User:Maximilian Janisch/latexlist
This is a list of automatically classified LaTeX files. You can manually edit this list.
List
Test
: $$ (confidence 0) <img src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a13001017.png"/> : $$ (confidence 0) : $$ (confidence 0) <img src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300102.png"/> : $$ (confidence 0) : $$ (confidence 0) <img src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300103.png"/> : $( - ) ^ { * } : C ^ { 0 p } \rightarrow C$ (confidence 0.2558360957702055) <img src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300104.png"/> : $d ( A , B ) : B ^ { A } \cong A ^ { * } B ^ { * }$ (confidence 0.7513806030787462) <img src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300105.png"/> : $$ (confidence 0.11977224303966238) : $$ (confidence 0) <img src="https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300107.png"/> : $A , B , C \in C$ (confidence 0.9874941305418984) <img src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115024.png"/> : $F \Phi = \Psi$ (confidence 0.4805759882593679) <img src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115025.png"/> : $r$ (confidence 0.12389555304878641) <img src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115026.png"/> : $\Phi \rightarrow \Psi$ (confidence 0.7790935007842552) <img src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115027.png"/> : $F ^ { \prime }$ (confidence 0.11142785371739461) <img src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115029.png"/> : $t$ (confidence 0.5074253082275391) <img src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115030.png"/> : $$ (confidence 0) : $F ( f ^ { * } g ) = F f . F g$ (confidence 0.6819218234974772) : $F ( D ^ { \alpha } f ) = ( i x ) ^ { \alpha } F f$ (confidence 0.7705838634334625) : $L _ { p } ( R ^ { n } )$ (confidence 0.8757486845276239) : $\leq p \leq 2$ (confidence 0.27530124031725317) : $r$ (confidence 0.12389555304878641) : $D _ { F } = ( L _ { 1 } \cap L _ { p } ) ( R ^ { n } )$ (confidence 0.26241861040115294) : $L _ { p } ( R ^ { n } )$ (confidence 0.8757486845276239) : $L _ { \varphi } ( R ^ { n } )$ (confidence 0.2310629780771597) : $p ^ { - 1 } + q ^ { - 1 } = 1$ (confidence 0.9973485092235681) : $r$ (confidence 0.12389555304878641) : $1 < p \leq 2$ (confidence 0.9964472555859636) : $$ (confidence 0) <img src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115048.png"/> : $p \neq 2$ (confidence 0.9978736607221192) <img src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115049.png"/> : $x$ (confidence 0.12837346605452638) <img src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115050.png"/> : $r$ (confidence 0.12389555304878641) <img src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115051.png"/> : $x$ (confidence 0.33397466109307317) <img src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115052.png"/> : $F L _ { p } \subset l _ { q }$ (confidence 0.4314001351435635) <img src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115053.png"/> : $\leq p < 2$ (confidence 0.3140245219383027) <img src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115055.png"/> : $F ^ { \prime }$ (confidence 0.11142785371739461) <img src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115056.png"/> : $F L y$ (confidence 0.9421360432265639) <img src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115057.png"/> : $( F ^ { - 1 } \tilde { f } ) = \operatorname { lim } _ { R \rightarrow \infty } \frac { 1 } { ( 2 \pi ) ^ { n / 2 } } \int _ { | \xi | < R } \tilde { f } ( \xi ) e ^ { i \xi x } d \xi , \quad 1 < p \leq 2$ (confidence 0.16566260709655076) <img src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115058.png"/> : $x = ( x _ { 1 } , \ldots , x _ { n } )$ (confidence 0.08374742170778082) <img src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115059.png"/> : $\xi = ( \xi _ { 1 } , \ldots , \xi _ { n } )$ (confidence 0.529109226067534) <img src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115060.png"/> : $x$ (confidence 0.6640530313855136) <img src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115061.png"/> : $\sum _ { i = 1 } ^ { 8 } x _ { i } \xi$ (confidence 0.11581139252073573) <img src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115062.png"/> : $( 1 / 2 \pi ) ^ { n / 2 }$ (confidence 0.9994450835812325) <img src="https://www.encyclopediaofmath.org/legacyimages/f/f041/f041150/f04115063.png"/> : $$ (confidence 0) : $$ (confidence 0) : $\beta = ( 1 / 2 \pi ) ^ { x }$ (confidence 0.9130163734938249) : $( F \phi ) ( x ) = \int _ { R ^ { n } } \phi ( \xi ) e ^ { - i x \cdot \xi } d \xi$ (confidence 0.3057988248146818) : $( F ^ { - 1 } \phi ) ( x ) = \frac { 1 } { ( 2 \pi ) ^ { n } } \int _ { R ^ { n } } \phi ( \xi ) e ^ { i x . \xi } d \xi$ (confidence 0.5024619621936454) : $( F \phi ) ( x ) = \int _ { R ^ { n } } \phi ( \xi ) e ^ { - 2 \pi i x . \xi } d \xi$ (confidence 0.15634412476601953) : $( F ^ { - 1 } \phi ) ( x ) = \int _ { R ^ { n } } \phi ( \xi ) e ^ { 2 \pi i x . \xi } d \xi$ (confidence 0.08016216799456224) : $L _ { 2 } ( R ^ { * } )$ (confidence 0.3347255664604998)
Maximilian Janisch/latexlist. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist&oldid=43664