + 1 ) : 0 \leq t _ { i } \leq 1 , \sum t _ { i } = 1 \} \subset R ^ { n + 1 }$ ; confidence 0.11326702391691568
- 1 duplicate(s) ; ; $\tilde { a } ( t ) = \pi ( x , t ) = \sum _ { k = 1 } ^ { n } \tau _ { k } u _ { k } ( t )$ ; confidence 0.11111851602105144
- 1 duplicate(s) ; ; $t ^ { em } = t ^ { em , f } + ( P \otimes E ^ { \prime } - B \bigotimes M ^ { \prime } + 2 ( M ^ { \prime } . B ) 1 )$ ; confidence 0.10518010313777704
- 1 duplicate(s) ; ; $E ( L ) = E ^ { d } ( L ) \omega ^ { \alpha } \bigotimes \Delta$ ; confidence 0.10095568772242981
- 1 duplicate(s) ; ; $\kappa = \overline { \operatorname { lim } _ { t } } _ { t \rightarrow \infty } ( \operatorname { ln } \| u ( t , 0 ) \| ) / t$ ; confidence 0.093076597566026
- 1 duplicate(s) ; ; $q _ { k } R = p _ { j } ^ { n _ { i } } R _ { R }$ ; confidence 0.08254785216326511
- 1 duplicate(s) ; ; $\mathfrak { p } \not p \not \sum _ { n = 1 } ^ { \infty } A _ { n }$ ; confidence 0.07521789517955572
- 1 duplicate(s) ; ; $C _ { \omega }$ ; confidence 0.07294451014735373
- 1 duplicate(s) ; ; $\sum _ { 1 } ^ { i } , \ldots , i _ { S }$ ; confidence 0.06950191355969693
- 1 duplicate(s) ; ; $\frac { ( x - x _ { k } - 1 ) ( x - x _ { k + 1 } ) } { ( x _ { k } - x _ { k - 1 } ) ( x _ { k } - x _ { k + 1 } ) } f ( x _ { k } ) + \frac { ( x - x _ { k - 1 } ) ( x - x _ { k } ) } { ( x _ { k } + 1 - x _ { k - 1 } ) ( x _ { k + 1 } - x _ { k } ) } f ( x _ { k + 1 } )$ ; confidence 0.06915024478440523
- 1 duplicate(s) ; ; $D ^ { \alpha } f = \frac { \partial ^ { | \alpha | } f } { \partial x _ { 1 } ^ { \alpha _ { 1 } } \ldots \partial x _ { n } ^ { \alpha _ { n } } } , \quad | \alpha | = \alpha _ { 1 } + \ldots + \alpha _ { n }$ ; confidence 0.06723578530162927
- 1 duplicate(s) ; ; $\quad f j ( x ) - \alpha j = \alpha _ { j 1 } x _ { 1 } + \ldots + \alpha _ { j n } x _ { n } - \alpha _ { j } = 0$ ; confidence 0.05662862409264506
- 1 duplicate(s) ; ; $P \{ X _ { 1 } = n _ { 1 } , \dots , X _ { k } = n _ { k } \} = \frac { n ! } { n ! \cdots n _ { k } ! } p _ { 1 } ^ { n _ { 1 } } \dots p _ { k } ^ { n _ { k } }$ ; confidence 0.054218093847858334
- 1 duplicate(s) ; ; Missing ; confidence 0
- 1 duplicate(s) ; ; Missing ; confidence 0
- 1 duplicate(s) ; ; Missing ; confidence 0
- 1 duplicate(s) ; ; Missing ; confidence 0
- 1 duplicate(s) ; ; Missing ; confidence 0
- 1 duplicate(s) ; ; Missing ; confidence 0
- 1 duplicate(s) ; ; Missing ; confidence 0
- 1 duplicate(s) ; ; Missing ; confidence 0
- 1 duplicate(s) ; ; Missing ; confidence 0
- 1 duplicate(s) ; ; Missing ; confidence 0
- 1 duplicate(s) ; ; Missing ; confidence 0
- 1 duplicate(s) ; ; Missing ; confidence 0
- 2 duplicate(s) ; ; Missing ; confidence 0
How to Cite This Entry:
Maximilian Janisch/latexlist/latex. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex&oldid=43761
Maximilian Janisch/latexlist/latex. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex&oldid=43761