Difference between revisions of "Recursive relation"
From Encyclopedia of Mathematics
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
Ulf Rehmann (talk | contribs) m (Undo revision 48461 by Ulf Rehmann (talk)) Tag: Undo |
||
Line 1: | Line 1: | ||
− | < | + | A [[Relation|relation]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r0803201.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r0803202.png" /> is the set of natural numbers, such that the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r0803203.png" /> defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r0803204.png" /> by the condition |
− | r0803201.png | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r0803205.png" /></td> </tr></table> | |
− | |||
− | + | is a [[Recursive function|recursive function]]. In particular, for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r0803206.png" />, the universal relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r0803207.png" /> and the zero relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r0803208.png" /> are recursive relations. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r0803209.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r08032010.png" /> are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r08032011.png" />-place recursive relations, then the relations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r08032012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r08032013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r08032014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r08032015.png" /> will also be recursive relations. With regard to the operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r08032016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r08032017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r08032018.png" />, the system of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080320/r08032019.png" />-place recursive relations thus forms a [[Boolean algebra|Boolean algebra]]. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | is a [[Recursive function|recursive function]]. In particular, for any | ||
− | the universal relation | ||
− | and the zero relation | ||
− | are recursive relations. If | ||
− | and | ||
− | are | ||
− | place recursive relations, then the relations | ||
− | |||
− | |||
− | |||
− | will also be recursive relations. With regard to the operations | ||
− | |||
− | |||
− | the system of all | ||
− | place recursive relations thus forms a [[Boolean algebra|Boolean algebra]]. |
Revision as of 14:53, 7 June 2020
A relation , where is the set of natural numbers, such that the function defined on by the condition
is a recursive function. In particular, for any , the universal relation and the zero relation are recursive relations. If and are -place recursive relations, then the relations , , , will also be recursive relations. With regard to the operations , , , the system of all -place recursive relations thus forms a Boolean algebra.
How to Cite This Entry:
Recursive relation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Recursive_relation&oldid=49396
Recursive relation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Recursive_relation&oldid=49396
This article was adapted from an original article by V.E. Plisko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article