Difference between revisions of "Meijer-G-functions"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
Ulf Rehmann (talk | contribs) m (Undo revision 47819 by Ulf Rehmann (talk)) Tag: Undo |
||
Line 1: | Line 1: | ||
− | < | + | Generalizations of the hypergeometric functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m1101102.png" /> of one variable (cf. also [[Hypergeometric function|Hypergeometric function]]). They can be defined by an integral as |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m1101103.png" /></td> </tr></table> | |
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m1101104.png" /></td> </tr></table> | |
− | |||
− | + | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m1101105.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m1101106.png" /> and the parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m1101107.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m1101108.png" /> are such that no pole of the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m1101109.png" /> coincides with any pole of the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011010.png" />. There are three possible choices for the contour <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011011.png" />: | |
− | |||
− | + | a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011012.png" /> goes from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011013.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011014.png" /> remaining to the right of the poles of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011015.png" /> and to the left of the poles of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011016.png" />; | |
− | = | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | b) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011017.png" /> begins and ends at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011018.png" />, encircles counterclockwise all poles of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011019.png" /> and does not encircle any pole of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011020.png" />; | |
− | |||
− | and | ||
− | |||
− | |||
− | |||
− | |||
− | + | c) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011021.png" /> begins and ends at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011022.png" />, encircles clockwise all poles of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011023.png" /> and does not encircle any pole of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011024.png" />. | |
− | |||
− | |||
− | |||
− | and | ||
− | + | The integral converges if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011026.png" /> in case a); if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011027.png" /> and either <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011028.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011030.png" /> in case b); and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011031.png" /> and either <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011032.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011033.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011034.png" /> in case c). | |
− | |||
− | |||
− | and | ||
− | + | The integral defining the Meijer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011035.png" />-functions can be calculated by means of the residue theorem and one obtains expressions for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011036.png" /> in terms of the hypergeometric functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011037.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011038.png" />. The function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011039.png" /> satisfies the linear differential equation | |
− | |||
− | |||
− | and | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011040.png" /></td> </tr></table> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
where | where | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011041.png" /></td> </tr></table> | |
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011042.png" /></td> </tr></table> | |
− | = | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | Many functions of hypergeometric type and their products can be expressed in terms of Meijer | + | Many functions of hypergeometric type and their products can be expressed in terms of Meijer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011043.png" />-functions, [[#References|[a1]]]. For example, |
− | functions, [[#References|[a1]]]. For example, | ||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011044.png" /></td> </tr></table> | |
− | |||
− | |||
− | + | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011045.png" /></td> </tr></table> | |
− | |||
− | Meijer | + | Meijer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110110/m11011046.png" />-functions appear in the theory of [[Lie group|Lie group]] representations (cf. also [[Representation of a compact group|Representation of a compact group]]) as transition coefficients for different bases of carrier spaces of representations [[#References|[a2]]]. |
− | functions appear in the theory of [[Lie group|Lie group]] representations (cf. also [[Representation of a compact group|Representation of a compact group]]) as transition coefficients for different bases of carrier spaces of representations [[#References|[a2]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Erdelyi, W. Magnus, F. Oberhettinger, F. Tricomi, "Higher transcendental functions" , '''1''' , McGraw-Hill (1953)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N.J. Vilenkin, A.U. Klimyk, "Representation of Lie groups and special functions" , '''2''' , Kluwer Acad. Publ. (1993) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Erdelyi, W. Magnus, F. Oberhettinger, F. Tricomi, "Higher transcendental functions" , '''1''' , McGraw-Hill (1953)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> N.J. Vilenkin, A.U. Klimyk, "Representation of Lie groups and special functions" , '''2''' , Kluwer Acad. Publ. (1993) (In Russian)</TD></TR></table> |
Revision as of 10:26, 7 June 2020
Generalizations of the hypergeometric functions of one variable (cf. also Hypergeometric function). They can be defined by an integral as
where , and the parameters , are such that no pole of the functions coincides with any pole of the functions . There are three possible choices for the contour :
a) goes from to remaining to the right of the poles of and to the left of the poles of ;
b) begins and ends at , encircles counterclockwise all poles of and does not encircle any pole of ;
c) begins and ends at , encircles clockwise all poles of and does not encircle any pole of .
The integral converges if , in case a); if and either or and in case b); and if and either or and in case c).
The integral defining the Meijer -functions can be calculated by means of the residue theorem and one obtains expressions for in terms of the hypergeometric functions or . The function satisfies the linear differential equation
where
Many functions of hypergeometric type and their products can be expressed in terms of Meijer -functions, [a1]. For example,
Meijer -functions appear in the theory of Lie group representations (cf. also Representation of a compact group) as transition coefficients for different bases of carrier spaces of representations [a2].
References
[a1] | A. Erdelyi, W. Magnus, F. Oberhettinger, F. Tricomi, "Higher transcendental functions" , 1 , McGraw-Hill (1953) |
[a2] | N.J. Vilenkin, A.U. Klimyk, "Representation of Lie groups and special functions" , 2 , Kluwer Acad. Publ. (1993) (In Russian) |
Meijer-G-functions. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Meijer-G-functions&oldid=49295