User:Boris Tsirelson/sandbox2
[P] | Petersen, Karl; Ergodic theory, (1983), Cambridge, MR0833286, Zbl 0507.28010 |
[H1] | P.R. Halmos, "Measure theory", Van Nostrand (1950). MR0033869 Zbl 0040.16802 |
[H2] | P.R. Halmos, "Lectures on ergodic theory", Math. Soc. Japan (1956). MR0097489 Zbl 0073.09302 |
[G] | Eli Glasner, "Ergodic theory via joinings", Amer. Math. Soc. (2003). MR1958753 Zbl 1038.37002 |
[K] | Alexander S. Kechris, "Classical descriptive set theory", Springer-Verlag (1995). MR1321597 Zbl 0819.04002 |
[F] | D.H. Fremlin, "Measure theory", Torres Fremlin, Colchester. Vol. 1: 2004 MR2462519 Zbl 1162.28001; Vol. 2: 2003 MR2462280 Zbl 1165.28001; Vol. 3: 2004 MR2459668 Zbl 1165.28002; Vol. 4: 2006 MR2462372 Zbl 1166.28001 |
[S] | I.E. Segal, "Abstract probability spaces and a theorem of Kolmogoroff", Amer. J. Math. 76 (1954), 721–732. MR0063602 Zbl 0056.12301 |
[D] | L.E. Dubins, "Generalized random variables", Trans. Amer. Math. Soc. 84 (1957), 273–309. MR0085326 Zbl 0078.31003 |
[W] | David Williams, "Probability with martingales", Cambridge (1991). MR1155402 Zbl 0722.60001 |
[C] | Constantin Carathėodory, "Die homomorphieen von Somen und die Multiplikation von Inhaltsfunktionen" (German), Annali della R. Scuola Normale Superiore di Pisa (Ser. 2) 8 (1939), 105–130. MR1556820 Zbl 0021.11403 |
[HN] | P.R. Halmos, J. von Neumann, "Operator methods in classical mechanics, II", Annals of Mathematics (2) 43 (1942), 332–350. MR0006617 Zbl 0063.01888 |
$$\text{ $K$ compact}$$
\[\text{ '"`UNIQ-MathJax3-QINU`"' compact}\]
\begin{equation} \mu (B)= \sup \{\mu(K): K\subset B, \text{ '"`UNIQ-MathJax4-QINU`"' compact}\}\, \end{equation}
and having the following property: \begin{equation}\label{e:tight} \mu (B)= \sup \{\mu(K): K\subset B, \mbox{ '"`UNIQ-MathJax5-QINU`"' compact}\}\, \end{equation} (see [Sc]).
The total variation measure of a $\mathbb C$-valued measure is defined on $\mathcal{B}$ as:
\[
\abs{\mu}(B) :=\sup\left\{ \sum \abs{\mu(B_i)}: \text{$\{B_i\}\subset\mathcal{B}'"`UNIQ-MathJax8-QINU`"'B$}\right\}.
\]
In the real-valued case the above definition simplifies as
and the following identity holds: \begin{equation}\label{e:area_formula} \int_A J f (y) \, dy = \int_{\mathbb R^m} \mathcal{H}^0 (A\cap f^{-1} (\{z\}))\, d\mathcal{H}^n (z)\, . \end{equation}
Cp. with 3.2.2 of [EG]. From \eqref{e:area_formula} it is not difficult to conclude the following generalization (which also goes often under the same name):
\begin{equation}\label{ab}
E=mc^2
\end{equation}
By \eqref{ab}, it is possible. But see \eqref{ba} below:
\begin{equation}\label{ba}
E\ne mc^3,
\end{equation}
which is a pity.
Boris Tsirelson/sandbox2. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Boris_Tsirelson/sandbox2&oldid=30028