Poisson manifold
Poisson manifold
A Poisson bracket on a smooth manifold $M$ is a Lie bracket $\{~,~\}$ on the space of smooth functions $C^\infty(M)$ which, additionally, satisfies the Leibniz identity: $$ \{f,gh\}=\{f,g\}h+g\{f,h\},\qquad \forall f,g,h\in C^\infty(M).$$ The pair $(M,\{~,~\})$ is called a Poisson manifold. A smooth map between Poisson manifolds $\phi:(M,\{~,~\}_M)\to (N,\{~,~\}_N)$ such that the induced pullback map $\phi^*:C^\infty(N)\to C^\infty(M)$ is a Lie algebra morphism is called a Poisson map.
Examples of Poisson manifolds
Examples of Poisson manifolds include symplectic manifolds and linear Poisson structures.
Symplectic manifolds
If $(S,\omega)$ is any symplectic manifold and $f\in C^\infty(M)$ is a smooth function then one defines a vector field $X_f$ on $S$, called the hamiltonian vector field associated to $f$, by setting $$ i_{X_f}\omega =\mathrm{d}f. $$ The associated Poisson bracket on $S$ is then given by: $$ \{f,g\}(v):=X_f(g)=-X_g(f).$$
Linear Poisson brackets
A Poisson bracket on a vector space $V$ is called a linear Poisson bracket if the Poisson bracket of any two linear functions is again a linear function. Since linear functions form the dual vector space $V^*$ this means that a linear Poisson bracket in $V$ determines a Lie algebra structure on $\mathfrak{g}:=V^*$. Conversely, if $\mathfrak{g}$ is a finite dimensional Lie algebra then its dual vector space $V:=\mathfrak{g}^*$ carries a linear Poisson bracket which is given by the formula: $$ \{f,g\}(v):=\langle [\mathrm{d}_v f, \mathrm{d}_v g], v\rangle. $$
Heisenberg Poisson bracket
If $(S,\omega)$ is any symplectic manifold with associated Poisson bracket $\{~,~\}_S$ then one can define a new Poisson bracket on $M:=S\times\mathbb{R}$ by setting: $$ \{f,g\}_M(x,t)=\{f(\cdot,t),g(\cdot,t)\}_S(x). $$ This is called the Heisenberg Poisson bracket. Actually the same construction can be performed replacing $S$ by any Poisson manifold.
Hamiltonian Systems
On a Poisson manifold $(M,\{~,~\})$, any smooth function $h\in C^\infty(M)$ determines a hamiltonian vector field $X_h$ by setting: $$ X_h(f):=\{h,f\}.$$ Note that for a symplectic manifold, viewed as a Poisson manifold, this definition is consistent. The flow $\Phi^t_{X_h}$ of a hamiltonian vector field is by Poisson diffeomorphisms and preserves the hamiltonian function $h$: $$ f\circ \Phi^t_{X_h}=f. $$
Constructions with Poisson manifolds
There are many constructions which produce new Poisson manifolds out of old ones.
Poisson submanifolds
Let $(M,\{~,~\})$ be a Poisson manifold and suppose $N\subset M$ is a submanifold with the property that for any $f\in C^infty(M)$ the hamiltonian vector field $X_f$ is tangent to $N$. Then we have an induced Poisson bracket on $N$ defined by: $$ \{f,g\}_N=\{F,G\}|_N, \forall f,g\in C^\infty(N),$$ where $F,G\in C^\infty(M)$ are any extensions of $f$ and $g$ to $M$: $F|_N=f$ and $G|_N=g$.
Product of Poisson manifolds
If $(M,\{~,~\}_M)$ and $(N,\{~,~\}_N)$ are two Poisson manifolds then their product is the Poisson manifold $(M\times N,\{~,~\}_{M\times N})$ where the Poisson bracket is defined by: $$ \{f,g\}_{M\times N}(x,y):=\{f(\cdot,y),g(\cdot,y)\}_M(x)+\{f(x,\cdot),g(x,\cdot)\}_N(y), \qquad \forall (x,y)\in M\times N.$$ This is the unique Poisson bracket for which the projections $\pi_M:M\times N\to M$ and $\pi_N:M\times N\to N$ are Poisson maps.
Poisson quotients
If $(M,\{~,~\}_M)$ is a Poisson manifold and $G\times M\to M$ is a smooth Lie group action by Poisson diffeomorphisms then the Poisson bracket of any two $G$-invariant functions $f,g\in C^\infty(M)^G$ is again a $G$-invariant function: $\{f,g\}\in C^\infty(M)^G$. When the action is free and proper, we have that $M/G$ is a smooth manifold and $C^\infty(M/G)\equiv C^\infty(M)^G$$. It follows that $M/G$ carries a natural Poisson bracket $\{~,~\}_{M/G}$. It is the unique Poisson bracket for which the quotient map $q:M\to M/G$ is a Poisson map.
Connected sums
Poisson manifold. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Poisson_manifold&oldid=19528