Difference between revisions of "Rényi test"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
Ulf Rehmann (talk | contribs) m (Undo revision 48598 by Ulf Rehmann (talk)) Tag: Undo |
||
Line 1: | Line 1: | ||
− | < | + | A [[Statistical test|statistical test]] used for testing a simple non-parametric hypothesis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r0812701.png" /> (cf. [[Non-parametric methods in statistics|Non-parametric methods in statistics]]), according to which independent identically-distributed random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r0812702.png" /> have a given continuous distribution function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r0812703.png" />, against the alternatives: |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r0812704.png" /></td> </tr></table> | |
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r0812705.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r0812706.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | + | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r0812707.png" /> is the empirical distribution function constructed with respect to the sample <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r0812708.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r0812709.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127010.png" />, is a weight function. If | |
− | |||
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127011.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | where | + | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127012.png" /> is any fixed number from the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127013.png" />, then the Rényi test, which was intended for testing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127014.png" /> against the alternatives <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127017.png" />, is based on the Rényi statistics |
− | is the | ||
− | |||
− | |||
− | is | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127018.png" /></td> </tr></table> | |
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127019.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127020.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127021.png" /></td> </tr></table> | |
− | = | ||
− | |||
− | |||
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127022.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127023.png" /></td> </tr></table> | |
− | = | ||
− | |||
− | |||
− | |||
− | |||
− | + | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127024.png" /> are the members of the series of order statistics | |
− | |||
− | |||
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127025.png" /></td> </tr></table> | |
− | = | ||
− | |||
− | |||
− | + | constructed with respect to the observations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127026.png" />. | |
− | |||
− | + | The statistics <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127028.png" /> satisfy the same probability law and, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127029.png" />, then | |
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127030.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table> | |
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127031.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table> | |
− | |||
− | |||
− | |||
− | + | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127032.png" /> is the distribution function of the standard normal law (cf. [[Normal distribution|Normal distribution]]) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127033.png" /> is the Rényi distribution function, | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127034.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127035.png" />, then | |
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127036.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | It follows from (1) and (2) that for larger values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127037.png" /> the following approximate values may be used to calculate the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127038.png" />-percent critical values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127039.png" /> for the statistics <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127040.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127041.png" />: | |
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127042.png" /></td> </tr></table> | |
− | |||
− | + | respectively, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127044.png" /> are the inverse functions to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127045.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127046.png" />, respectively. This means that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127047.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127048.png" />. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | Furthermore, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127049.png" />, then it is advisable to use the approximate equation | |
− | the | ||
− | |||
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127050.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | when calculating the values of the Rényi distribution function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127051.png" />; its degree of error does not exceed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127052.png" />. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | when calculating the values of the Rényi distribution function | ||
− | its degree of error does not exceed | ||
In addition to the Rényi test discused here, there are also similar tests, corresponding to the weight function | In addition to the Rényi test discused here, there are also similar tests, corresponding to the weight function | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127053.png" /></td> </tr></table> | |
− | |||
− | where | + | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127054.png" /> is any fixed number from the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081270/r08127055.png" />. |
− | is any fixed number from the interval | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Rényi, "On the theory of order statistics" ''Acta Math. Acad. Sci. Hungar.'' , '''4''' (1953) pp. 191–231</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. Hájek, Z. Sidák, "Theory of rank tests" , Acad. Press (1967)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics" , ''Libr. math. tables'' , '''46''' , Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Rényi, "On the theory of order statistics" ''Acta Math. Acad. Sci. Hungar.'' , '''4''' (1953) pp. 191–231</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J. Hájek, Z. Sidák, "Theory of rank tests" , Acad. Press (1967)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics" , ''Libr. math. tables'' , '''46''' , Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova)</TD></TR></table> |
Revision as of 14:53, 7 June 2020
A statistical test used for testing a simple non-parametric hypothesis (cf. Non-parametric methods in statistics), according to which independent identically-distributed random variables have a given continuous distribution function , against the alternatives:
where is the empirical distribution function constructed with respect to the sample and , , is a weight function. If
where is any fixed number from the interval , then the Rényi test, which was intended for testing against the alternatives , , , is based on the Rényi statistics
where are the members of the series of order statistics
constructed with respect to the observations .
The statistics and satisfy the same probability law and, if , then
(1) |
(2) |
where is the distribution function of the standard normal law (cf. Normal distribution) and is the Rényi distribution function,
If , then
It follows from (1) and (2) that for larger values of the following approximate values may be used to calculate the -percent critical values for the statistics and :
respectively, where and are the inverse functions to and , respectively. This means that if , then .
Furthermore, if , then it is advisable to use the approximate equation
when calculating the values of the Rényi distribution function ; its degree of error does not exceed .
In addition to the Rényi test discused here, there are also similar tests, corresponding to the weight function
where is any fixed number from the interval .
References
[1] | A. Rényi, "On the theory of order statistics" Acta Math. Acad. Sci. Hungar. , 4 (1953) pp. 191–231 |
[2] | J. Hájek, Z. Sidák, "Theory of rank tests" , Acad. Press (1967) |
[3] | L.N. Bol'shev, N.V. Smirnov, "Tables of mathematical statistics" , Libr. math. tables , 46 , Nauka (1983) (In Russian) (Processed by L.S. Bark and E.S. Kedrova) |
Rényi test. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=R%C3%A9nyi_test&oldid=49414