Namespaces
Variants
Actions

Difference between revisions of "P-Sasakian manifold"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (texified)
Line 1: Line 1:
 
A manifold similar to a [[Sasakian manifold|Sasakian manifold]]. However, by its topological and geometric properties, such a manifold is closely related to a product manifold (unlike the Sasakian manifold, which is related to a [[Complex manifold|complex manifold]]).
 
A manifold similar to a [[Sasakian manifold|Sasakian manifold]]. However, by its topological and geometric properties, such a manifold is closely related to a product manifold (unlike the Sasakian manifold, which is related to a [[Complex manifold|complex manifold]]).
  
A [[Riemannian manifold|Riemannian manifold]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p1200201.png" /> endowed with an endomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p1200202.png" /> of the tangent bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p1200203.png" />, a vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p1200204.png" /> and a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p1200205.png" />-form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p1200206.png" /> which satisfy the conditions
+
A [[Riemannian manifold|Riemannian manifold]] $(M,g)$ endowed with an endomorphism $\phi$ of the tangent bundle $TM$, a vector field $\xi$ and a $1$-form $\eta$ which satisfy the conditions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p1200207.png" /></td> </tr></table>
+
\begin{equation}\phi^2=I-\eta\bigotimes\xi,\\\eta(\xi)=1,\phi\xi=0,\eta\circ\phi=0,d\eta=0,g(\phi X,\phi Y)=h(X,Y)-\eta(X)\eta(Y),\\(\nabla_X\phi)Y=\{-g(X,Y)+2\eta(X)\eta(Y)\}\xi-\eta(Y)X,\end{equation}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p1200208.png" /></td> </tr></table>
+
for any vector fields $X$, $Y$ tangent to $M$, where $I$ and $\nabla$ denote the identity transformation on $TM$ and the [[Riemannian connection|Riemannian connection]] with respect to $g$, respectively, is called a P-Sasakian manifold [[#References|[a3]]].
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p1200209.png" /></td> </tr></table>
+
The structure group of the [[Tangent bundle|tangent bundle]] $TM$ is reducible to $O(h)\times O(n-h-1)\times1$, where $h$ is the multiplicity of the eigenvalue $1$ of the characteristic equation of $\phi$ and $n=\text{dim}M$.
 
 
for any vector fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002011.png" /> tangent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002012.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002014.png" /> denote the identity transformation on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002015.png" /> and the [[Riemannian connection|Riemannian connection]] with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002016.png" />, respectively, is called a P-Sasakian manifold [[#References|[a3]]].
 
 
 
The structure group of the [[Tangent bundle|tangent bundle]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002017.png" /> is reducible to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002018.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002019.png" /> is the multiplicity of the eigenvalue <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002020.png" /> of the characteristic equation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002022.png" />.
 
  
 
==Examples.==
 
==Examples.==
  
 +
The hyperbolic $n$-space form $H^n$. As a model, one can take the upper half-space $x^n>0$ in the sense of Poincaré's representation (cf. also [[Poincaré model|Poincaré model]]). The metric of $H^n$ is given by
  
The hyperbolic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002023.png" />-space form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002024.png" />. As a model, one can take the upper half-space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002025.png" /> in the sense of Poincaré's representation (cf. also [[Poincaré model|Poincaré model]]). The metric of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002026.png" /> is given by
+
\begin{equation}g_{ij}(x)=(x^n)^{-2}\delta_{ij}\end{equation}
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002027.png" /></td> </tr></table>
 
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002028.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002029.png" />. The characteristic vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002030.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002031.png" /> for any vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002032.png" /> tangent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002033.png" />.
+
where $x\in H^n$, $i,j=1,...,n$. The characteristic vector field $\xi=(0,...,0,x^n)$, and $\phi X=\nabla_X\xi$ for any vector field $X$ tangent to $H^n$.
  
The warped product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002034.png" /> of a real line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002035.png" /> and an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002036.png" />-dimensional flat torus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002037.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002038.png" />.
+
The warped product $\textbf{R}\times_f T^{n-1}$ of a real line $\textbf{R}$ and an $(n-1)$-dimensional flat torus $T^{n-1}$, with $f(x)=e^{-2x}$.
  
 
==Properties.==
 
==Properties.==
If a P-Sasakian manifold is a space form (cf. [[Space forms|Space forms]]), then its [[Sectional curvature|sectional curvature]] is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002039.png" /> [[#References|[a2]]].
+
If a P-Sasakian manifold is a space form (cf. [[Space forms|Space forms]]), then its [[Sectional curvature|sectional curvature]] is $-1$ [[#References|[a2]]].
  
The characteristic vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002040.png" /> of a P-Sasakian manifold is an exterior concurrent vector field [[#References|[a2]]].
+
The characteristic vector field $\xi$ of a P-Sasakian manifold is an exterior concurrent vector field [[#References|[a2]]].
  
On a compact orientable P-Sasakian manifold, the characteristic vector field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002041.png" /> is harmonic [[#References|[a5]]].
+
On a compact orientable P-Sasakian manifold, the characteristic vector field $\xi$ is harmonic [[#References|[a5]]].
  
A projectively flat P-Sasakian manifold is a hyperbolic space form of constant curvature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002042.png" /> [[#References|[a5]]].
+
A projectively flat P-Sasakian manifold is a hyperbolic space form of constant curvature $-1$ [[#References|[a5]]].
  
For the [[De Rham cohomology|de Rham cohomology]] of a P-Sasakian manifold, the following result is known [[#References|[a1]]]: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002043.png" /> be a compact P-Sasakian manifold such that the distribution annihilated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002044.png" /> is minimal. Then the first [[Betti number|Betti number]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p120/p120020/p12002045.png" /> does not vanish.
+
For the [[De Rham cohomology|de Rham cohomology]] of a P-Sasakian manifold, the following result is known [[#References|[a1]]]: Let $M$ be a compact P-Sasakian manifold such that the distribution annihilated by $\eta$ is minimal. Then the first [[Betti number|Betti number]] $b_1$ does not vanish.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  I. Mihai,  R. Rosca,  L. Verstraelen,  "Some aspects of the differential geometry of vector fields" , ''PADGE'' , '''2''' , KU Leuven&amp;KU Brussel  (1996)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R. Rosca,  "On para Sasakian manifolds"  ''Rend. Sem. Mat. Messina'' , '''1'''  (1991)  pp. 201–216</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  I. Sato,  "On a structure similar to the almost contact structure I; II"  ''Tensor N.S.'' , '''30/31'''  (1976/77)  pp. 219–224; 199–205</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  I. Sato,  "On a Riemannian manifold admitting a certain vector field"  ''Kodai Math. Sem. Rep.'' , '''29'''  (1978)  pp. 250–260</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  I. Sato,  K. Matsumoto,  "On P-Sasakian manifolds satisfying certain conditions"  ''Tensor N.S.'' , '''33'''  (1979)  pp. 173–178</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  I. Mihai,  R. Rosca,  L. Verstraelen,  "Some aspects of the differential geometry of vector fields" , ''PADGE'' , '''2''' , KU Leuven&amp;KU Brussel  (1996)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R. Rosca,  "On para Sasakian manifolds"  ''Rend. Sem. Mat. Messina'' , '''1'''  (1991)  pp. 201–216</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  I. Sato,  "On a structure similar to the almost contact structure I; II"  ''Tensor N.S.'' , '''30/31'''  (1976/77)  pp. 219–224; 199–205</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  I. Sato,  "On a Riemannian manifold admitting a certain vector field"  ''Kodai Math. Sem. Rep.'' , '''29'''  (1978)  pp. 250–260</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  I. Sato,  K. Matsumoto,  "On P-Sasakian manifolds satisfying certain conditions"  ''Tensor N.S.'' , '''33'''  (1979)  pp. 173–178</TD></TR></table>

Revision as of 16:43, 13 January 2021

A manifold similar to a Sasakian manifold. However, by its topological and geometric properties, such a manifold is closely related to a product manifold (unlike the Sasakian manifold, which is related to a complex manifold).

A Riemannian manifold $(M,g)$ endowed with an endomorphism $\phi$ of the tangent bundle $TM$, a vector field $\xi$ and a $1$-form $\eta$ which satisfy the conditions

\begin{equation}\phi^2=I-\eta\bigotimes\xi,\\\eta(\xi)=1,\phi\xi=0,\eta\circ\phi=0,d\eta=0,g(\phi X,\phi Y)=h(X,Y)-\eta(X)\eta(Y),\\(\nabla_X\phi)Y=\{-g(X,Y)+2\eta(X)\eta(Y)\}\xi-\eta(Y)X,\end{equation}

for any vector fields $X$, $Y$ tangent to $M$, where $I$ and $\nabla$ denote the identity transformation on $TM$ and the Riemannian connection with respect to $g$, respectively, is called a P-Sasakian manifold [a3].

The structure group of the tangent bundle $TM$ is reducible to $O(h)\times O(n-h-1)\times1$, where $h$ is the multiplicity of the eigenvalue $1$ of the characteristic equation of $\phi$ and $n=\text{dim}M$.

Examples.

The hyperbolic $n$-space form $H^n$. As a model, one can take the upper half-space $x^n>0$ in the sense of Poincaré's representation (cf. also Poincaré model). The metric of $H^n$ is given by

\begin{equation}g_{ij}(x)=(x^n)^{-2}\delta_{ij}\end{equation}

where $x\in H^n$, $i,j=1,...,n$. The characteristic vector field $\xi=(0,...,0,x^n)$, and $\phi X=\nabla_X\xi$ for any vector field $X$ tangent to $H^n$.

The warped product $\textbf{R}\times_f T^{n-1}$ of a real line $\textbf{R}$ and an $(n-1)$-dimensional flat torus $T^{n-1}$, with $f(x)=e^{-2x}$.

Properties.

If a P-Sasakian manifold is a space form (cf. Space forms), then its sectional curvature is $-1$ [a2].

The characteristic vector field $\xi$ of a P-Sasakian manifold is an exterior concurrent vector field [a2].

On a compact orientable P-Sasakian manifold, the characteristic vector field $\xi$ is harmonic [a5].

A projectively flat P-Sasakian manifold is a hyperbolic space form of constant curvature $-1$ [a5].

For the de Rham cohomology of a P-Sasakian manifold, the following result is known [a1]: Let $M$ be a compact P-Sasakian manifold such that the distribution annihilated by $\eta$ is minimal. Then the first Betti number $b_1$ does not vanish.

References

[a1] I. Mihai, R. Rosca, L. Verstraelen, "Some aspects of the differential geometry of vector fields" , PADGE , 2 , KU Leuven&KU Brussel (1996)
[a2] R. Rosca, "On para Sasakian manifolds" Rend. Sem. Mat. Messina , 1 (1991) pp. 201–216
[a3] I. Sato, "On a structure similar to the almost contact structure I; II" Tensor N.S. , 30/31 (1976/77) pp. 219–224; 199–205
[a4] I. Sato, "On a Riemannian manifold admitting a certain vector field" Kodai Math. Sem. Rep. , 29 (1978) pp. 250–260
[a5] I. Sato, K. Matsumoto, "On P-Sasakian manifolds satisfying certain conditions" Tensor N.S. , 33 (1979) pp. 173–178
How to Cite This Entry:
P-Sasakian manifold. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=P-Sasakian_manifold&oldid=51320
This article was adapted from an original article by I. Mihai (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article