User talk:Musictheory2math
My whole notes
Goldbach's conjectureMain theorem: Let $\mathbb{P}$ is the set prime numbers and $S$ is a set that has been made as below: put a point at the beginning of each member of $\Bbb{P}$ like $0.2$ or $0.19$ then $S=\{0.2,0.3,0.5,0.7,...\}$ is dense in the interval $[0.1,1]$ of real numbers.
(4m-2)\star _{\Bbb N} (4n+1)=\begin{cases} 4m-4n-2 & 4m-2\gt 4n+1\\ 4n-4m+4 & 4n+1\gt 4m-2\end{cases}\\ (4m-1)\star _{\Bbb N} (4n-1)=4m+4n-1\\ (4m-1)\star _{\Bbb N} (4n)=\begin{cases} 4m-4n+2 & 4m-1\gt 4n\\ 4n-4m & 4n\gt 4m-1\\ 2 & m=n\end{cases}\\ (4m-1)\star _{\Bbb N} (4n+1)=\begin{cases} 4m-4n-1 & 4m-1\gt 4n+1\\ 4n-4m+1 & 4n+1\gt 4m-1\end{cases}\\ (4m)\star _{\Bbb N} (4n)=4m+4n-3\\ (4m)\star _{\Bbb N} (4n+1)=4m+4n\\ (4m+1)\star _{\Bbb N} (4n+1)=4m+4n+1\end{cases}$ that this group $(\Bbb N,\star _{\Bbb N})$ is helpful for twin prime conjecture. and the Klein four-group $(\Bbb Z _2\times\Bbb Z _2,+)$ is a fundamental concept in the group theory that its usage is for propositions rejection so I made below group somehow similar to that group in terms of members production for proof of the Goldbach's conjecture with proof by contradiction that is: '"`UNIQ-MathJax5-QINU`"' '"`UNIQ-MathJax6-QINU`"' and $e=1$ and $(\Bbb N,\star _{K_4})=\langle 2\rangle$ so we have: $\begin{cases} 0+(-7)=-7 & 1\star _{K_4}17=17\\ 1+(-7)=-6 & 2\star _{K_4}17=13\\ 2+(-7)=-5 & 3\star _{K_4}17=10\\ (-2)+(-7)=-9 & 4\star _{K_4}17=19\\ (-1)+(-7)=-8 & 5\star _{K_4}17=16\\ 3+(-7)=-4 & 6\star _{K_4}17=11\\ (-3)+(-7)=-10 & 7\star _{K_4}17=23\\ 4+(-7)=-3 & 8\star _{K_4}17=7\\ 5+(-7)=-2 & 9\star _{K_4}17=4\\ (-5)+(-7)=-12 & 10\star _{K_4}17=25\\ (-4)+(-7)=-11 & 11\star _{K_4}17=22\\ 6+(-7)=-1 & 12\star _{K_4}17=5\\ (-6)+(-7)=-13 & 13\star _{K_4}17=29\\ 7+(-7)=0 & 14\star _{K_4}17=1\\ 8+(-7)=1 & 15\star _{K_4}17=2\\ (-8)+(-7)=-15 & 16\star _{K_4}17=31\\ (-7)+(-7)=-14 & 17\star _{K_4}17=28\end{cases}$ that its group is: $\begin{cases} m\star _{K_4}1=m\\ (6m-4) \star _{K_4}(6m-1)=1=(6m-3) \star _{K_4}(6m-2)=(6m) \star _{K_4}(6m+1)\\ (6m-4) \star _{K_4}(6n-4)=6m+6n-9\\ (6m-4) \star _{K_4}(6n-3)=6m+6n-6\\ (6m-4) \star _{K_4}(6n-2)=\begin{cases} 6m-6n-3 & 6m-4\gt 6n-2\\ 6n-6m+5 & 6n-2\gt 6m-4\end{cases}\\ (6m-4) \star _{K_4}(6n-1)=\begin{cases} 6m-6n & 6m-4\gt 6n-1\\ 6n-6m+1 & 6n-1\gt 6m-4\end{cases}\\ (6m-4) \star _{K_4}(6n)=6m+6n-4\\ (6m-4) \star _{K_4}(6n+1)=\begin{cases} 6m-6n-4 & 6m-4\gt 6n+1\\ 6n-6m+4 & 6n+1\gt 6m-4\end{cases}\\ (6m-3) \star _{K_4}(6n-3)=6m+6n-4\\ (6m-3) \star _{K_4}(6n-2)=\begin{cases} 6m-6n & 6m-3\gt 6n-2\\ 6n-6m+1 & 6n-2\gt 6m-3\end{cases}\\ (6m-3) \star _{K_4}(6n-1)=\begin{cases} 6m-6n+2 & 6m-3\gt 6n-1\\ 6n-6m-2 & 6n-1\gt 6m-3\\ 2 & m=n\end{cases}\\ (6m-3) \star _{K_4}(6n)=6m+6n-3\\ (6m-3) \star _{K_4}(6n+1)=\begin{cases} 6m-6n-3 & 6m-3\gt 6n+1\\ 6n-6m+5 & 6n+1\gt 6m-3\end{cases}\\ (6m-2) \star _{K_4}(6n-2)=6m+6n-1\\ (6m-2) \star _{K_4}(6n-1)=6m+6n-5\\ (6m-2) \star _{K_4}(6n)=\begin{cases} 6m-6n-2 & 6m-2\gt 6n\\ 6n-6m+2 & 6n\gt 6m-2\end{cases}\\ (6m-2) \star _{K_4}(6n+1)=6m+6n-2\\ (6m-1) \star _{K_4}(6n-1)=6m+6n-8\\ (6m-1) \star _{K_4}(6n)=\begin{cases} 6m-6n-1 & 6m-1\gt 6n\\ 6n-6m+3 & 6n\gt 6m-1\end{cases}\\ (6m-1) \star _{K_4}(6n+1)=6m+6n-1\\ (6m) \star _{K_4}(6n)=6m+6n\\ (6m) \star _{K_4}(6n+1)=\begin{cases} 6m-6n & 6m\gt 6n+1\\ 6n-6m+1 & 6n+1\gt 6m\end{cases}\\ (6m+1) \star _{K_4}(6n+1)=6m+6n+1\end{cases}$ Each one group structure on $\Bbb N$ will show a new outlook to the numbers, $\Bbb N$ or $\Bbb Z$ (and consequently $\Bbb R)$ is an initial and basic truth but when another group on $\Bbb N$ is made indeed another copy of truth will be inserted and yield will be a better knowledge at numbers! :'''Problem''' $2$: With [https://en.wikipedia.org/wiki/Matrix_(mathematics) matrix] theory each cyclic group on $\Bbb N$ like $(\Bbb N,•)$ that is made regarding above algorithm, but binary operation $•$ can be rewritten by matrices! By using [[User_talk:Musictheory2math#Polignac.27s_conjecture|theorem $1$]] of Polignac's conjecture we can define function $f:\{(c,d)\mid (c,d)\subseteq [0.01,0.1)\}\to\Bbb N$ that $f((c,d))$ is the least $n\in\Bbb N$ that $\exists t\in(c,d),\,\exists k\in\Bbb N$ that $p_n=t\cdot 10^{k+1}$ that $p_n$ is $n$_th prime and $\forall m\ge f((c,d))\,\,\exists u\in (c,d)$ that $u\cdot 10^{m+1}\in\Bbb P$ and $g:(0,0.09)\cap (\bigcup _{k\in\Bbb N} r_k(\Bbb N))\to\Bbb N,$ is a function by $\forall\epsilon\in (0,0.09)\cap (\bigcup _{k\in\Bbb N} r_k(\Bbb N))$ $g(\epsilon)=max(\{f((c,d))\mid d-c=\epsilon,$ $(c,d)\subseteq [0.01,0.1)\})$. '''Guess''' $9$: $g$ isn't an injective function. Question $3$: Assuming guess $9$ let $[a,a]:=\{a\}$ and $\forall n\in\Bbb N,\, h_n$ is the least subinterval of $[0.01,0.1)$ like $[a,b]$ in terms of size of $b-a$ such that $\{\epsilon\in (0,0.09)\cap (\bigcup _{k\in\Bbb N} r_k(\Bbb N))\mid g(\epsilon)=n\}\subsetneq h_n$ and obviously $g(a)=n=g(b)$ now the question is $\forall n,m\in\Bbb N$ that $m\neq n$ is $h_n\cap h_m=\emptyset$? :[https://math.stackexchange.com/questions/2518063/a-medium-question-about-a-set-related-to-prime-numbers/2526481#2526481 Guidance] given by [https://math.stackexchange.com/users/276986/reuns @reuns] from stackexchange.com: :* For $n \in \mathbb{N}$ then $r(n) = 10^{-\lceil \log_{10}(n) \rceil} n$, ie. $r(19) = 0.19$. We look at the image by $r$ of the primes $\mathbb{P}$. :* Let $F((c,d)) = \min \{ p \in \mathbb{P}, r(p) \in (c,d)\}$ and $f((c,d)) = \pi(F(c,d))= \min \{ n, r(p_n) \in (c,d)\}$ ($\pi$ is the prime counting function) :* If you set $g(\epsilon) = \max_a \{ f((a,a+\epsilon))\}$ then try seing how $g(\epsilon)$ is constant on some intervals defined in term of the prime gap $g(p) = -p+\min \{ q \in \mathbb{P}, q > p\}$ and things like $ \max \{ g(p), p > 10^i, p+g(p) < 10^{i+1}\}$ '''Now I want define a group on $L$ like $(L,\star _L)$:''' Let $P_1=\{v_n\mid\forall n\in\Bbb N,\, v_n$ is $(n+1)$_th prime$\}$ and $\forall n,m\in\Bbb N,\, v_n\star _3 v_m=v_{n\star m}$ & $e=3$, obviously $(P_1,\star _3)$ is a group and $\langle 5\rangle =(P_1,\star _3)\cong (\Bbb Z,+)$. Let $\forall a\in\bigcup _{j\in\Bbb N} r_j(\Bbb P\setminus\{2\}),\, f:\bigcup _{j\in\Bbb N} r_j(\Bbb P\setminus\{2\})\to\Bbb P\setminus\{2\}$ be a function that $\exists k\in\Bbb N,$ $f(a)=a\cdot 10^k\in\Bbb P\setminus\{2\}$. '''Problem''' $3$: Let $e=(0.03,0.03)$ and $\forall (a,b),(c,d)\in L,$ '"`UNIQ-MathJax7-QINU`"' that $\alpha=((a,b),(c,d)),$ where $t_1,t_2:L\times L\to\Bbb N\cup\{0\}$ are functions such that $\forall\alpha\in L\times L$ at least one of $t_1(\alpha),t_2(\alpha)$ should be $0$ so find functions $t_1,t_2$ such that $(L,\star _L)$ be a group (an Abelian group), though I guess $(L,\star _L)$ is non finitely generated Abelian group and even possibly isomorph to $(\Bbb Q,+)$ or $(\Bbb Q_{\gt 0},\cdot)$ or $\Bbb Z\oplus\Bbb Q$ that $(\Bbb Z,+)$ is usual group. :Of course we could write each another group structure on $\Bbb N$ and consequently on $P_1$ regarding above algorithm. :And if under Euclidean topology (or another appropriate topology) this group $(L,\star _L)$ be a topological group it is very well, otherwise we can replace another group structure on $\Bbb N$ and then on $P_1$ and consequently on $L$. Suppose $B=(S_1\times S_1)\cap\{(x,y)\mid 0.01\le x+y\lt 0.1\}$ & $D=B\setminus (L\cup\{(a,b)\in B\mid 2\neq f(a)=10^k\cdot a,$ $2=f(b)=10^t\cdot b,\, t\gt k,\, t,k\in\Bbb N\}\cup\{(a,b)\in B\mid 2=f(a)=10^k\cdot a,$ $2\neq f(b)=10^t\cdot b,\, t\lt k,$ $t,k\in\Bbb N\})$ & $N_2=\{f(a)+f(b)\mid (a,b)\in L\}$ & $N_1=\{a_1+10^t\cdot b_1\mid t=max($number of digits in $f(a),$ number of digits in $f(b))-min($number of digits in $f(a),$ number of digits in $f(b)),\,a_1=max(f(a),f(b)),$ $b_1=min(f(a),f(b)),\, (a,b)\in D\}$. '''Guess''' $10$: $\{2n-1\mid n\in\Bbb N\}\setminus N_1$ is a finite set. :In other words, $\{2n-1\mid n\in\Bbb N\}\setminus (\{p+10^k\cdot q\mid p,q\in\Bbb P,\, p\gt 2,\, k\in\Bbb N\}\cup\{p+2\mid p\in\Bbb P,\, p\gt 2\})$ is a finite set. :Of course the Goldbach's conjecture is the same $N_2=\{2n\mid n\in\Bbb N\}$. Obviously $B$ is dense in the $\{(x,y)\mid 0\le x,\, 0\le y,\, 0.01\le x+y\le 0.1\}$ and now I want define a group on $B$ like $(B,\star _B)$, though I guess this group will be non finitely generated Abelian group and even may be isomorph to $(\Bbb Q,+)$ or $(\Bbb Q_{\gt 0},\cdot)$ or $\Bbb Z\oplus\Bbb Q$ that $(\Bbb Z,+)$ is usual group, ... '''Question''' $4$: $\forall k\in\Bbb N$ are there $q_1,q_2\in P_1$ with $q_1,q_2\lt 4k+1$ such that $p_{4k+1}=p_{q_1}\star _3p_{q_2}$ and $p_{q_1},p_{q_2}\in P_1?$ '''Conjecture''' $3$: Under $(P_1,\star_3),\,\forall n\in\Bbb N,\,\exists s_1,s_2\in P_1$ such that $v_{2n+3}=v_{s_1}\star _3v_{s_2}$. :According to equivalency of these three $(\Bbb Z,+)$ & $(\Bbb N,⋆)$ & $(P_1,⋆_3)$ from aspect of being group, this conjecture is an equivalent to Goldbach's conjecture. :We can pay attention to subgroups as $\langle v_{s_1}⋆_3v_{s_2}\rangle$ as a solution for Goldbach also we can use quotient groups $P_1/ \langle v_s\rangle$. :There exists an one-to-one correspondence between equations in $(\Bbb Z,+)$ & $(\Bbb N,⋆)$ & $(P_1,⋆_3)$ & $(\Bbb N,⋆_{K_4})$ and prime numbers properties exist in those groups although other sequences may have the same structures but prime numbers structures are specific because the own prime numbers are specific. :There doesn't exist another way to define another cyclic group structure on $\Bbb P$ or $P_1$ for using strength of finite groups or infinite groups unless we knew the formula of prime numbers and on the other hand we can't know the formula before than knowing Goldbach and Polignac conjecture. Question $5$: Is there any subgroup of $P_1$ like $H$ such that $\forall v_s\in H,\, s\notin P_1$? :I want connect subgroups of $P_1$ with Goldbach's conjecture. Question $6$: What is function of this sequence in $\Bbb N\times\Bbb N$: $(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),...,(1,2k-2),(2,2k-3),...$ $,(k-1,k),(k,k-1),...,(2k-3,2),(2k-2,1),(1,2k-1),(2,2k-2),...,(k,k),...$ $,(2k-2,2),(2k-1,1),...$ :Answer given by Professor [http://www.genealogy.ams.org/id.php?id=90761 Daniel Lazard]: :$\begin{cases} (a_1,b_1)=(1,1)\\ (a_{n+1},b_{n+1})=\begin{cases} (1,a_n+1) & b_n=1\\ (a_n+1,b_n-1) & \text{else}\end{cases}\end{cases}$ :Question: What is function of this sequence: $2,3,3,4,4,4,5,5,5,5,6,6,6,6,6,...,k,k,k,...,k,...$ that \(k\) repeats \(k-1\) times. ::Answer given by Professor Daniel Lazard: Your sequence is clearly a [https://en.wikipedia.org/wiki/Primitive_recursive_function primitive recursive function]. On the other hand, I guess that, from your point of view, the best answer for your question is: $f(n)=k,$ where $k$ is the smallest integer such that \(k(k-1)/2 \ge n\). This may be rewritten, using the [https://en.wikipedia.org/wiki/Ceil_function ceil function], \(f(n)=\left \lceil \frac{1+\sqrt{1+8n}}{2}\right\rceil. \) IMO, none of these formulas is useful, as they hide the main properties of the sequence. ::Problem $4$: Find a bijection \(g:\Bbb N\times(\Bbb N\setminus\{1\})\to\Bbb N\times\Bbb N\) as \(g(n,f(n))\) equal to function of the sequence: $(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),...,(1,2k-2),$ $(2,2k-3),...,(k-1,k),(k,k-1),...,(2k-3,2),(2k-2,1),(1,2k-1),(2,2k-2),$ $...,(k-1,k+1),(k,k),(k+1,k-1),... ,(2k-2,2),(2k-1,1),...$ :::Question: To define an Abelian group structure on $\Bbb N$ that is not a finitely generated Abelian group and is isomorph to $(\Bbb Q,+)$, I need to know what is function of a subsequence of $(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),...,(1,2k-2),$ $(2,2k-3),...,(k-1,k),(k,k-1),...,(2k-3,2),(2k-2,1),(1,2k-1),(2,2k-2),$ $...,(k-1,k+1),(k,k),(k+1,k-1),... ,(2k-2,2),(2k-1,1),...$ such that $(u,v)$ is belong to this subsequence iff gcd$(u,v)=1$ as: $(1,1),(1,2),(2,1),(1,3),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(5,1),(1,6),(2,5),(3,4),(4,3),$ $(5,2),(6,1),(1,7),(3,5),(5,3),(7,1),...$ ::::<s>An unlikely hypothesis: Using homotopy theory if a group on $\Bbb N$ isomorph to $(\Bbb Q,+)$ be defined then conjecture $1$ will be proved simpler and easier!</s> A conjecture equivalent to Goldbach's weak conjecture: $\forall n\in\Bbb N,\, \exists p,q,r\in\Bbb P,$ $\quad 2n+7=\begin{cases} 4\star p+8 & \text{or}\\ p\star q\star r+2\end{cases}$ '''Conjecture''' $4$: Under $(\Bbb N,\star),\,\forall n\in\Bbb N,\,\exists p,q\in\Bbb P\setminus\{2\}\quad 2n+3=p\star q$. :This conjecture is an equivalent to Goldbach's conjecture. :We have: $\langle p\star q\rangle=\{1\}\cup\{n\cdot (p+q-2)+1\mid n\in\Bbb N\}\cup\{n\cdot (p+q-2)\mid n\in\Bbb N\}$ :Question $7$: $\forall m\in\Bbb N$ do $\exists p,q\in\Bbb P,\,\exists n,k\in\Bbb N$ such that $2m+3\neq p\star q$ and $(2m+3)^n=(p\star q)^k$ or that $2n(m+1)=k(p+q-2)$? :Clearly $f:\Bbb N\to\Bbb Z,\,\, f(1)=0,\, f(2n)=n,\, f(2n+1)=-n,$ is an isomorphism and $\forall n\in\Bbb N,\,\langle n\rangle\cong\langle f(n)\rangle$ & $\Bbb N/ \langle n\rangle\cong\Bbb Z / \langle f(n)\rangle$. And $(\Bbb N,\star)$ can be defined with: $\begin{cases} 2\star 3=1,\quad 2^n=2n,\quad 3^n=2n+1\\ 2^n\star 2^m=2^{n+m},\quad 3^n\star 3^m=3^{n+m}\\ 2^n\star 3^m=\begin{cases} 2^{n-m} & 2^n\gt 3^m\\ 3^{m-n} & 3^m\gt 2^n\end{cases}\end{cases}$ :We have $\langle 2^n\rangle=\langle 3^n\rangle=\{1\}\cup\{2^{nk}\mid k\in\Bbb N\}\cup\{3^{nk}\mid k\in\Bbb N\}$. Suppose $t:\Bbb N\to\Bbb N$ is a sequence with $n\mapsto t(n)$ such that $3^{t(n)}\in\Bbb P\setminus\{2\}$ so codomain of $t$ is $T:=\{1,2,3,5,6,8,9,11,14,15,18,20,21,23,26,29,30,33,35,36,39,41,44,48,50,51,53,54,...\}$. '''Theorem''': $\forall n\in\Bbb N,\,\exists k\in\Bbb N\setminus\{1\},\,\exists p_1,p_2,p_3,...,p_k\in\Bbb P\setminus\{2\}$ such that $2n+3=p_1\star p_2\star p_3...\star p_k$. :Proof by induction axiom and that $\forall n\in\Bbb N,\,\exists m\in\Bbb N,$ such that $2n+3=3^m$ and of course each odd prime number is to form of $3^m$ as $5=3^2,7=3^3,11=3^5,13=3^6,17=3^8,19=3^9,...$ too. :I think there exists a minimum value of $k$ that $\forall n\in\Bbb N,$ holds this equation $2n+3=p_1\star p_2\star p_3...\star p_k$, so find this $k$. '''Guess''' $11$: $\forall p_1,p_2,p_3\in\Bbb P\setminus\{2\},\,\exists q_1,q_2\in\Bbb P\setminus\{2\}$ such that $p_1\star p_2\star p_3=q_1\star q_2$. :Problem $5$: Make another definition of prime numbers embedded into $(\Bbb N,\star)$ and free of normal definition of prime numbers in $(\Bbb Z,+)$. ::Regarding to the $\Bbb N/ \langle n\rangle\cong\Bbb Z / \langle f(n)\rangle$, a new definition of prime numbers will be obtained and we will approach to this guess $10$ (or in fact to the Goldbach), but should be noted the [https://en.wikipedia.org/wiki/Linear_equation linear] equation $2n=p+q$ or $2n+3=p\star q$ with [https://en.wikipedia.org/wiki/Degree_of_a_polynomial degree] one won't be proved only by group theory and indeed we need to prime numbers properties that is in prime number theorem as a logarithm function that is used in proof of the Main theorem, so finally Goldbach conjecture will be proved through conjecture $1$ and for conjecture $1$ I offer homotopy groups, but Goldbach is the key of whole mathematics because with Goldbach and Polignac and some other conjectures, prime numbers will be recognized and then some new numbers except algebraic numbers with cardinal $\aleph _0$ will be discovered and consequently whole mathematics and mathematical logic will be improved widely hence this German great mathematician [https://en.wikipedia.org/wiki/Christian_Goldbach Christian Goldbach]'s conjecture will impress mathematics certainly! '''Problem''' $6$: Rewrite operation of the group $(\Bbb N,\star)$ by matrices. '''Conjecture''' $5$: $\forall n\in\Bbb N,\,\exists (a,b)\in\{(x,y)\mid x,y\in S_1,\,\exists m\in\Bbb N,\, x\cdot 10^m,y\cdot 10^m\in\Bbb P\setminus\{2\},$ $y\le x\lt 0.1,$ $0.01\le x\},$ $\exists (c,0)\in\{(-x,0)\mid x\in\{10^{-n}\mid n\in\Bbb N\}\}$ such that $c=-10^{-k}$ & $2n+3=10^k\cdot (a+b+c)$ & $10^k\cdot a,10^k\cdot b\in\Bbb P\setminus\{2\}$ & $k$ is the number of digits in $2n+3$. :This conjecture was made compatible with group $(\Bbb N,\star)$ and is an equivalent to Goldbach's conjecture. Let $L_3=\{(a,b)\mid a,b\in S_1,\, a,b\in\{(x,y)\mid 0\lt x\lt 0.1,\, 0\lt y\lt 0.1\}\setminus\{(x,y)\mid x\lt 0.01,\, y\lt 0.01\},$ $\exists k\in\Bbb N,\, a\cdot 10^k,b\cdot 10^k\in\Bbb P\setminus\{2\}\}$. '''Problem''' $7$: Let $e=(0.03,0.03)$ & $\forall (a,b),(c,d)\in L_3,\, m=1+max($number of digits in $f(a)\star _3f(c),$ number of digits in $f(b)\star _3f(d)),$ '"`UNIQ-MathJax8-QINU`"' that $\alpha=((a,b),(c,d))$ where $u_1,u_2:L_3\times L_3\to\Bbb N\cup\{0\}$ are functions such that $\forall\alpha\in L_3\times L_3$ at least one of $u_1(\alpha),u_2(\alpha)$ should be $0$ so find functions $u_1,u_2$ such that $(L_3,\star _{L_3})$ be a group (an Abelian group), though I guess $(L_3,\star _{L_3})$ is non finitely generated Abelian group and possibly isomorph to $(\Bbb Q,+)$ or $(\Bbb Q_{\gt 0},\cdot)$ or $\Bbb Z\oplus\Bbb Q$ that $(\Bbb Z,+)$ is usual group. :Of course we could write each another group structure on $\Bbb N$ and consequently on $P_1$ regarding above algorithm. :And if under Euclidean topology (or another appropriate topology) this group $(L_3,\star _{L_3})$ be a topological group it is very well, otherwise we can replace another group structure on $\Bbb N$ and then on $P_1$ and consequently on $L_3$. Suppose $\forall k\in\Bbb N,\, w_k:\Bbb N\to (0,1)$ is a function given by $\forall n\in\Bbb N,\, w_k(n)=r_{k-1}(n)$. '''Theorem''' $5$: Let $e=0.2$ & $\forall w_m(p),w_n(q)\in S_1,\, w_m(p)\star _{S_1} w_n(q)=w_{m\star n} (p\star _1 q)$ that $p,q\in\Bbb P,$ $m,n\in\Bbb N$ & $(w_m(p))^{-1}=w_{m^{-1}}(p^{-1})$ that $m\star m^{-1}=1,\, p\star _1 p^{-1}=2$ now $(S_1,\star _{S_1})$ is an Abelian group, of course using above algorithm to generate cyclic groups on $\Bbb N$, we can impose another group structure on $\Bbb N$ and consequently on $\Bbb P$ but eventually $S_1$ with an operation analogous above operation $\star _{S_1}$ will be an Abelian group. :Question $8$: Is $S_1$ with each group structure, non finitely generated Abelian group and possibly isomorph to $\Bbb Z\oplus\Bbb Q$ that $(\Bbb Z,+)$ & $(\Bbb Q,+)$ are usual groups? and under which topology $S_1$ will be a topological group? '''Theorem''' $6$: Let $e=(0.2,0.2)$ & $\forall (w_{m_1}(p_1),w_{m_2}(p_2)),(w_{n_1}(q_1),w_{n_2}(q_2))\in S_1\times S_1,$ '"`UNIQ-MathJax9-QINU`"' that $m_1,n_1,m_2,n_2\in\Bbb N,\, p_1,p_2,q_1,q_2\in\Bbb P$ & $(w_m(p),w_n(q))^{-1}=(w_{m^{-1}}(p^{-1}),w_{n^{-1}}(q^{-1}))$ that $m\star m^{-1}=1=n\star n^{-1}$, $p\star _1p^{-1}=2=q\star _1q^{-1}$ now $(S_1\times S_1,\star _{S_1\times S_1})$ is an Abelian group, of course using above algorithm to generate cyclic groups on $\Bbb N$, we can impose another group structure on $\Bbb N$ and consequently on $\Bbb P$ but eventually $S_1\times S_1$ with an operation analogous above operation $\star _{S_1\times S_1}$ will be an Abelian group. :Question $9$: Is $S_1\times S_1$ with each group structure, non finitely generated Abelian group and possibly isomorph to $\Bbb Z\oplus\Bbb Z\oplus\Bbb Q\oplus\Bbb Q$ that $(\Bbb Z,+)$ & $(\Bbb Q,+)$ are usual groups? and under which topology $S_1\times S_1$ will be a topological group? '''Conjecture''' $6$: $\forall n,k\in\Bbb N,\,\forall m\in\Bbb N\cup\{0\}$ let $t=2^n\cdot 5^m\cdot (2k-1)$ that $t\ge 6,\, c=min(n,m),$ $A_m=\{(a,b)\mid a,b\in S_1,\, 10^{-m-2}\le a+b\lt 10^{-m-1}\},\, u$ is the number of digits in $t$ then $\exists (a,b)\in A_c$ such that $t=10^{u+c+1} (a+b),\, 10^{u+c+1}\cdot a,10^{u+c+1}\cdot b\in\Bbb P\setminus\{2\}$. :This conjecture is an equivalent to Goldbach's conjecture, but prime numbers properties (that using Main theorem as density has been planned.) using topology should be discussed and group theory will be used for writing equations. :Indeed numbers properties or in principle prime numbers properties permeate to whole mathematical concepts and rules hence using algebraic structures that relate cardinal of a set with its members and also using topological theories that discuss on topological concepts and properties and own the number theory, we can solve linear problems like Goldbach at number theory! Question $10$: Let $M$ be a topological space and $A,B$ are subsets of $M$ with $A\subset B$ and $A$ is dense in $B,$ since $A$ is dense in $B,$ is there some way in which a topology on $B$ may be induced other than the subspace topology? I am also interested in specialisations, for example if $M$ is Hausdorff or Euclidean. :If a topology based on density be made then we will be able to import prime numbers properties into a topology! ::Indeed since $S_1$ is dense in the $[0,1]$ so each topology on $(0,1)^n$ and $\Bbb R^n,\, n\in\Bbb N$ and also on $(0,1)\times (0,1)$ has prime numbers properties and consequently $\forall x\in\Bbb R^n,\,\forall n\in\Bbb N,\, x$ has a relation with prime numbers! :of course this wordage isn't mathematically but I will write as topological! Theorem: Suppose $\forall n\in\Bbb N,\, W_n:=\{(z_1+s_1,z_2+s_2,z_3+s_3,...,z_n+s_n)\mid \forall i=1,2,3,...,n,\, z_i\in\Bbb Z,$ $s_i\in S_1\}$ then $W_n$ is dense in the $\Bbb R^n$. (under Euclidean topology) Guess $12$: Suppose $J_n=\{(s_1,s_2,s_3,...,s_n)\mid\exists k\in\Bbb N,\, s_i\cdot 10^k\in\Bbb P,\,\forall i=1,2,3,...,n,\, s_i\in S_1\}$ & $I^n=[0,1]^n$ that of course $S_1^n$ is dense in the $I^n,$ now I guess that under Euclidean topology $\exists n\in\Bbb N,\,\forall k\ge n$ $dimension(closure(J_k))=1$. $r:\Bbb P\to S,\, p\mapsto r(p)$ is a bijection, under this bijection $\Bbb P$ & $S$ have the same order type, in other words $\lt _{\Bbb P}$ is an order relation on $\Bbb P$ iff $\lt _S$ be an order relation on $S$ such that $p\lt _{\Bbb P} q$ iff $r(p)\lt _S r(q)$. Question $11$: Are there any topology on $\Bbb P$ and on $S$ such that these two topological spaces be homeomorph? or that, under each topology is the space $[0.1,1]$ a separable space? Suppose $h:\Bbb P\to Power(\Bbb P),\, h(p)=\{q\mid \exists b_1b_2b_3...b_k\in\Bbb N,\,q=a_1a_2...a_nb_1b_2...b_k\in\Bbb P,$ $p=a_1a_2a_3...a_n\}$ that obviously $h$ is an injection. Alireza Badali 22:21, 8 May 2017 (CEST) ==='"`UNIQ--h-2--QINU`"' Polignac's conjecture === In number theory, Polignac's conjecture was made by Alphonse de Polignac in 1849 and states: For any positive even number $n$, there are infinitely many prime gaps of size $n$. In other words: There are infinitely many cases of two consecutive prime numbers with difference $n$. (Tattersall, J.J. (2005), Elementary number theory in nine chapters, Cambridge University Press, ISBN: 978-0-521-85014-8, p. 112) Although the conjecture has not yet been proven or disproven for any given value of n, in 2013 an important breakthrough was made by Zhang Yitang who proved that there are infinitely many prime gaps of size n for some value of n < 70,000,000.(Zhang, Yitang (2014). "Bounded gaps between primes". Annals of Mathematics. 179 (3): 1121–1174. MR 3171761. Zbl 1290.11128. doi:10.4007/annals.2014.179.3.7. _ Klarreich, Erica (19 May 2013). "Unheralded Mathematician Bridges the Prime Gap". Simons Science News. Retrieved 21 May 2013.) Later that year, James Maynard announced a related breakthrough which proved that there are infinitely many prime gaps of some size less than or equal to 600.(Augereau, Benjamin (15 January 2013). “An old mathematical puzzle soon to be unraveled? Phys.org. Retrieved 10 February 2013.) Assuming Polignac's conjecture there isn't any rhythm for prime numbers and so there isn't any formula for prime numbers! Let $B=\{(x,y)\mid 0.01\lt y\lt x\lt 0.1\}$ & $C=(S_1\times S_1)\cap \{(x,x)\mid 0.01\le x\lt 0.1\}$ & $T=\{(a,b)\mid a,b \in S_1,\, 0.01 \lt b \lt a\lt 0.1,\, \exists m \in \Bbb N,\, a \cdot 10^m, b \cdot 10^m$ or $a\cdot 10^{m-1}, b\cdot 10^m$ are consecutive prime numbers$\}$ & $\forall n \in \Bbb N,\, J_n :=\{(a,b) \mid (a,b) \in T,\, \exists k \in \Bbb N, a-b=r_k (2n)\}$. :Obviously $\bigcup _{n\in \Bbb N} J_n=T$ and Polignac's conjecture is equivalent to $\forall n \in \Bbb N,$ cardinal$(J_n)=\aleph_0$. '''Guess''' $1$: $\forall (a,a) \in C$ there are some sequences in $T$ like $\{a_n\}$ that $a_n\to (a,a)$ where $n\to \infty$ and there are some sequences in $T$ like $b_n$ that $b_n\to (0.1,0.01)$ where $n\to \infty$. '''Guess''' $2$: $\exists N_1 \subseteq \Bbb N,\, \forall n\in N_1,$ cardinal$(J_n)=\aleph_0=$cardinal$(N_1)$ Obviously $\exists \epsilon,\epsilon_1,\epsilon_2 \in \Bbb R,\epsilon\gt 0, \epsilon_2\gt \epsilon_1\gt 0$ that $\forall (a,b) \in T \cap \{(x,y)\mid 0.01\lt y\lt x\lt 0.1,$ $x-y\lt \epsilon\}$ that $\exists m\in \Bbb N$ that $a\cdot 10^m$,$b\cdot 10^m$ are consecutive prime numbers, but $a\cdot 10^m$,$b\cdot 10^m$ are large natural numbers, and $\forall (a,b)\in T\cap$ $\{(x,y)\mid 0.01\lt y\lt x\lt 0.1,$ $0.11-\epsilon_1 \lt x+y\lt 0.11+\epsilon_1,$ $x-y\gt 0.09-\epsilon_2 \}$ that $\exists m\in \Bbb N$ that $a\cdot 10^{m-1},b\cdot 10^m$ are consecutive prime numbers but $a\cdot 10^{m-1}$,$b\cdot 10^m$ are large natural numbers and $\forall (a,b)\in T\setminus (\{(x,y)\mid 0.01\lt y\lt x\lt 0.1,$ $x-y\lt \epsilon\}$ $\cup$ $\{(x,y)\mid 0.01\lt y\lt x\lt 0.1,$ $0.11-\epsilon_1 \lt x+y\lt 0.11+\epsilon_1,\, x-y\gt 0.09-\epsilon_2 \})$ that $\exists m\in \Bbb N$ that $a\cdot 10^{m-1}$ or $a\cdot 10^m$ & $b\cdot 10^m$ are consecutive prime numbers but $a\cdot 10^m$ or $a\cdot 10^{m-1}$ & $b\cdot 10^m$ aren't large natural numbers. Theorem: $\forall c\in r_1(\Bbb P)$ cardinal$(T\cap \{(x,c)\mid x\in \Bbb R \})=1=$ cardinal$(T\cap \{(c,y)\mid y\in \Bbb R\})$ '''Guess''' $3$: $\forall k\in \Bbb N,$ $\forall c\in r_k (\Bbb N),\, c\lt 0.09$ then cardinal$(T\cap \{(x,y)\mid x-y=c\}) \in \Bbb N \cup \{0\}$. '''Theorem''' $1$: For each subinterval of $[0.01,0.1)$ like $(a,b),\,\exists m\in \Bbb N$ that $\forall k\in \Bbb N$ with $k\ge m$ then $\exists t\in (a,b)$ that $t\cdot 10^{k+1}\in \Bbb P$. :[https://math.stackexchange.com/questions/2482941/a-simple-question-about-density-in-the-interval-0-1-1/2483079#2483079 Proof] given by [https://math.stackexchange.com/users/149178/adayah @Adayah] from stackexchange.com: Without loss of generality (by passing to a smaller subinterval) we can assume that $(a, b) = \left( \frac{s}{10^r}, \frac{t}{10^r} \right)$, where $s, t, r$ are positive integers and $s < t$. Let $\alpha = \frac{t}{s}$. :The statement is now equivalent to saying that there is $m \in \mathbb{N}$ such that for every $k \geqslant m$ there is a prime $p$ with $10^{k-r} \cdot s < p < 10^{k-r} \cdot t$. :We will prove a stronger statement: there is $m \in \mathbb{N}$ such that for every $n \geqslant m$ there is a prime $p$ such that $n < p < \alpha \cdot n$. By taking a little smaller $\alpha$ we can relax the restriction to $n < p \leqslant \alpha \cdot n$. :Now comes the prime number theorem: '"`UNIQ-MathJax10-QINU`"' :where $\pi(n) = \# \{ p \leqslant n : p$ is prime$\}.$ By the above we have '"`UNIQ-MathJax11-QINU`"' :hence $\displaystyle \lim_{n \to \infty} \frac{\pi(\alpha n)}{\pi(n)} = \alpha$. So there is $m \in \mathbb{N}$ such that $\pi(\alpha n) > \pi(n)$ whenever $n \geqslant m$, which means there is a prime $p$ such that $n < p \leqslant \alpha \cdot n$, and that is what we wanted. ::Clearly the [[User_talk:Musictheory2math#Goldbach.27s_conjecture|Main theorem]] of Goldbach's conjecture is a corollary of theorem $1$. Theorem: $\forall \epsilon_1,\epsilon_2$ that $0\lt \epsilon_1\lt \epsilon_2\lt 0.09$ then cardinal$(T\setminus \{(x,y)\mid 0.01\lt y\lt x\lt 0.1,\, x-y\gt \epsilon_1\})$ $=$ cardinal$(T\setminus \{(x,y)\mid 0.01\lt y\lt x\lt 0.1,\, x-y\lt \epsilon_2\})=\aleph_0$. :Proof: Be aware to number of digits in prime numbers corresponding to coordinates of each member in $T$. :'''Guess''' $4$: cardinal$(\{(a,b)\mid (a,b)\in T,\, 0.01\lt b\lt a\lt 0.1,$ $\epsilon_1\lt a-b\lt \epsilon_2\})\in \Bbb N\cup \{0\}$ Alireza Badali 13:17, 21 August 2017 (CEST) ==='"`UNIQ--h-3--QINU`"' Landau's forth problem === Landau's forth problem: Are there infinitely many primes $p$ such that $p−1$ is a perfect square? In other words: Are there infinitely many primes of the form $n^2 + 1$? In analytic number theory the Friedlander–Iwaniec theorem states that there are infinitely many prime numbers of the form ${\displaystyle a^{2}+b^{4}}$. Suppose $H=\{(a,b)\mid a\in\bigcup_{k\in\Bbb N} r_k(\{n^2\mid n\in\Bbb N\}),\, b\in\bigcup_{k\in\Bbb N} r_k(\{n^4\mid n\in\Bbb N\})$ & $\exists t\in\Bbb N$ that $a\cdot 10^t\in\{n^2\mid n\in\Bbb N\},$ $b\cdot 10^t\in\{n^4\mid n\in\Bbb N\},\, (a+b)\cdot 10^t\in\Bbb P\}$ and $H_1=\{(a,b)\in H\mid b\in\bigcup_{k\in\Bbb N} r_k(\{1\})\}$ :Friedlander-Iwaniec theorem is the same cardinal$(H)=\aleph_0$ '''A question''': cardinal$(H_1)\in\Bbb N$ or cardinal$(H_1)=\aleph_0$? :This question is the same Landau's forth problem. Alireza Badali 20:47, 21 September 2017 (CEST) ==='"`UNIQ--h-4--QINU`"' Grimm's conjecture === In mathematics, and in particular number theory, Grimm's conjecture (named after Karl Albert Grimm) states that to each element of a set of consecutive composite numbers one can assign a distinct prime that divides it. It was first published in American Mathematical Monthly, 76(1969) 1126-1128. Formal statement: Suppose $n + 1, n + 2, …, n + k$ are all composite numbers, then there are $k$ distinct primes $p_i$ such that $p_i$ divides $n+i$ for $1 ≤ i ≤ k$. Let $C=\{(x,y)\mid 0.01\le x\lt 0.1,\, 0.01\le y\lt 0.1\}$ '''A conjecture''': Suppose $n+1,n+2,n+3,...,n+k$ are all composite numbers then $\forall i=1,2,3,...,k$ $\exists (r_1(p_i),r_1(t_i))\in C$ that $p_i\in\Bbb P,$ $t_i\in\Bbb N$ & $\forall j=1,2,3,...,k$ that $i\neq j$ implies $p_i\neq p_j$ we have $r_1(p_i)\cdot r_1(t_i)=r_2(n+i)$ or $r_3(n+i)$. :This conjecture is an equivalent to Grimm's conjecture. Alireza Badali 23:30, 20 September 2017 (CEST) ==='"`UNIQ--h-5--QINU`"' Lemoine's conjecture === In number theory, Lemoine's conjecture, named after Émile Lemoine, also known as Levy's conjecture, after Hyman Levy, states that all odd integers greater than $5$ can be represented as the sum of an odd prime number and an even semiprime. Formal definition: To put it algebraically, $2n + 1 = p + 2q$ always has a solution in primes $p$ and $q$ (not necessarily distinct) for $n > 2$. The Lemoine conjecture is similar to but stronger than Goldbach's weak conjecture. Theorem: $\forall n\in\Bbb N$ that $m=2n+5,\, \exists (a,b)\in\{(x,y)\mid 0\lt y\le x,\, x+y\lt 0.1,\, x,y\in S_1,\, \exists t\in\Bbb N,$ $x\cdot 10^t,y\cdot 10^t\in\Bbb P\},\,\exists k\in\Bbb N,\, \exists c\in r_k(\Bbb P)$ such that $a+b=r_1(m)-c$ :In principle $(r_1(m),-c)\in \{(x,y)\mid -x\lt y\lt 0,\, 0.01\le x\lt 0.1\}$ :This theorem is an equivalent to Goldbach's weak conjecture. '''A conjecture''': $\forall n\in\Bbb N$ that $m=2n+5,\, \exists k_1,k_2\in\Bbb N,\, \exists b\in r_{k_1}(\Bbb P)$ that $b\lt 0.05,\, \exists a\in r_{k_2}(\Bbb P)$ such that $2b=r_1(m)-a$ :In principle $(b,b)\in\{(x,x)\mid 0\lt x\lt 0.05\}$ & $(r_1(m),-a)\in\{(x,y)\mid -x\lt y\lt 0,\, 0.01\le x\lt 0.1\}$ :This conjecture is an equivalent to Lemoine's conjecture. Alireza Badali 00:30, 27 September 2017 (CEST) ==='"`UNIQ--h-6--QINU`"' About analytic number theory === In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet L-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers (involving the Prime Number Theorem and Riemann zeta function) and additive number theory (such as the Goldbach conjecture and Waring's problem). There is no $n$-variable polynomial, $n\in\Bbb N$ as a formula for prime numbers, because each formula or relation for prime numbers only there can be include all prime numbers together and simultaneous like Riemann zeta function! Primental (prime-transcendental) property: A [https://en.wikipedia.org/wiki/Continuous_function continuous function] $f:\Bbb R\to\Bbb R,$ has primental property if $\exists z_1,z_2,t_1,t_2\in\Bbb Z,$ $\exists m\in\Bbb N,\,\forall n\ge m,\, f(z_1+n\cdot z_2)=t_1+p_n\cdot t_2$ that $p_n$ is $n$_th prime number and each function $f$ with this property is called a primental. Question: Is there any primental that be [https://en.wikipedia.org/wiki/Polynomial polynomial] too? :The answer is no, $f$ can't be a polynomial. Because the asymptotics of $p_n$ are '"`UNIQ-MathJax12-QINU`"' and if $f$ is a polynomial then '"`UNIQ-MathJax13-QINU`"' where $C$ is some constant and $\alpha\in \mathbb{N}$. :By transitivity you would have '"`UNIQ-MathJax14-QINU`"' which can't be true. ::There is no polynomial with integer coefficients that outputs only primes. However, there are multivariable polynomials whose integer positive values are exactly the prime numbers ([http://mathworld.wolfram.com/Prime-GeneratingPolynomial.html mathworld.wolfram.com/Prime-GeneratingPolynomial.html]) ::For the exact same reason, multivariable functions satisfy this condition: $\exists z_i,s_i∈\Bbb Z$ for $i=1,2,3,...,k$ & $\exists z,s∈\Bbb Z$ & $\exists m∈\Bbb N,\,\forall n≥m$ $f(z_1+ns_1,z_2+ns_2,z_3+ns_3,...,z_k+ns_k)=z+p_ns$, can not be multivariable polynomials. ::Incidentally, it is known that there exists a polynomial $f(t_1,…,t_n,p)$ such that $p∈\Bbb Z$ is prime if and only if there exist $t_1,...,t_n∈\Bbb Z$ such that $f(t_1,…,t_n,p)=0$. (Though actually writing out such a polynomial f would likely be painful and result in a long expression.) :This is a philosophy: this question is useful for [https://en.wikipedia.org/wiki/Riemann_hypothesis Riemann hypothesis], because normal definition of prime numbers & prime numbers properties & distribution of prime numbers in $\Bbb N$ & prime number theorem & the set $S$ & density of $S$ in $[0.1,1]$ & distribution of $S$ in $[0.1,1]$ &[[User_talk:Musictheory2math#Polignac.27s_conjecture|theorem $1$]] of Polignac with [[User_talk:Musictheory2math#Goldbach.27s_conjecture|question $3$]] of Goldbach are equivalent all together! hence prime numbers properties are present in whole $\Bbb R^2$ (or $\Bbb R^n,\, n\in\Bbb N$) so they are present in each infinite subset of $\Bbb R^2$ but in curves located at $\Bbb R^2$ they are present in fraction of $y$-coordinate or ordinate by $x$-coordinate or abscissa or the same trigonometric functions, on the other hand differential of polynomials are again polynomials and we can with linear transformation move polynomials to each position in $\Bbb R^2$. My thought line on the formula of prime numbers: According to important theorems in number theory and distribution of prime numbers I think there doesn't exist any polynomial \(p:\Bbb R\to\Bbb R\) include all such points \((n,p_n)\) that \(p_n\) is \(n\)_th prime and with that in mind prime number theorem is obtained from normal definition of prime numbers in terms of natural numbers factorization to prime numbers that it is because of logarithm function is inverse of the function \(f(x)=a^x\) and finally primes formulas are as logarithmic functions or other [https://en.wikipedia.org/wiki/Transcendental_function transcendental functions] but as an imagination there exists an special formula as an infinite series that generates primes simply: (I had asked a question that an user from stackexchange.com grammatical corrected it.) Let '"`UNIQ-MathJax15-QINU`"' (i.e. the decimal part of $\omega _1$ is obtained by concatenating the prime numbers) and '"`UNIQ-MathJax16-QINU`"' (i.e. the decimal part of $\omega _2$ is obtained by concatenating the prime numbers, each of them followed by a number of copies of $0$ equal to the number of its digits in base $10$). Questions: $1.$ Is $\omega _1$ or $\omega _2$ or another some similar number transcendental, and if yes is this a contradiction to the existence of a formula for prime numbers? $2.$ For each sequence $a_n: \mathbb N \to \mathbb N$ is there any sequence like $b_n: \mathbb N \to \mathbb N$ such that the number $\theta :=0.a_10 \dots 0a_20 \dots 0a_30 \dots 0 \dots$ obtained by concatenating the numbers $a_n$, each of them followed by a number of copies of $0$ equal to $b_n$, is a transcendental number? :Indeed prime numbers are very analogous to the transcendental numbers or perhaps contrariwise transcendental numbers are very analogous to the prime numbers! <s>Let $a_n:\Bbb N\to\Bbb P\cup\{0\}$ be a sequence with $\#(a_n(\Bbb N))=\aleph _0$ now each number to form of $0.a_1a_2a_3...$ is called a Pen number. :Guess: Each pen number is a transcendental number, and the set $[0,1]\setminus\{$pen numbers$\}$ is countable and the set pen numbers is dense in the $[0,1]$.
This is a mathematical technique: Let $\forall n\in\Bbb N,\,\forall k\in\Bbb N\cup\{0\},$ and for each subinterval $(a,b)$ of $[0.1,1),$ that $a\neq b,$ $\begin{cases} A_{k,(a,b)}:=\{n\mid\exists t_1\in\Bbb N,\,\exists t_2\in (a,b),\, t_2\cdot 10^{t_1}\in\Bbb N,\, 10\nmid t_2\cdot10^{t_1},\, n=t_2\cdot 10^{k+t_1}\},\\ \\B_{k,(a,b)}:=\{p\mid\exists t_1\in\Bbb N,\,\exists t_2\in (a,b),\, p=t_2\cdot 10^{t_1}\in\Bbb P,\,\exists n_1,n_2\in A_{k,(a,b)},\, n_1\le p\le n_2,\,e(n_1)=e(n_2)\},\\ \\A_{k,(a,b),n}:=\{m\in A_{k,(a,b)}\mid m\le n\},\\ \\B_{k,(a,b),n}:=\{m\in B_{k,(a,b)}\mid m\le n\},\\ \\c_{k,(a,b),n}:=(\#A_{k,(a,b),n})^{-1}\cdot\#B_{k,(a,b),n}\cdot\log n,\\ \\c_{k,(a,b)}:=\lim _{n\to\infty} c_{k,(a,b),n}\end{cases}$.
$\begin{cases} U_{(a,b)}:=\{n\in\Bbb N\mid a\le r(n)\le b\},\\ \\V_{(a,b)}:=\{p\in\Bbb P\mid a\le r(p)\le b\},\\ \\U_{(a,b),n}:=\{m\in U_{(a,b)}\mid m\le n\},\\ \\V_{(a,b),n}:=\{m\in V_{(a,b)}\mid m\le n\},\\ \\w_{(a,b),n}:=(\#U_{(a,b),n})^{-1}\cdot\#V_{(a,b),n}\cdot\log n,\\ \\w_{(a,b)}:=\lim _{n\to\infty} w_{(a,b),n}\end{cases}$
and we knew $\sum _{k\in\Bbb N\cup\{0\}}10^{-k}=0.9^{-1}$ hence ...
Let $S=\{0.2,0.3,0.5,0.7,0.11,...\}$ and $s_1=0.2,\, s_2=0.3,\, s_3=0.5,...$ that $s_k$ is $k$_th member in $S$, suppose $A_n=\{s_is_j\mid s_i,s_j\in \{s_1,s_2,s_3,...,s_n\},$ $s_i\neq s_j\}$ & $\mu _1:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\qquad\mu _1(z)=\lim_{n\to\infty}\frac{1}{n^2}\sum _{a\in A_n} a^{-f(z)}$$ such that $f:\Bbb C\to\Bbb C$ is an injective function that $\forall n\in\Bbb N,\,\forall z\in\Bbb C,\, n^{f(z)}$ isn't a Gaussian integer, for example this function has been given by @Wojowu from stackexchange.com: $$\forall z\in\Bbb C\qquad f(z)=\sqrt 2 +\frac{z}{N+|z|}$$ for large sufficiently $N\in\Bbb N$ of course $f$ maps $\Bbb C$ injectively into a disk around $\sqrt 2$ of radius $N^{-1}$ for large sufficiently $N,$ this disk contains no solution $z$ of $n^z\in\Bbb Z [i]$, according to definition of the function $\mu _1$ I think it is in a near relation with Riemann zeta function.
Let $\mu _3:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\qquad\mu _3(z)=\sum _{p\in\Bbb P}\frac{1}{(r(p))^z}$$ Let $\forall j\in\Bbb N,\,\mu _4:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\qquad\mu _4(z)=\sum _{n=1}^{\infty}\frac{1}{(r_j(n))^z}$$ Let $\forall j\in\Bbb N,\,\mu _5:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\qquad\mu _5(z)=\sum _{p\in\Bbb P}\frac{1}{(r_j(p))^z}$$ and $\mu _6:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\qquad\mu _6(z)=\lim _{j\to\infty}\sum _{n=1}^{\infty}\frac{1}{(r_j(n))^z}$$ Let $\mu _7:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\qquad\mu _7(z)=\lim _{j\to\infty}\sum _{p\in\Bbb P}\frac{1}{(r_j(p))^z}$$ let $\mu _8:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\qquad\mu _8(z)=\sum _{j\in\Bbb N}\frac{1}{(r_j(j))^z}$$ Let $p_j$ is $j$_th prime number & $\mu _9:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\qquad\mu _9(z)=\sum _{j\in\Bbb N}\frac{1}{(r_j(p_j))^z}$$ Let $a_n:\Bbb N\to\Bbb N$ is a sequence & $\mu _{10}:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\qquad\mu _{10}(z)=\sum _{n\in\Bbb N}\frac{1}{(r_{a_n}(n))^z}$$ Let $a_n:\Bbb N\to\Bbb N$ is a sequence & $\mu _{11}:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\qquad\mu _{11}(z)=\sum _{n\in\Bbb N}\frac{1}{(r_{a_n}(p_n))^z}$$ Let $\omega =0.p_1p_2p_3...=0.23571113171923293137...$ that in principle in $\omega$ prime numbers has been arranged respectively, now assume $a_n:\Bbb N\to (0,1)$ is a sequence that $\sum _{n\in\Bbb N} a_n=\omega$ & $\mu _{12}:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\,\,\,\,\,\,\,\,\,\,\mu _{12}(z)=\sum _{n\in\Bbb N}\frac{1}{(a_n)^z}$$ Let $f_1:\Bbb C\to\Bbb C$ & $\mu _{13}:\Bbb C\to\Bbb C$ are functions as: $$\forall z\in\Bbb C\qquad\mu _{13}(z)=\sum _{n=1}^{\infty} (-1)^n\cdot (r(n))^{f_1(z)}$$ Let $f_2:\Bbb C\to\Bbb C$ & $\mu _{14}:\Bbb C\to\Bbb C$ are functions as: $$\forall z\in\Bbb C\qquad\mu _{14}(z)=\sum _{p_n\text{is}\, n\text{_th prime number}} (-1)^n\cdot (r(p_n))^{f_2(z)}$$ Find $f_1$ & $f_2$ as much as possible simple such that $\mu _{13}(i[\Bbb Q])$ is dense in the $\mu _{13}(\Bbb C)$ and $\mu _{14}(i[\Bbb Q])$ is dense in the $\mu _{14}(\Bbb C)$. Now some theorems on these functions about density should be presented.
Let $\mu_{16}:\Bbb C\to\Bbb C$ is a function as: $$\forall z\in\Bbb C\qquad\mu _{16}(z)=\sum _{j\in\Bbb N}\sum _{p\in\Bbb P\cap (10^{j-1},10^j)} (r_j(p))^z$$ Alireza Badali 20:44, 12 October 2017 (CEST) Some notesI see, you like to densely embed natural numbers into a continuum. You may also try to embed them into the unit circle on the complex plane by $n\mapsto i^n=\cos(\log n)+i\sin(\log n)$. Then $(mn)^i=m^i n^i$. Passer By (talk) 13:14, 3 December 2017 (CET)
To your Question 3 above: the affirmative answer is given by Liouville's theorem on approximation of algebraic numbers. Passer By (talk) 19:05, 4 December 2017 (CET)
QuestionYou often mention "Formula of prime numbers". What do you mean? This is not a well-defined mathematical object, but a vague idea, with a lot of non-equivalent interpretations. See for instance [1], [2], [3], [4], [5], [6] etc. Passer By (talk) 19:24, 4 December 2017 (CET)
From the Main theoremAssume $H$ is a mapping from $(0.1,1)$ on to $(0.1,1)$ given by $H(x)=(10x)^{-1}$, and let $T=H(S)$, $T$ is an interesting set for its members because a member of $S$ like $0.a_1a_2a_3...a_n$ that $a_j$ is $j$-th digit for $j=1,2,3, ... ,n$ is basically different with ${a_1.a_2a_3a_4...a_n}^{-1}$ in $T$. Theorem: $T$ is dense in the $(0.1,1)$. Theorem: $S\times S$ is dense in the $(0.1,1)\times (0.1,1)$. Similar theorems are right for $S\times T$ & $T\times T$. Let $D=\mathbb{Q} \cap (0.1,1)$ Theorem: $D$ and $S$ are homeomorph under the Euclidean topology.
Theorem: $D$ and $T$ are homeomorph under the Euclidean topology. Let $T_1=\{10^{-n}\times a\mid a\in{T}$ for $n=0,1,2,3,...\}$. Theorem: $T_1$ is dense in the interval $(0,1)$. Assume $T_1$ is the dual of $S_1$ so the combine of both $T_1$ and $S_1$ make us so stronger. Let $W=\{±(z+a)\mid a\in{S_1\cup T_1}$ for $z=0,1,2,3,...\}$ & $G=\mathbb{Q}\setminus W$ Theorem: $W$ and also $G$ are dense in the $\mathbb{Q}$ and also $\mathbb{R}$. A guess: $\forall g\in G,\,\exists n\in\Bbb N,\,\exists w_1,w_2,w_3,...,w_n\in W\cap (g-0.5,g+0.5)$ such that $g=(w_1+w_2+w_3+...+w_n)/n$.
Alireza Badali 15:59, 30 March 2018 (CEST) Other problems$1)$ A basic system like decimal system must be existed as an axiom and another systems must be defined based on it, otherwise concept of numbers is obscure. _ Summation of digits of a natural number with consideration number of zeros in middle of number and not in its beginning (with partition by number of zeros) is related to divisors of that number particularly for prime numbers. $2)$ A wonderful definition in the mathematical philosophy (and perhaps mathematical logic too): In between the all mathematical concepts, there are some special concepts that are not logical or are in contradiction with other concepts but in the whole mathematics a changing occurred that made mathematics logical, I define this changing the curvature of mathematical concepts. $3)$ Most important question: The formula of prime numbers what impact will create on mindset of human. $4)$ About physics: The time dimension is a periodic phenomenon. Fifth dimension is thought with more speed than light. $5)$ Artificial intelligence is the ability to lying without any goofs of course only for a limited time. $6)$ Each mathematical theory is a graph or a hyper graph or a multi graph, I believe graph theory, hyper graph theory and multi graph theory are the latest mathematical theories, now I need to know whether any graph has been defined contain all natural numbers and also all concepts of number theory or that has any graph been defined contain all natural numbers as vertices with satisfying below rules for definition edges: 1) Theorem division algorithm 2) One of beauties of mathematics, Fermat's last theorem (and I guess somehow this theorem is an equivalent for induction axiom and maybe by another condition): The equation $x^n+y^n=z^n$ has no solution in nonzero integers if $n \ge 3$. $7)$ Mathematical logic is the language of Mathematics(There is not any difference between language of Mathematics and English literature or Persian literature or each other language, because both Mathematical and literary just state statements about some subjects and each one by own logical principles, of course language of Mathematics is very elementary till now compared with literature of a language and must be improved.) and Mathematical philosophy is the way of thinking about Mathematics, always there was a special relation between Mathematical philosophy and Mathematical logic, but nobody knows which one is first and basic, and there is no boundary between them, however, weakness of Mathematics is from 1) disagreement between the Mathematical philosophy and the Mathematical logic(Of course whatever this disagreement is decreased, equally Mathematics grows.) and 2) weakness of own Mathematical logic, but music can be help to removing this problem, because of everything has harmony is a music too, In principle I want say that whatever this disagreement between expression and thinking is decreased equally Mathematics grows. $8)$ The Goldbach`s conjecture is a way for finding formula of prime numbers. Each odd number is a sum of three primes (Goldbach's weak conjecture has been proved by Peruvian Mathematician, Harald Andrés Helfgott) and if each even number be a sum of two primes so from prime numbers we can make all natural numbers by summation of two or three prime numbers but from another way than previous factorization to primes (but it is higher than natural number concept as a factorization to primes.) and it means a new definition of natural numbers and with this overview to numbers Goldbach conjecture is an equivalent to induction axiom and normal definition of natural numbers and formula of prime numbers. $9)$ Find rule of this sequence $a(n)$, $a:\Bbb N \to \Bbb Q,$ by $a(n)={n \over k(n)}$ such that $k:\Bbb N \to \Bbb N$, $k(n)$ is the number of digits in $n$ so $a(1)=1,\,a(2)=2,\,...,\,a(9)=9,\,a(10)=5,\,a(11)=5.5,\,...,$ $a(100)=33.\bar 3,$ $a(101)=33.\bar 6 ,\, ... $, in principle I believe this sequence is a fundamental concept in mathematics and mathematical logic. $10)$ But how must think about infinity? by axioms? by accepted properties? by dreamy imagination? ... who knows? ... but finally must think because without infinity a consequence or result isn't artistic! and every property or proposition is a result of infinity and infinity has all properties concurrent and this is definition of infinity, something has everything! But formula of prime numbers is a definition of infinity and the best! and key of gateway of eternity is prime numbers and its formula or the same unique music! $11)$ How can it be possible that each uncountable group has some countable subgroups certainly however, cardinal isn't an algebraic concept!, about finite groups this fact follows from algebraic structures on finite sets with a natural number as a cardinal and from properties on natural numbers in number theory because the own numbers have algebraic structures but about infinite ordinal numbers problem is basically different in principle I want to know whether infinite ordinal numbers have algebraic structures as only a set of course the number of finite groups with cardinal $n$ is a specific number like $m$ but about infinite ordinal numbers the number of groups is infinite. in principle I need to know whether there is an algebraic structure on sets with infinite cardinal as an axiom so being answered some questions about infinite ordinal numbers like continuum hypothesis! so can result cardinal concept from algebraic structures of course particularly for infinite sets and this is a way for understanding infinite ordinal numbers and answering to this question answers continuum hypothesis. only in algebraic structures attention is on members of a set and this is attention to members of infinite sets and being resulted cardinal from it! in order to algebraic theories are key of understanding infinite ordinal numbers, from understanding members of a set being realized cardinal of set and this is absolutely logical so being said cardinal is a algebraic concept and a result from algebraic theories although it hasn't been mentioned in algebraic structures and attention to members even about infinite sets is attention to cardinal so answering to infinite ordinal numbers is in algebraic structures in order to from knowing algebraic properties being reached to realizing of sets. Alireza Badali 15:59, 30 March 2018 (CEST) |
A theory
Alireza Badali 08:26, 31 March 2018 (CEST)
Musictheory2math. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Musictheory2math&oldid=43041