Difference between revisions of "Positive-definite form"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
Ulf Rehmann (talk | contribs) m (Undo revision 48248 by Ulf Rehmann (talk)) Tag: Undo |
||
Line 1: | Line 1: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
An expression | An expression | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p0738801.png" /></td> </tr></table> | |
− | |||
− | |||
− | where | + | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p0738802.png" />, which takes non-negative values for any real values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p0738803.png" /> and vanishes only for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p0738804.png" />. Therefore, a positive-definite form is a [[Quadratic form|quadratic form]] of special type. Any positive-definite form can be converted by a linear transformation to the representation |
− | which takes non-negative values for any real values | ||
− | and vanishes only for | ||
− | Therefore, a positive-definite form is a [[Quadratic form|quadratic form]] of special type. Any positive-definite form can be converted by a linear transformation to the representation | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p0738805.png" /></td> </tr></table> | |
− | |||
− | |||
In order that a form | In order that a form | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p0738806.png" /></td> </tr></table> | |
− | |||
− | be positive definite, it is necessary and sufficient that | + | be positive definite, it is necessary and sufficient that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p0738807.png" />, where |
− | where | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p0738808.png" /></td> </tr></table> | |
− | |||
In any affine coordinate system, the distance of a point from the origin is expressed by a positive-definite form in the coordinates of the point. | In any affine coordinate system, the distance of a point from the origin is expressed by a positive-definite form in the coordinates of the point. | ||
Line 41: | Line 19: | ||
A form | A form | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p0738809.png" /></td> </tr></table> | |
− | + | ||
+ | such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p07388010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p07388011.png" /> for all values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p07388012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p07388013.png" /> only for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p07388014.png" /> is called a Hermitian positive-definite form. | ||
+ | |||
+ | The following concepts are related to the concept of a positive-definite form: 1) a positive-definite matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p07388015.png" /> is a matrix such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p07388016.png" /> is a Hermitian positive-definite form; 2) a [[Positive-definite kernel|positive-definite kernel]] is a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p07388017.png" /> such that | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p07388018.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | for every function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p07388019.png" /> with an integrable square; 3) a [[Positive-definite function|positive-definite function]] is a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p07388020.png" /> such that the kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p07388021.png" /> is positive definite. By Bochner's theorem, the class of continuous positive-definite functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p07388022.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p07388023.png" /> coincides with the class of characteristic functions of distributions of random variables (cf. [[Characteristic function|Characteristic function]]). | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | A kernel that is semi-positive definite (non-negative definite) is one that satisfies | + | A kernel that is semi-positive definite (non-negative definite) is one that satisfies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p07388024.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p07388025.png" />. Such a kernel is sometimes also simply called positive. However, the phrase "positive kernel" is also used for the weaker notion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p07388026.png" /> (almost-everywhere). A positive kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p07388027.png" /> in the latter sense has at least one eigen value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p07388028.png" /> while a semi-positive definite kernel has all eigen values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073880/p07388029.png" />. |
− | for all | ||
− | Such a kernel is sometimes also simply called positive. However, the phrase "positive kernel" is also used for the weaker notion | ||
− | almost-everywhere). A positive kernel | ||
− | in the latter sense has at least one eigen value | ||
− | while a semi-positive definite kernel has all eigen values | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Lukacs, "Characteristic functions" , Griffin (1970)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , ''Integral equations - a reference text'' , Noordhoff (1975) pp. Chapt. III, §3 (Translated from Russian)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H. Hochstadt, "Integral equations" , Wiley (1973) pp. 255ff</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> F.R. [F.R. Gantmakher] Gantmacher, "The theory of matrices" , '''I-II''' , Chelsea, reprint (1959) pp. Chapt. X (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E. Lukacs, "Characteristic functions" , Griffin (1970)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , ''Integral equations - a reference text'' , Noordhoff (1975) pp. Chapt. III, §3 (Translated from Russian)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H. Hochstadt, "Integral equations" , Wiley (1973) pp. 255ff</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> F.R. [F.R. Gantmakher] Gantmacher, "The theory of matrices" , '''I-II''' , Chelsea, reprint (1959) pp. Chapt. X (Translated from Russian)</TD></TR></table> |
Revision as of 14:52, 7 June 2020
An expression
where , which takes non-negative values for any real values and vanishes only for . Therefore, a positive-definite form is a quadratic form of special type. Any positive-definite form can be converted by a linear transformation to the representation
In order that a form
be positive definite, it is necessary and sufficient that , where
In any affine coordinate system, the distance of a point from the origin is expressed by a positive-definite form in the coordinates of the point.
A form
such that and for all values of and only for is called a Hermitian positive-definite form.
The following concepts are related to the concept of a positive-definite form: 1) a positive-definite matrix is a matrix such that is a Hermitian positive-definite form; 2) a positive-definite kernel is a function such that
for every function with an integrable square; 3) a positive-definite function is a function such that the kernel is positive definite. By Bochner's theorem, the class of continuous positive-definite functions with coincides with the class of characteristic functions of distributions of random variables (cf. Characteristic function).
Comments
A kernel that is semi-positive definite (non-negative definite) is one that satisfies for all . Such a kernel is sometimes also simply called positive. However, the phrase "positive kernel" is also used for the weaker notion (almost-everywhere). A positive kernel in the latter sense has at least one eigen value while a semi-positive definite kernel has all eigen values .
References
[a1] | E. Lukacs, "Characteristic functions" , Griffin (1970) |
[a2] | P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , Integral equations - a reference text , Noordhoff (1975) pp. Chapt. III, §3 (Translated from Russian) |
[a3] | H. Hochstadt, "Integral equations" , Wiley (1973) pp. 255ff |
[a4] | F.R. [F.R. Gantmakher] Gantmacher, "The theory of matrices" , I-II , Chelsea, reprint (1959) pp. Chapt. X (Translated from Russian) |
Positive-definite form. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Positive-definite_form&oldid=49368