Difference between revisions of "Reflection"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
Ulf Rehmann (talk | contribs) m (Undo revision 48468 by Ulf Rehmann (talk)) Tag: Undo |
||
Line 1: | Line 1: | ||
− | < | + | A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r0805101.png" /> of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r0805102.png" />-dimensional simply-connected space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r0805103.png" /> of constant curvature (i.e. of a Euclidean or affine space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r0805104.png" />, a sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r0805105.png" /> or a hyperbolic (Lobachevskii) space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r0805106.png" />) the set of fixed points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r0805107.png" /> of which is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r0805108.png" />-dimensional hyperplane. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r0805109.png" /> is called the mirror of the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051010.png" />; in other words, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051011.png" /> is a reflection in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051012.png" />. Every reflection is uniquely defined by its mirror. The order (period) of a reflection in the group of all motions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051013.png" /> is equal to 2, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051014.png" />. |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | The Euclidean or affine space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051015.png" /> can be identified with the vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051016.png" /> of its parallel translations. The mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051017.png" /> is then a linear orthogonal transformation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051018.png" /> with matrix | |
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051019.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | in a certain orthonormal basis, and conversely, every orthogonal transformation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051020.png" /> with this matrix in a certain orthonormal basis is a reflection in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051021.png" />. More generally, a linear transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051022.png" /> of an arbitrary vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051023.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051024.png" />, of characteristic other than 2, is called a linear reflection if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051025.png" /> and if the rank of the transformation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051026.png" /> is equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051027.png" />. In this case, the subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051028.png" /> of fixed vectors relative to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051029.png" /> has codimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051030.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051031.png" />, the subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051032.png" /> of eigenvectors with eigenvalue <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051033.png" /> has dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051034.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051035.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051036.png" /> is a linear form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051037.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051038.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051039.png" />, and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051040.png" /> is an element such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051041.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051042.png" /> is defined by the formula | |
− | |||
− | of | ||
− | is | ||
− | with | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051043.png" /></td> </tr></table> | |
− | |||
− | + | The description of a reflection in an arbitrary simply-connected space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051044.png" /> of constant curvature can be reduced to the description of linear reflections in the following way. Every such space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051045.png" /> can be imbedded as a hypersurface in a real <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051046.png" />-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051047.png" /> in such a way that the motions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051048.png" /> can be extended to linear transformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051049.png" />. Moreover, in a suitable coordinate system in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051050.png" /> the equations of the hypersurface can be written in the following way: | |
− | |||
− | |||
− | |||
− | |||
− | of | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | in | ||
− | the | ||
− | of | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051051.png" /></td> </tr></table> | |
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051052.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051053.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | + | Every hypersurface in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051054.png" />, given this imbedding, is the intersection with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051055.png" /> of a certain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051056.png" />-dimensional subspace in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051057.png" />, and every reflection in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051058.png" /> is induced by a linear reflection in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051059.png" />. | |
− | |||
− | |||
− | + | If, in the definition of a linear reflection, the requirement that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051060.png" /> is dropped, then the more general concept of a pseudo-reflection is obtained. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051061.png" /> is the field of complex numbers and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051062.png" /> is a pseudo-reflection of finite order (not necessarily equal to 2), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080510/r08051063.png" /> is called a unitary reflection. Every biholomorphic automorphism of finite order of a bounded symmetric domain in a complex space the set of fixed points of which has a complex codimension 1 is also called a unitary reflection. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | If, in the definition of a linear reflection, the requirement that | ||
− | is dropped, then the more general concept of a pseudo-reflection is obtained. If | ||
− | is the field of complex numbers and | ||
− | is a pseudo-reflection of finite order (not necessarily equal to 2), then | ||
− | is called a unitary reflection. Every biholomorphic automorphism of finite order of a bounded symmetric domain in a complex space the set of fixed points of which has a complex codimension 1 is also called a unitary reflection. | ||
See also [[Reflection group|Reflection group]]. | See also [[Reflection group|Reflection group]]. | ||
Line 104: | Line 25: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Groupes et algèbres de Lie" , ''Eléments de mathématiques'' , Hermann (1968) pp. Chapts. 4–6</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.B. Vinberg, "Discrete linear groups generated by reflections" ''Math. USSR Izv.'' , '''35''' : 5 (1971) pp. 1083–1119 ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''35''' : 5 (1971) pp. 1072–1112</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E. Gottschling, "Reflections in bounded symmetric domains" ''Comm. Pure Appl. Math.'' , '''22''' (1969) pp. 693–714</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> B.A. Rozenfel'd, "Non-Euclidean spaces" , Moscow (1969) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Groupes et algèbres de Lie" , ''Eléments de mathématiques'' , Hermann (1968) pp. Chapts. 4–6</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.B. Vinberg, "Discrete linear groups generated by reflections" ''Math. USSR Izv.'' , '''35''' : 5 (1971) pp. 1083–1119 ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''35''' : 5 (1971) pp. 1072–1112</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> E. Gottschling, "Reflections in bounded symmetric domains" ''Comm. Pure Appl. Math.'' , '''22''' (1969) pp. 693–714</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> B.A. Rozenfel'd, "Non-Euclidean spaces" , Moscow (1969) (In Russian)</TD></TR></table> | ||
+ | |||
+ | |||
====Comments==== | ====Comments==== |
Revision as of 14:53, 7 June 2020
A mapping of an -dimensional simply-connected space of constant curvature (i.e. of a Euclidean or affine space , a sphere or a hyperbolic (Lobachevskii) space ) the set of fixed points of which is an -dimensional hyperplane. The set is called the mirror of the mapping ; in other words, is a reflection in . Every reflection is uniquely defined by its mirror. The order (period) of a reflection in the group of all motions of is equal to 2, i.e. .
The Euclidean or affine space can be identified with the vector space of its parallel translations. The mapping is then a linear orthogonal transformation of with matrix
in a certain orthonormal basis, and conversely, every orthogonal transformation of with this matrix in a certain orthonormal basis is a reflection in . More generally, a linear transformation of an arbitrary vector space over a field , of characteristic other than 2, is called a linear reflection if and if the rank of the transformation is equal to . In this case, the subspace of fixed vectors relative to has codimension in , the subspace of eigenvectors with eigenvalue has dimension and . If is a linear form on such that when , and if is an element such that , then is defined by the formula
The description of a reflection in an arbitrary simply-connected space of constant curvature can be reduced to the description of linear reflections in the following way. Every such space can be imbedded as a hypersurface in a real -dimensional vector space in such a way that the motions of can be extended to linear transformations of . Moreover, in a suitable coordinate system in the equations of the hypersurface can be written in the following way:
Every hypersurface in , given this imbedding, is the intersection with of a certain -dimensional subspace in , and every reflection in is induced by a linear reflection in .
If, in the definition of a linear reflection, the requirement that is dropped, then the more general concept of a pseudo-reflection is obtained. If is the field of complex numbers and is a pseudo-reflection of finite order (not necessarily equal to 2), then is called a unitary reflection. Every biholomorphic automorphism of finite order of a bounded symmetric domain in a complex space the set of fixed points of which has a complex codimension 1 is also called a unitary reflection.
See also Reflection group.
References
[1] | N. Bourbaki, "Groupes et algèbres de Lie" , Eléments de mathématiques , Hermann (1968) pp. Chapts. 4–6 |
[2] | E.B. Vinberg, "Discrete linear groups generated by reflections" Math. USSR Izv. , 35 : 5 (1971) pp. 1083–1119 Izv. Akad. Nauk SSSR Ser. Mat. , 35 : 5 (1971) pp. 1072–1112 |
[3] | E. Gottschling, "Reflections in bounded symmetric domains" Comm. Pure Appl. Math. , 22 (1969) pp. 693–714 |
[4] | B.A. Rozenfel'd, "Non-Euclidean spaces" , Moscow (1969) (In Russian) |
Comments
The spelling reflexion also occurs in the literature.
A basic fact is that the reflections generate the orthogonal group; see [a2], Sects. 8.12.12, 13.7.12.
References
[a1] | B.A. [B.A. Rozenfel'd] Rosenfel'd, "A history of non-euclidean geometry" , Springer (1988) (Translated from Russian) |
[a2] | M. Berger, "Geometry" , 1–2 , Springer (1987) (Translated from French) |
[a3] | H.S.M. Coxeter, "Introduction to geometry" , Wiley (1963) |
[a4] | M. Greenberg, "Euclidean and non-euclidean geometry" , Freeman (1980) |
[a5] | B. Artmann, "Lineare Algebra" , Birkhäuser (1986) |
[a6] | P.R. Halmos, "Finite-dimensional vector spaces" , v. Nostrand (1958) |
Reflection. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Reflection&oldid=49397