Difference between revisions of "Stiefel manifold"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
Ulf Rehmann (talk | contribs) m (Undo revision 48838 by Ulf Rehmann (talk)) Tag: Undo |
||
Line 1: | Line 1: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
''(real)'' | ''(real)'' | ||
− | The manifold | + | The manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s0877701.png" /> of orthonormal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s0877702.png" />-frames in an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s0877703.png" />-dimensional Euclidean space. In a similar way one defines a complex Stiefel manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s0877704.png" /> and a quaternion Stiefel manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s0877705.png" />. Stiefel manifolds are compact real-analytic manifolds, and also homogeneous spaces of the classical compact groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s0877706.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s0877707.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s0877708.png" />, respectively. In particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s0877709.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777011.png" /> are the spheres, the Stiefel manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777012.png" /> is the manifold of unit vectors tangent to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777013.png" />, the Stiefel manifolds <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777016.png" /> are identified with the groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777019.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777020.png" /> — with the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777021.png" />. Sometimes non-compact Stiefel manifolds, consisting of all possible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777022.png" />-frames in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777024.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777025.png" />, are considered. |
− | of orthonormal | ||
− | frames in an | ||
− | dimensional Euclidean space. In a similar way one defines a complex Stiefel manifold | ||
− | and a quaternion Stiefel manifold | ||
− | Stiefel manifolds are compact real-analytic manifolds, and also homogeneous spaces of the classical compact groups | ||
− | |||
− | and | ||
− | respectively. In particular, | ||
− | |||
− | |||
− | are the spheres, the Stiefel manifold | ||
− | is the manifold of unit vectors tangent to | ||
− | the Stiefel manifolds | ||
− | |||
− | |||
− | are identified with the groups | ||
− | |||
− | |||
− | and | ||
− | with the group | ||
− | Sometimes non-compact Stiefel manifolds, consisting of all possible | ||
− | frames in | ||
− | |||
− | or | ||
− | are considered. | ||
These manifolds were introduced by E. Stiefel [[#References|[1]]] in connection with systems of linearly independent vector fields on smooth manifolds. First started in [[#References|[1]]], studies on the topology of Stiefel manifolds led later to the complete calculation of their cohomology rings (see [[#References|[2]]], [[#References|[3]]]). In particular, | These manifolds were introduced by E. Stiefel [[#References|[1]]] in connection with systems of linearly independent vector fields on smooth manifolds. First started in [[#References|[1]]], studies on the topology of Stiefel manifolds led later to the complete calculation of their cohomology rings (see [[#References|[2]]], [[#References|[3]]]). In particular, | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777026.png" /></td> </tr></table> | |
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777027.png" /></td> </tr></table> | |
− | |||
− | |||
− | + | <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777028.png" /> is a commutative algebra with generators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777029.png" /> and relations | |
− | is a commutative algebra with generators | ||
− | and relations | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777030.png" /></td> </tr></table> | |
− | |||
− | (everywhere above, | + | (everywhere above, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777031.png" /> denotes an element of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777032.png" />). Real, complex and quaternion Stiefel manifolds are aspherical in dimensions not exceeding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777035.png" />, respectively. Moreover, |
− | denotes an element of order | ||
− | Real, complex and quaternion Stiefel manifolds are aspherical in dimensions not exceeding | ||
− | |||
− | and | ||
− | respectively. Moreover, | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777036.png" /></td> </tr></table> | |
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777037.png" /></td> </tr></table> | |
− | |||
− | |||
The computation of other homotopy groups of Stiefel manifolds is discussed in [[#References|[5]]]. | The computation of other homotopy groups of Stiefel manifolds is discussed in [[#References|[5]]]. | ||
Line 75: | Line 23: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Stiefel, "Richtungsfelder und Fernparallelismus in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777038.png" />-dimensionalen Mannigfaltigkeiten" ''Comm. Math. Helv.'' , '''8''' : 4 (1935–1936) pp. 305–353</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Borel, , ''Fibre spaces and their applications'' , Moscow (1958) pp. 163–246 (In Russian; translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N.E. Steenrod, D.B.A. Epstein, "Cohomology operations" , Princeton Univ. Press (1962)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.A. Rokhlin, D.B. Fuks, "Beginner's course in topology. Geometric chapters" , Springer (1984) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> ''Itogi Nauk. Algebra. Topol. Geom.'' (1971) pp. 71–122</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E. Stiefel, "Richtungsfelder und Fernparallelismus in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777038.png" />-dimensionalen Mannigfaltigkeiten" ''Comm. Math. Helv.'' , '''8''' : 4 (1935–1936) pp. 305–353</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Borel, , ''Fibre spaces and their applications'' , Moscow (1958) pp. 163–246 (In Russian; translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N.E. Steenrod, D.B.A. Epstein, "Cohomology operations" , Princeton Univ. Press (1962)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.A. Rokhlin, D.B. Fuks, "Beginner's course in topology. Geometric chapters" , Springer (1984) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> ''Itogi Nauk. Algebra. Topol. Geom.'' (1971) pp. 71–122</TD></TR></table> | ||
+ | |||
+ | |||
====Comments==== | ====Comments==== | ||
For homotopy groups of Stiefel manifolds see also . | For homotopy groups of Stiefel manifolds see also . | ||
− | Another (and better) frequently used notation for the Stiefel manifolds | + | Another (and better) frequently used notation for the Stiefel manifolds <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777039.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777040.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777041.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777042.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777043.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777044.png" />, generalizing to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777045.png" /> where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777046.png" /> is an appropriate vector space. |
− | |||
− | and | ||
− | is | ||
− | |||
− | |||
− | generalizing to | ||
− | where | ||
− | is an appropriate vector space. | ||
As homogeneous spaces these Stiefel manifolds are equal to, respectively, | As homogeneous spaces these Stiefel manifolds are equal to, respectively, | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777047.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777048.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777049.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | The natural quotient mapping | + | The natural quotient mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777050.png" />, etc., assigns to an orthogonal, etc., matrix the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777051.png" />-frame consisting of its first <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777052.png" /> columns. |
− | etc., assigns to an orthogonal, etc., matrix the | ||
− | frame consisting of its first | ||
− | columns. | ||
There are canonical mappings from the Stiefel manifolds to the Grassmann manifolds (cf. [[Grassmann manifold|Grassmann manifold]]): | There are canonical mappings from the Stiefel manifolds to the Grassmann manifolds (cf. [[Grassmann manifold|Grassmann manifold]]): | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777053.png" /></td> </tr></table> | |
− | |||
− | |||
− | which assign to a | + | which assign to a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777054.png" />-frame the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777055.png" />-dimensional subspace spanned by that frame. This exhibits the Grassmann manifolds as homogeneous spaces: |
− | frame the | ||
− | dimensional subspace spanned by that frame. This exhibits the Grassmann manifolds as homogeneous spaces: | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777056.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | |||
etc. | etc. | ||
− | Given an | + | Given an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777057.png" />-dimensional (real, complex, quaternionic) [[Vector bundle|vector bundle]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777058.png" /> over a space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777059.png" />, the associated Stiefel bundles <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777060.png" /> have the fibres <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777061.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777062.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777063.png" /> is the fibre of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777064.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777065.png" />. Similarly one has the Grassmann bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777066.png" />, whose fibre over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777067.png" /> is the Grassmann manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777068.png" />. |
− | dimensional (real, complex, quaternionic) [[Vector bundle|vector bundle]] | ||
− | over a space | ||
− | the associated Stiefel bundles | ||
− | have the fibres | ||
− | over | ||
− | where | ||
− | is the fibre of | ||
− | over | ||
− | Similarly one has the Grassmann bundle | ||
− | whose fibre over | ||
− | is the Grassmann manifold | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D. Husemoller, "Fibre bundles" , McGraw-Hill (1966)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Dieudonné, "A history of algebraic and differential topology 1900–1960" , Birkhäuser (1989)</TD></TR><TR><TD valign="top">[a3a]</TD> <TD valign="top"> G.F. Paechter, "The groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777069.png" />" ''Quarterly J. Math.'' , '''7''' (1956) pp. 249–268</TD></TR><TR><TD valign="top">[a3b]</TD> <TD valign="top"> G.F. Paechter, "The groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777070.png" />" ''Quarterly J. Math.'' , '''9''' (1958) pp. 8–27</TD></TR><TR><TD valign="top">[a3c]</TD> <TD valign="top"> G.F. Paechter, "The groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777071.png" />" ''Quarterly J. Math.'' , '''10''' (1959) pp. 17–37; 241–260</TD></TR><TR><TD valign="top">[a3d]</TD> <TD valign="top"> G.F. Paechter, "The groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777072.png" />" ''Quarterly J. Math.'' , '''11''' (1960) pp. 1–16</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> M.W. Hirsch, "Differential topology" , Springer (1976) pp. 4, 78</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> J.W. Milnor, J.D. Stasheff, "Characteristic classes" , Princeton Univ. Press (1974)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D. Husemoller, "Fibre bundles" , McGraw-Hill (1966)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Dieudonné, "A history of algebraic and differential topology 1900–1960" , Birkhäuser (1989)</TD></TR><TR><TD valign="top">[a3a]</TD> <TD valign="top"> G.F. Paechter, "The groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777069.png" />" ''Quarterly J. Math.'' , '''7''' (1956) pp. 249–268</TD></TR><TR><TD valign="top">[a3b]</TD> <TD valign="top"> G.F. Paechter, "The groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777070.png" />" ''Quarterly J. Math.'' , '''9''' (1958) pp. 8–27</TD></TR><TR><TD valign="top">[a3c]</TD> <TD valign="top"> G.F. Paechter, "The groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777071.png" />" ''Quarterly J. Math.'' , '''10''' (1959) pp. 17–37; 241–260</TD></TR><TR><TD valign="top">[a3d]</TD> <TD valign="top"> G.F. Paechter, "The groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s087/s087770/s08777072.png" />" ''Quarterly J. Math.'' , '''11''' (1960) pp. 1–16</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> M.W. Hirsch, "Differential topology" , Springer (1976) pp. 4, 78</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> J.W. Milnor, J.D. Stasheff, "Characteristic classes" , Princeton Univ. Press (1974)</TD></TR></table> |
Revision as of 14:53, 7 June 2020
(real)
The manifold of orthonormal -frames in an -dimensional Euclidean space. In a similar way one defines a complex Stiefel manifold and a quaternion Stiefel manifold . Stiefel manifolds are compact real-analytic manifolds, and also homogeneous spaces of the classical compact groups , and , respectively. In particular, , , are the spheres, the Stiefel manifold is the manifold of unit vectors tangent to , the Stiefel manifolds , , are identified with the groups , , , and — with the group . Sometimes non-compact Stiefel manifolds, consisting of all possible -frames in , or , are considered.
These manifolds were introduced by E. Stiefel [1] in connection with systems of linearly independent vector fields on smooth manifolds. First started in [1], studies on the topology of Stiefel manifolds led later to the complete calculation of their cohomology rings (see [2], [3]). In particular,
is a commutative algebra with generators and relations
(everywhere above, denotes an element of order ). Real, complex and quaternion Stiefel manifolds are aspherical in dimensions not exceeding , and , respectively. Moreover,
The computation of other homotopy groups of Stiefel manifolds is discussed in [5].
References
[1] | E. Stiefel, "Richtungsfelder und Fernparallelismus in -dimensionalen Mannigfaltigkeiten" Comm. Math. Helv. , 8 : 4 (1935–1936) pp. 305–353 |
[2] | A. Borel, , Fibre spaces and their applications , Moscow (1958) pp. 163–246 (In Russian; translated from French) |
[3] | N.E. Steenrod, D.B.A. Epstein, "Cohomology operations" , Princeton Univ. Press (1962) |
[4] | V.A. Rokhlin, D.B. Fuks, "Beginner's course in topology. Geometric chapters" , Springer (1984) (Translated from Russian) |
[5] | Itogi Nauk. Algebra. Topol. Geom. (1971) pp. 71–122 |
Comments
For homotopy groups of Stiefel manifolds see also .
Another (and better) frequently used notation for the Stiefel manifolds , and is , , , generalizing to where is an appropriate vector space.
As homogeneous spaces these Stiefel manifolds are equal to, respectively,
The natural quotient mapping , etc., assigns to an orthogonal, etc., matrix the -frame consisting of its first columns.
There are canonical mappings from the Stiefel manifolds to the Grassmann manifolds (cf. Grassmann manifold):
which assign to a -frame the -dimensional subspace spanned by that frame. This exhibits the Grassmann manifolds as homogeneous spaces:
etc.
Given an -dimensional (real, complex, quaternionic) vector bundle over a space , the associated Stiefel bundles have the fibres over , where is the fibre of over . Similarly one has the Grassmann bundle , whose fibre over is the Grassmann manifold .
References
[a1] | D. Husemoller, "Fibre bundles" , McGraw-Hill (1966) |
[a2] | J. Dieudonné, "A history of algebraic and differential topology 1900–1960" , Birkhäuser (1989) |
[a3a] | G.F. Paechter, "The groups " Quarterly J. Math. , 7 (1956) pp. 249–268 |
[a3b] | G.F. Paechter, "The groups " Quarterly J. Math. , 9 (1958) pp. 8–27 |
[a3c] | G.F. Paechter, "The groups " Quarterly J. Math. , 10 (1959) pp. 17–37; 241–260 |
[a3d] | G.F. Paechter, "The groups " Quarterly J. Math. , 11 (1960) pp. 1–16 |
[a4] | M.W. Hirsch, "Differential topology" , Springer (1976) pp. 4, 78 |
[a5] | J.W. Milnor, J.D. Stasheff, "Characteristic classes" , Princeton Univ. Press (1974) |
Stiefel manifold. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Stiefel_manifold&oldid=49446