Namespaces
Variants
Actions

Difference between revisions of "Projective representation"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (Undo revision 48325 by Ulf Rehmann (talk))
Tag: Undo
Line 1: Line 1:
<!--
+
''of a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p0753201.png" />''
p0753201.png
 
$#A+1 = 42 n = 0
 
$#C+1 = 42 : ~/encyclopedia/old_files/data/P075/P.0705320 Projective representation
 
Automatically converted into TeX, above some diagnostics.
 
Please remove this comment and the {{TEX|auto}} line below,
 
if TeX found to be correct.
 
-->
 
  
{{TEX|auto}}
+
A homomorphism of this group into the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p0753202.png" /> of projective transformations of the projective space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p0753203.png" /> associated to a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p0753204.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p0753205.png" />.
{{TEX|done}}
 
  
''of a group $  G $''
+
With each projective representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p0753206.png" /> of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p0753207.png" /> there is associated a central extension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p0753208.png" />: Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p0753209.png" /> be the [[General linear group|general linear group]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532010.png" />. Then one has a natural [[Exact sequence|exact sequence]]
  
A homomorphism of this group into the group  $  \mathop{\rm PGL} ( V ) $
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532011.png" /></td> </tr></table>
of projective transformations of the projective space  $  P ( V ) $
 
associated to a vector space  $  V $
 
over a field  $  k $.
 
  
With each projective representation  $  \phi $
+
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532012.png" /> is the natural projection of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532013.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532015.png" /> is the imbedding of the multiplicative group of the field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532016.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532017.png" /> by scalar matrices. The pullback along <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532018.png" /> gives rise to the following commutative diagram with exact rows:
of the group $  G $
 
there is associated a central extension of $  G $:
 
Let  $  \mathop{\rm GL} ( V) $
 
be the [[General linear group|general linear group]] of $  V $.  
 
Then one has a natural [[Exact sequence|exact sequence]]
 
  
$$
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532019.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
1  \rightarrow  k  ^  \times  \rightarrow ^ { i }    \mathop{\rm GL} ( V)  \rightarrow ^ { p }  \
 
\mathop{\rm PGL} ( V) \rightarrow  1,
 
$$
 
  
where  $  p $
+
which is the associated central extension. Every section <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532020.png" />, i.e. homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532021.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532022.png" />, has the property
is the natural projection of the group  $  \mathop{\rm GL} ( V) $
 
onto  $  \mathop{\rm PGL} ( V) $
 
and  $  i $
 
is the imbedding of the multiplicative group of the field  $  k $
 
into  $  \mathop{\rm GL} ( V) $
 
by scalar matrices. The pullback along  $  \phi $
 
gives rise to the following commutative diagram with exact rows:
 
  
$$ \tag{* }
+
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532023.png" /></td> </tr></table>
  
which is the associated central extension. Every section  $  \psi : G \rightarrow E _  \phi  $,
+
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532024.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532025.png" />-cocycle of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532026.png" />. The cohomology class of this cocycle is independent of the choice of the section <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532027.png" />. It is determined by the projective representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532028.png" /> and determines the equivalence class of the extension (*). The condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532029.png" /> is necessary and sufficient for the projective representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532030.png" /> to be the composition of a linear representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532031.png" /> with the projection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532032.png" />.
i.e. homomorphism  $  \psi $
 
such that  $  \psi \cdot \widehat{p= \mathop{\rm id} _ {G} $,
 
has the property
 
 
 
$$
 
\psi ( g _ {1} g _ {2} )  = c ( g _ {1} , g _ {2} )
 
\psi ( g _ {1} ) \psi ( g _ {2} ) ,
 
$$
 
 
 
where  $  c: G \times G \rightarrow k  ^  \times  $
 
is a  $  2 $-
 
cocycle of $  G $.  
 
The cohomology class of this cocycle is independent of the choice of the section $  s $.  
 
It is determined by the projective representation $  \phi $
 
and determines the equivalence class of the extension (*). The condition $  h = 0 $
 
is necessary and sufficient for the projective representation $  \phi $
 
to be the composition of a linear representation of $  G $
 
with the projection p $.
 
  
 
Projective representations arise naturally in studying linear representations of group extensions. The most important examples of projective representations are: the spinor representation of an orthogonal group and the Weyl representation of a symplectic group. The definitions of equivalence and irreducibility of representations carry over directly to projective representations. The classification of the irreducible projective representations of finite groups was obtained by I. Schur (1904).
 
Projective representations arise naturally in studying linear representations of group extensions. The most important examples of projective representations are: the spinor representation of an orthogonal group and the Weyl representation of a symplectic group. The definitions of equivalence and irreducibility of representations carry over directly to projective representations. The classification of the irreducible projective representations of finite groups was obtained by I. Schur (1904).
  
A projective representation is said to be unitary if $  V $
+
A projective representation is said to be unitary if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532033.png" /> is a Hilbert space and if the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532034.png" /> can be chosen so that it takes values in the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532035.png" /> of unitary operators on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532036.png" />. Irreducible unitary projective representations of topological groups have been studied [[#References|[4]]]; for a connected Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532037.png" /> this study reduces to a study of the irreducible unitary representations of a simply-connected Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532038.png" />, the Lie algebra of which is the central extension of the Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532039.png" /> of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532040.png" /> by a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532041.png" />-dimensional commutative Lie algebra, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075320/p07532042.png" />.
is a Hilbert space and if the mapping $  \psi $
 
can be chosen so that it takes values in the group $  U ( V ) $
 
of unitary operators on $  V $.  
 
Irreducible unitary projective representations of topological groups have been studied [[#References|[4]]]; for a connected Lie group $  G $
 
this study reduces to a study of the irreducible unitary representations of a simply-connected Lie group $  \widetilde{G}  $,  
 
the Lie algebra of which is the central extension of the Lie algebra $  \mathfrak g $
 
of the group $  G $
 
by a $  d $-
 
dimensional commutative Lie algebra, where $  d = \mathop{\rm dim}  H  ^ {2} ( \mathfrak g , \mathbf R ) $.
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.A. Kirillov,  "Elements of the theory of representations" , Springer  (1976)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  C.W. Curtis,  I. Reiner,  "Representation theory of finite groups and associative algebras" , Interscience  (1962)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G.W. Mackey,  "Unitary representations of group extensions, I"  ''Acta Math.'' , '''99'''  (1958)  pp. 265–311</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  V. Bargmann,  "Irreducible unitary representations of the Lorentz group"  ''Ann. of Math.'' , '''48'''  (1947)  pp. 568–640</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.A. Kirillov,  "Elements of the theory of representations" , Springer  (1976)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  C.W. Curtis,  I. Reiner,  "Representation theory of finite groups and associative algebras" , Interscience  (1962)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  G.W. Mackey,  "Unitary representations of group extensions, I"  ''Acta Math.'' , '''99'''  (1958)  pp. 265–311</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  V. Bargmann,  "Irreducible unitary representations of the Lorentz group"  ''Ann. of Math.'' , '''48'''  (1947)  pp. 568–640</TD></TR></table>
 +
 +
  
 
====Comments====
 
====Comments====
 +
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C.W. Curtis,  I. Reiner,  "Methods of representation theory" , '''1–2''' , Wiley (Interscience)  (1981–1987)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  I.M. Isaacs,  "Character theory of finite groups" , Acad. Press  (1976)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C.W. Curtis,  I. Reiner,  "Methods of representation theory" , '''1–2''' , Wiley (Interscience)  (1981–1987)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  I.M. Isaacs,  "Character theory of finite groups" , Acad. Press  (1976)</TD></TR></table>

Revision as of 14:53, 7 June 2020

of a group

A homomorphism of this group into the group of projective transformations of the projective space associated to a vector space over a field .

With each projective representation of the group there is associated a central extension of : Let be the general linear group of . Then one has a natural exact sequence

where is the natural projection of the group onto and is the imbedding of the multiplicative group of the field into by scalar matrices. The pullback along gives rise to the following commutative diagram with exact rows:

(*)

which is the associated central extension. Every section , i.e. homomorphism such that , has the property

where is a -cocycle of . The cohomology class of this cocycle is independent of the choice of the section . It is determined by the projective representation and determines the equivalence class of the extension (*). The condition is necessary and sufficient for the projective representation to be the composition of a linear representation of with the projection .

Projective representations arise naturally in studying linear representations of group extensions. The most important examples of projective representations are: the spinor representation of an orthogonal group and the Weyl representation of a symplectic group. The definitions of equivalence and irreducibility of representations carry over directly to projective representations. The classification of the irreducible projective representations of finite groups was obtained by I. Schur (1904).

A projective representation is said to be unitary if is a Hilbert space and if the mapping can be chosen so that it takes values in the group of unitary operators on . Irreducible unitary projective representations of topological groups have been studied [4]; for a connected Lie group this study reduces to a study of the irreducible unitary representations of a simply-connected Lie group , the Lie algebra of which is the central extension of the Lie algebra of the group by a -dimensional commutative Lie algebra, where .

References

[1] A.A. Kirillov, "Elements of the theory of representations" , Springer (1976) (Translated from Russian)
[2] C.W. Curtis, I. Reiner, "Representation theory of finite groups and associative algebras" , Interscience (1962)
[3] G.W. Mackey, "Unitary representations of group extensions, I" Acta Math. , 99 (1958) pp. 265–311
[4] V. Bargmann, "Irreducible unitary representations of the Lorentz group" Ann. of Math. , 48 (1947) pp. 568–640


Comments

References

[a1] C.W. Curtis, I. Reiner, "Methods of representation theory" , 1–2 , Wiley (Interscience) (1981–1987)
[a2] I.M. Isaacs, "Character theory of finite groups" , Acad. Press (1976)
How to Cite This Entry:
Projective representation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Projective_representation&oldid=49379
This article was adapted from an original article by A.A. Kirillov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article