Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/65"
(→List) |
(→List) |
||
| Line 160: | Line 160: | ||
80. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002023.png ; $N_\mathcal{X}$ ; confidence 0.372 | 80. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130020/s13002023.png ; $N_\mathcal{X}$ ; confidence 0.372 | ||
| − | 81. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022060.png ; $| F ( u ) | \leq C _ { 1 } \sum _ { \alpha \in K } \rho ^ { m - N / p } \| D ^ { \alpha } u \| _ { p , T }$ ; confidence 0.372 | + | 81. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b13022060.png ; $| F ( u ) | \leq C _ { 1 } \sum _ { \alpha \in K } \rho ^ { m - N / p } \| D ^ { \alpha } u \| _ { p , T }.$ ; confidence 0.372 |
| − | 82. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027016.png ; $\alpha ( k ) = Vol ( S ^ { k } )$ ; confidence 0.372 | + | 82. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120270/c12027016.png ; $\alpha ( k ) = \operatorname{Vol} ( S ^ { k } )$ ; confidence 0.372 |
83. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049036.png ; $X _ { 1 } , \dots , X _ { m }$ ; confidence 0.372 | 83. https://www.encyclopediaofmath.org/legacyimages/f/f040/f040490/f04049036.png ; $X _ { 1 } , \dots , X _ { m }$ ; confidence 0.372 | ||
| − | 84. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230177.png ; $( \ | + | 84. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120230/e120230177.png ; $( \mathcal{E} ^ { \alpha } ( L ) \circ \sigma ^ { 2 k } ) ( Z ^ { \alpha } \circ \sigma ) \Delta.$ ; confidence 0.372 |
85. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016032.png ; $\| g _ { n } \| \rightarrow 0$ ; confidence 0.372 | 85. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120160/d12016032.png ; $\| g _ { n } \| \rightarrow 0$ ; confidence 0.372 | ||
| Line 176: | Line 176: | ||
88. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019035.png ; $H ^ { q } ( \Gamma , C )$ ; confidence 0.372 | 88. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120190/c12019035.png ; $H ^ { q } ( \Gamma , C )$ ; confidence 0.372 | ||
| − | 89. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014039.png ; $A _ { | + | 89. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014039.png ; $A _ { l }$ ; confidence 0.372 |
| − | 90. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002046.png ; $Q ( \alpha ^ { \beta } , \ldots , \alpha ^ { \beta ^ { d - 1 } } )$ ; confidence 0.372 | + | 90. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130020/g13002046.png ; $\mathbf{Q} ( \alpha ^ { \beta } , \ldots , \alpha ^ { \beta ^ { d - 1 } } )$ ; confidence 0.372 |
91. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008028.png ; $A _ { i j } A _ { k l } = A _ { k l } A _ { i j }$ ; confidence 0.372 | 91. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c12008028.png ; $A _ { i j } A _ { k l } = A _ { k l } A _ { i j }$ ; confidence 0.372 | ||
| Line 194: | Line 194: | ||
97. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014038.png ; $A_{l} = ( \alpha _ { i,j })$ ; confidence 0.372 | 97. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130140/c13014038.png ; $A_{l} = ( \alpha _ { i,j })$ ; confidence 0.372 | ||
| − | 98. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110430/c11043070.png ; $S _ { n }$ ; confidence 0.371 | + | 98. https://www.encyclopediaofmath.org/legacyimages/c/c110/c110430/c11043070.png ; $\mathcal{S} _ { n }$ ; confidence 0.371 |
99. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170108.png ; $\langle \alpha , b | \alpha ^ { p } b ^ { q } , \alpha ^ { r } b ^ { s } \rangle$ ; confidence 0.371 | 99. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120170/l120170108.png ; $\langle \alpha , b | \alpha ^ { p } b ^ { q } , \alpha ^ { r } b ^ { s } \rangle$ ; confidence 0.371 | ||
| Line 200: | Line 200: | ||
100. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130050/g13005042.png ; $2 ^ { d - 1 } ( 2 d - 1 )$ ; confidence 0.371 | 100. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130050/g13005042.png ; $2 ^ { d - 1 } ( 2 d - 1 )$ ; confidence 0.371 | ||
| − | 101. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011054.png ; $\psi : R ^ { n } \rightarrow R$ ; confidence 0.371 | + | 101. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011054.png ; $\psi : \mathbf{R} ^ { n } \rightarrow \mathbf{R}$ ; confidence 0.371 |
102. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007030.png ; $a_0 , a_1 , \dots$ ; confidence 0.371 | 102. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130070/t13007030.png ; $a_0 , a_1 , \dots$ ; confidence 0.371 | ||
| − | 103. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013032.png ; $ | + | 103. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130130/t13013032.png ; $\mathcal{Y} = \operatorname { Sub } T$ ; confidence 0.371 |
104. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100140.png ; $E ^ { \gamma}$ ; confidence 0.371 | 104. https://www.encyclopediaofmath.org/legacyimages/c/c024/c024100/c024100140.png ; $E ^ { \gamma}$ ; confidence 0.371 | ||
| Line 212: | Line 212: | ||
106. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b1300209.png ; $\operatorname { lim } \{ \| x ^ { n } \| ^ { 1 / n } \} = \operatorname { max } \{ | \lambda | : \lambda \in \operatorname { sp } ( J , x ) \}$ ; confidence 0.370 | 106. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b1300209.png ; $\operatorname { lim } \{ \| x ^ { n } \| ^ { 1 / n } \} = \operatorname { max } \{ | \lambda | : \lambda \in \operatorname { sp } ( J , x ) \}$ ; confidence 0.370 | ||
| − | 107. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012028.png ; $( f ^ { * } d \mu ) _ { N } : = \operatorname { lim } _ { h \rightarrow 0 } \int _ { R } f _ { h } ( \frac { x - u } { N } ) d \mu ( u )$ ; confidence 0.370 | + | 107. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130120/b13012028.png ; $( f ^ { * } d \mu ) _ { N } : = \operatorname { lim } _ { h \rightarrow 0 } \int _ { \mathbf{R} } f _ { h } ( \frac { x - u } { N } ) d \mu ( u ),$ ; confidence 0.370 |
108. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011820/a011820177.png ; $S _ { k }$ ; confidence 0.370 | 108. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011820/a011820177.png ; $S _ { k }$ ; confidence 0.370 | ||
| − | 109. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c02185025.png ; $x \in R ^ { m }$ ; confidence 0.370 | + | 109. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021850/c02185025.png ; $x \in \mathbf{R} ^ { m }$ ; confidence 0.370 |
| − | 110. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020041.png ; $\{ f ( t ) \} _ { ( k ; t _ { i } ) } = \sum _ { m = 0 } ^ { k } \frac { ( t - t _ { i } ) ^ { m } } { m ! } \frac { d ^ { m } f ( t ) } { d t ^ { m } } | _ { t = t _ { i } }$ ; confidence 0.370 | + | 110. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020041.png ; $\{ f ( t ) \} _ { ( k ; t _ { i } ) } = \sum _ { m = 0 } ^ { k } \frac { ( t - t _ { i } ) ^ { m } } { m ! } \frac { d ^ { m } f ( t ) } { d t ^ { m } } | _ { t = t _ { i } }.$ ; confidence 0.370 |
111. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009047.png ; $f e ^ { i \alpha \operatorname { ln } \tau } = f e ^ { \alpha i } = \xi$ ; confidence 0.370 | 111. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120090/b12009047.png ; $f e ^ { i \alpha \operatorname { ln } \tau } = f e ^ { \alpha i } = \xi$ ; confidence 0.370 | ||
| Line 224: | Line 224: | ||
112. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b130220120.png ; $C _ { m , N, \epsilon}$ ; confidence 0.370 | 112. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130220/b130220120.png ; $C _ { m , N, \epsilon}$ ; confidence 0.370 | ||
| − | 113. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p1301404.png ; $\hat { f } ( \alpha , p ) = \int _ { \operatorname { | + | 113. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130140/p1301404.png ; $\hat { f } ( \alpha , p ) = \int _ { \operatorname { l_ \alpha p } } f ( x ) d s$ ; confidence 0.370 |
114. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130060/m1300608.png ; $d ^ { m }$ ; confidence 0.370 | 114. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130060/m1300608.png ; $d ^ { m }$ ; confidence 0.370 | ||
| Line 232: | Line 232: | ||
116. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080147.png ; $R = c$ ; confidence 0.370 | 116. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d130080147.png ; $R = c$ ; confidence 0.370 | ||
| − | 117. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008046.png ; $\xi ^ { * } \ | + | 117. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120080/f12008046.png ; $\xi ^ { * } \tilde { \eta }$ ; confidence 0.370 |
118. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009016.png ; $C _ { j } = ( 1 - x ^ { 2 } ) \frac { T _ { N } ^ { \prime } ( x ) ( - 1 ) ^ { j + 1 } } { [ \bar{c} _ { j } N ^ { 2 } ( x - x _ { j } ) ] }$ ; confidence 0.370 | 118. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130090/c13009016.png ; $C _ { j } = ( 1 - x ^ { 2 } ) \frac { T _ { N } ^ { \prime } ( x ) ( - 1 ) ^ { j + 1 } } { [ \bar{c} _ { j } N ^ { 2 } ( x - x _ { j } ) ] }$ ; confidence 0.370 | ||
| Line 240: | Line 240: | ||
120. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034012.png ; $\alpha = ( \alpha _ { 1 } , \ldots , \alpha _ { n } )$ ; confidence 0.370 | 120. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120340/b12034012.png ; $\alpha = ( \alpha _ { 1 } , \ldots , \alpha _ { n } )$ ; confidence 0.370 | ||
| − | 121. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d1201403.png ; $\mathcal{D}_ { n } ( x , \alpha ) = \sum _ { i = 0 } ^ { | + | 121. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d1201403.png ; $\mathcal{D}_ { n } ( x , \alpha ) = \sum _ { i = 0 } ^ { \lfloor n / 2 \rfloor } \frac { n } { n - i } \left( \begin{array} { c } { n - i } \\ { i } \end{array} \right) ( - a ) ^ { i } x ^ { n - 2 i },$ ; confidence 0.369 |
122. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040452.png ; $\psi _ { 0 } , \ldots , \psi _ { n - 1 } \vDash _ { K } \varphi$ ; confidence 0.369 | 122. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040452.png ; $\psi _ { 0 } , \ldots , \psi _ { n - 1 } \vDash _ { K } \varphi$ ; confidence 0.369 | ||
| − | 123. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007034.png ; $D = ( D _ { 1 } , \dots , D _ { n } )$ ; confidence 0.369 | + | 123. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120070/w12007034.png ; $\mathcal{D} = ( D _ { 1 } , \dots , D _ { n } )$ ; confidence 0.369 |
| − | 124. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004051.png ; $\mu _ { 2 } ( \Omega ) \leq ( \frac { 1 } { | \Omega | } ) ^ { 2 / n } C _ { n } ^ { 2 / n } p _ { n / 2,1 } ^ { 2 }$ ; confidence 0.369 | + | 124. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130040/r13004051.png ; $\mu _ { 2 } ( \Omega ) \leq ( \frac { 1 } { | \Omega | } ) ^ { 2 / n } C _ { n } ^ { 2 / n } p _ { n / 2,1 } ^ { 2 },$ ; confidence 0.369 |
125. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011036.png ; $\operatorname { Im } \zeta$ ; confidence 0.369 | 125. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011036.png ; $\operatorname { Im } \zeta$ ; confidence 0.369 | ||
| − | 126. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031670/d03167020.png ; $\ | + | 126. https://www.encyclopediaofmath.org/legacyimages/d/d031/d031670/d03167020.png ; $\tilde { K } ( X / A ) = K ( X , A )$ ; confidence 0.369 |
127. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050260.png ; $\pi _ { C } ^ { \# } ( x ) = \sum _ { n \leq x } P _ { C } ^ { \# } ( n )$ ; confidence 0.369 | 127. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130050/a130050260.png ; $\pi _ { C } ^ { \# } ( x ) = \sum _ { n \leq x } P _ { C } ^ { \# } ( n )$ ; confidence 0.369 | ||
| Line 256: | Line 256: | ||
128. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022054.png ; $\Box_R \text { Mod } ( ? , C )$ ; confidence 0.369 | 128. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130220/a13022054.png ; $\Box_R \text { Mod } ( ? , C )$ ; confidence 0.369 | ||
| − | 129. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013099.png ; $z \in C$ ; confidence 0.369 | + | 129. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130130/a13013099.png ; $z \in \mathbf{C}$ ; confidence 0.369 |
130. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023020.png ; $\varnothing$ ; confidence 0.369 | 130. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130230/b13023020.png ; $\varnothing$ ; confidence 0.369 | ||
| Line 262: | Line 262: | ||
131. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019018.png ; $M _ { N } = [ m _ { i+j }] _ { i , j = 0 } ^ { n }$ ; confidence 0.369 | 131. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130190/m13019018.png ; $M _ { N } = [ m _ { i+j }] _ { i , j = 0 } ^ { n }$ ; confidence 0.369 | ||
| − | 132. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001045.png ; $\| \mathcal{F} f \| _ { L } 2 _ { (R ^ { 3 } )} = \| f \| _ { L ^ { 2 } ( D ^ { \prime } ) }$ ; confidence 0.369 | + | 132. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130010/o13001045.png ; $\| \mathcal{F} f \| _ { L } 2 _ { (\mathbf{R} ^ { 3 } )} = \| f \| _ { L ^ { 2 } ( D ^ { \prime } ) }$ ; confidence 0.369 |
133. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030066.png ; $L _ { loc} ^ { 2 } ( R ^ { N } )$ ; confidence 0.369 | 133. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b12030066.png ; $L _ { loc} ^ { 2 } ( R ^ { N } )$ ; confidence 0.369 | ||
| Line 268: | Line 268: | ||
134. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027036.png ; $Y _ { N } = \operatorname { span } \{ \psi _ { 1 } , \dots , \psi _ { N } \}$ ; confidence 0.369 | 134. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130270/a13027036.png ; $Y _ { N } = \operatorname { span } \{ \psi _ { 1 } , \dots , \psi _ { N } \}$ ; confidence 0.369 | ||
| − | 135. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r1300909.png ; $\sum _ { l = 1 } ^ { r } | + | 135. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130090/r1300909.png ; $\sum _ { l = 1 } ^ { r } g_i ( a ^ { i } x )$ ; confidence 0.368 |
136. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024056.png ; $i = 1 , \ldots , I$ ; confidence 0.368 | 136. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a13024056.png ; $i = 1 , \ldots , I$ ; confidence 0.368 | ||
| − | 137. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050124.png ; $ | + | 137. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050124.png ; $\hat{A} ( t , u )$ ; confidence 0.368 |
| − | 138. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220100.png ; $H _ { | + | 138. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220100.png ; $H _ { \mathcal{D} } ^ { i } ( X _ { C } , A ( j ) )$ ; confidence 0.368 |
| − | 139. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018071.png ; $( S _ { m } | + | 139. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018071.png ; $( S _ { n+m } )$ ; confidence 0.368 |
| − | 140. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150202.png ; $ | + | 140. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150202.png ; $\|x_n \| < C$ ; confidence 0.368 |
| − | 141. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020159.png ; $h \in | + | 141. https://www.encyclopediaofmath.org/legacyimages/j/j120/j120020/j120020159.png ; $h \in \operatorname{BMO}$ ; confidence 0.368 |
| − | 142. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110118.png ; $P \{ M / N \leq x \} \stackrel { \omega } { \rightarrow } F ( x )$ ; confidence 0.368 | + | 142. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130110/z130110118.png ; $\mathbf{P} \{ M / N \leq x \} \stackrel { \omega } { \rightarrow } F ( x )$ ; confidence 0.368 |
143. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006079.png ; $A = B ^ { \uparrow X }$ ; confidence 0.368 | 143. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130060/d13006079.png ; $A = B ^ { \uparrow X }$ ; confidence 0.368 | ||
| − | 144. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010049.png ; $\alpha : | + | 144. https://www.encyclopediaofmath.org/legacyimages/r/r130/r130100/r13010049.png ; $\alpha : x \rightarrow y$ ; confidence 0.368 |
145. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150051.png ; $u _ { j }$ ; confidence 0.368 | 145. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011500/a01150051.png ; $u _ { j }$ ; confidence 0.368 | ||
| − | 146. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s1202302.png ; $X | + | 146. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s1202302.png ; $X : = X \Lambda$ ; confidence 0.368 |
| − | 147. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s1305005.png ; $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right) : = \{ X \subseteq [ n ] : | X | = k \} , k = 0 , \ldots , n$ ; confidence 0.367 | + | 147. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s1305005.png ; $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right) : = \{ X \subseteq [ n ] : | X | = k \} , k = 0 , \ldots , n.$ ; confidence 0.367 |
| − | 148. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008070.png ; $\operatorname { exp } \{ \frac { 1 } { k _ { B } T } \sum _ { | + | 148. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008070.png ; $\operatorname { exp } \left\{ \frac { 1 } { k _ { B } T } \sum _ { i = 1 } ^ { N } [ J S _ { i } S _ { i+ 1 } + \frac { H } { 2 } ( S _ { i } + S _ { i+ 1 } ) ] \right\} =$ ; confidence 0.367 |
| − | 149. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120144.png ; $\sigma _ { 1 } , \ldots , \sigma _ { e }$ ; confidence 0.367 | + | 149. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120120/l120120144.png ; $\sigma _ { 1 } , \ldots , \sigma _ { \dot{e} }$ ; confidence 0.367 |
| − | 150. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015076.png ; $\operatorname { Ad } ( g ) = 1$ ; confidence 0.367 | + | 150. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120150/a12015076.png ; $\operatorname{det} \; \operatorname { Ad } ( g ) = 1$ ; confidence 0.367 |
| − | 151. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016600/b0166004.png ; $ | + | 151. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016600/b0166004.png ; $\mathbf{u}$ ; confidence 0.367 |
| − | 152. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001055.png ; $n ^ { | + | 152. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130010/f13001055.png ; $n ^ { \omega }$ ; confidence 0.367 |
| − | 153. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007081.png ; $\ | + | 153. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120070/t12007081.png ; $\hat { E } _ { 8 }$ ; confidence 0.367 |
154. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005086.png ; $\int _ { s } ^ { \infty } ( 1 + | x | ) | R _ { - } ^ { \prime } ( x ) | d x < \infty$ ; confidence 0.367 | 154. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130050/i13005086.png ; $\int _ { s } ^ { \infty } ( 1 + | x | ) | R _ { - } ^ { \prime } ( x ) | d x < \infty$ ; confidence 0.367 | ||
| Line 310: | Line 310: | ||
155. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150163.png ; $\| T \| < \gamma ( A )$ ; confidence 0.367 | 155. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150163.png ; $\| T \| < \gamma ( A )$ ; confidence 0.367 | ||
| − | 156. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280169.png ; $t \in | + | 156. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a120280169.png ; $t \in G$ ; confidence 0.366 |
| − | 157. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007058.png ; $L _ { | + | 157. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130070/i13007058.png ; $L _ { \text{loc} } ^ { 2 }$ ; confidence 0.366 |
| − | 158. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010044.png ; $S ^ { | + | 158. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120100/b12010044.png ; $S ^ { n } ( t )$ ; confidence 0.366 |
159. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003045.png ; $V ^ { \sigma \langle y \rangle } / \operatorname { Ker } ( y )$ ; confidence 0.366 | 159. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003045.png ; $V ^ { \sigma \langle y \rangle } / \operatorname { Ker } ( y )$ ; confidence 0.366 | ||
| Line 320: | Line 320: | ||
160. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040075.png ; $C ^ { + } \subset \mathfrak { h } _ { R } ^ { * }$ ; confidence 0.366 | 160. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120400/b12040075.png ; $C ^ { + } \subset \mathfrak { h } _ { R } ^ { * }$ ; confidence 0.366 | ||
| − | 161. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040410.png ; $Mod ^ { * } | + | 161. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040410.png ; $Mod ^ { * L} \mathcal{D} = Mod ^ { * S} \mathcal{ D }$ ; confidence 0.366 |
162. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170104.png ; $( p , q ) _ { M } = \langle M \hat { p } , \hat { q } \rangle$ ; confidence 0.366 | 162. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170104.png ; $( p , q ) _ { M } = \langle M \hat { p } , \hat { q } \rangle$ ; confidence 0.366 | ||
| Line 326: | Line 326: | ||
163. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023072.png ; $\delta _ { P } = [ P , . ] ^ { \wedge }$ ; confidence 0.366 | 163. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120230/f12023072.png ; $\delta _ { P } = [ P , . ] ^ { \wedge }$ ; confidence 0.366 | ||
| − | 164. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042018.png ; $\otimes | + | 164. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042018.png ; $\otimes ^{operatorname{op}} : \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ ; confidence 0.366 |
| − | 165. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d1201108.png ; $I \subset N$ ; confidence 0.366 | + | 165. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120110/d1201108.png ; $I \subset \mathbf{N}$ ; confidence 0.366 |
| − | 166. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040245.png ; $x \approx y | + | 166. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040245.png ; $x \approx y \Dashv \vDash_\operatorname{K} K ( E ( x , y ) ) \approx L ( E ( x , y ) ).$ ; confidence 0.366 |
| − | 167. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110010/h11001026.png ; $A ( x ) = \sum _ { p \leq x } 1 / p \ | + | 167. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110010/h11001026.png ; $A ( x ) = \sum _ { p \leq x } 1 / p \dot \operatorname { Im } ( f ( p ) p ^ { - i \alpha _ { 0 } } )$ ; confidence 0.366 |
| − | 168. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016066.png ; $ | + | 168. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016066.png ; $C_1$ ; confidence 0.366 |
| − | 169. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016020.png ; $ | + | 169. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016020.png ; $L_i$ ; confidence 0.366 |
| − | 170. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001074.png ; $H _ { N } = \cup \{ m \in Z ^ { n } : 2 ^ { s } | + | 170. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130010/l13001074.png ; $H _ { N } = \cup \left\{ m \in \mathbf{Z} ^ { n } : 2 ^ { \bar{s}_j } \leq | m _ { j } | < 2 ^ { \bar{s}_ j + 1} \right\}$ ; confidence 0.365 |
| − | 171. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d1201405.png ; $ | + | 171. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d1201405.png ; $\leq n / 2$ ; confidence 0.365 |
| − | 172. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016046.png ; $A ( t _ { 0 } ) = A _ { 0 } , \dot { X } ( t ) = [ N ( X ( t ) , A ( t ) , t ) - X ( t ) ] \operatorname { exp } ( - k P ( t ) )$ ; confidence 0.365 | + | 172. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120160/a12016046.png ; $A ( t _ { 0 } ) = A _ { 0 } , \dot { X } ( t ) = [ N ( X ( t ) , A ( t ) , t ) - X ( t ) ] \operatorname { exp } ( - k P ( t ) ),$ ; confidence 0.365 |
173. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018061.png ; $( S _ { n } + 2 )$ ; confidence 0.365 | 173. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120180/a12018061.png ; $( S _ { n } + 2 )$ ; confidence 0.365 | ||
| − | 174. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005021.png ; $L _ { 1 } ( R _ { + } ; e ^ { - x } / \sqrt { x } )$ ; confidence 0.365 | + | 174. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120050/l12005021.png ; $L _ { 1 } ( \mathbf{R} _ { + } ; e ^ { - x } / \sqrt { x } )$ ; confidence 0.365 |
| − | 175. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p1201402.png ; $ | + | 175. https://www.encyclopediaofmath.org/legacyimages/p/p120/p120140/p1201402.png ; $E$ ; confidence 0.365 |
| − | 176. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003050.png ; $Q _ { x } V ^ { \ | + | 176. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130030/b13003050.png ; $Q _ { x } V ^ { \mp } = 0$ ; confidence 0.365 |
177. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007012.png ; $v _ { i , t }$ ; confidence 0.365 | 177. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120070/l12007012.png ; $v _ { i , t }$ ; confidence 0.365 | ||
| − | 178. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022067.png ; $ | + | 178. https://www.encyclopediaofmath.org/legacyimages/a/a010/a010220/a01022067.png ; $\mathbf{C}$ ; confidence 0.365 |
179. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s1305906.png ; $\Lambda _ { p , q }$ ; confidence 0.365 | 179. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130590/s1305906.png ; $\Lambda _ { p , q }$ ; confidence 0.365 | ||
| − | 180. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100173.png ; $A _ { | + | 180. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110100/b110100173.png ; $\mathcal{A} _ { n }$ ; confidence 0.365 |
| − | 181. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040136.png ; $P _ { L } ( i , i ) = ( i \sqrt { 2 } ) ^ { \operatorname { dim } ( H _ { 1 } ( M ^ { ( 3 ) } , Z _ { 2 } ) ) }$ ; confidence 0.365 | + | 181. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040136.png ; $P _ { L } ( i , i ) = ( i \sqrt { 2 } ) ^ { \operatorname { dim } ( H _ { 1 } ( M ^ { ( 3 ) } , \mathbf{Z} _ { 2 } ) ) }$ ; confidence 0.365 |
| − | 182. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510141.png ; $L \oplus \dot { k } = \{ | + | 182. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130510/s130510141.png ; $L \oplus \dot { k } = \{ l \oplus \dot { k } : l \in L \}$ ; confidence 0.365 |
| − | 183. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002091.png ; $x ^ { * } : = 2 ( 1 | x ) 1 - \sigma ( x ) , \| x | ^ { 2 } : = ( x | x ) + ( ( x | x ) ^ { 2 } - | ( x | \sigma ( x ) ) | ^ { 2 } ) ^ { 1 / 2 }$ ; confidence 0.365 | + | 183. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130020/b13002091.png ; $x ^ { * } : = 2 ( 1 | x ) 1 - \sigma ( x ) , \| x \| ^ { 2 } : = ( x | x ) + ( ( x | x ) ^ { 2 } - | ( x | \sigma ( x ) ) | ^ { 2 } ) ^ { 1 / 2 },$ ; confidence 0.365 |
184. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005016.png ; $\langle S \rangle = G$ ; confidence 0.365 | 184. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130050/c13005016.png ; $\langle S \rangle = G$ ; confidence 0.365 | ||
| Line 370: | Line 370: | ||
185. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027064.png ; $\operatorname { Gal } ( N / E )$ ; confidence 0.365 | 185. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027064.png ; $\operatorname { Gal } ( N / E )$ ; confidence 0.365 | ||
| − | 186. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009096.png ; $H _ { n + 1 } ^ { ( k ) } ( x ) = \sum \frac { ( n _ { 1 } + \ldots + n _ { k } ) ! } { n _ { 1 } ! \ldots n _ { k } ! } x _ { 1 } ^ { n _ { 1 } } \ldots x _ { k } ^ { n _ { k } }$ ; confidence 0.364 | + | 186. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130090/f13009096.png ; $H _ { n + 1 } ^ { ( k ) } ( x ) = \sum \frac { ( n _ { 1 } + \ldots + n _ { k } ) ! } { n _ { 1 } ! \ldots n _ { k } ! } x _ { 1 } ^ { n _ { 1 } } \ldots x _ { k } ^ { n _ { k } },$ ; confidence 0.364 |
187. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016670/b01667055.png ; $i , j , k = 1 , \dots , m$ ; confidence 0.364 | 187. https://www.encyclopediaofmath.org/legacyimages/b/b016/b016670/b01667055.png ; $i , j , k = 1 , \dots , m$ ; confidence 0.364 | ||
| − | 188. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043065.png ; $\Delta y = y \otimes 1 + 1 \otimes y , \varepsilon y = 0$ ; confidence 0.364 | + | 188. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120430/b12043065.png ; $\Delta y = y \otimes 1 + 1 \otimes y , \varepsilon y = 0,$ ; confidence 0.364 |
| − | 189. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027094.png ; $N | + | 189. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120270/a12027094.png ; $N / K$ ; confidence 0.364 |
| − | 190. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004058.png ; $F _ { X }$ ; confidence 0.364 | + | 190. https://www.encyclopediaofmath.org/legacyimages/l/l110/l110040/l11004058.png ; $F _ { \mathcal{X} }$ ; confidence 0.364 |
| − | 191. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006021.png ; $ | + | 191. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120060/l12006021.png ; $( \lambda | f )$ ; confidence 0.364 |
192. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420100.png ; $q \in k ^ { * }$ ; confidence 0.364 | 192. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b120420100.png ; $q \in k ^ { * }$ ; confidence 0.364 | ||
| Line 386: | Line 386: | ||
193. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001026.png ; $L _ { n } = - z ^ { n } D$ ; confidence 0.364 | 193. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120010/w12001026.png ; $L _ { n } = - z ^ { n } D$ ; confidence 0.364 | ||
| − | 194. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290144.png ; $\phi ^ { | + | 194. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130290/f130290144.png ; $\phi ^ { o p }$ ; confidence 0.363 |
195. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130040/k1300408.png ; $\sum \mathfrak { c } _ { i } x _ { i }$ ; confidence 0.363 | 195. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130040/k1300408.png ; $\sum \mathfrak { c } _ { i } x _ { i }$ ; confidence 0.363 | ||
| − | 196. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005052.png ; $R ^ { n } \times R ^ { p }$ ; confidence 0.363 | + | 196. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005052.png ; $\mathbf{R} ^ { n } \times \mathbf{R} ^ { p }$ ; confidence 0.363 |
| − | 197. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050019.png ; $Z _ { 0 } ^ { | + | 197. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120500/b12050019.png ; $\mathcal{Z} _ { 0 } ^ { o } ( t ) : = \{ s : M _ { s } - W _ { s } = 0 , s \leq t \}$ ; confidence 0.363 |
198. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a1201709.png ; $\mu ( \alpha )$ ; confidence 0.363 | 198. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120170/a1201709.png ; $\mu ( \alpha )$ ; confidence 0.363 | ||
| − | 199. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150173.png ; $\Gamma ( A ) = \operatorname { inf } _ { M } \| A |$ ; confidence 0.363 | + | 199. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120150/f120150173.png ; $\Gamma ( A ) = \operatorname { inf } _ { M } \| A |_M \|$ ; confidence 0.363 |
| − | 200. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006070.png ; $\frac { 1 } { 4 n } \operatorname { max } \{ \alpha _ { i } : 0 \leq i \leq t \} \leq \Delta _ { 2 } \leq \frac { 1 } { 4 n } ( \sum _ { i = 0 } ^ { t } \alpha _ { i } + 2 )$ ; confidence 0.363 | + | 200. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130060/l13006070.png ; $\frac { 1 } { 4 n } \operatorname { max } \{ \alpha _ { i } : 0 \leq i \leq t \} \leq \Delta _ { 2 } \leq \frac { 1 } { 4 n } \left( \sum _ { i = 0 } ^ { t } \alpha _ { i } + 2 \right).$ ; confidence 0.363 |
| − | 201. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008063.png ; $E ( a , R ) = \{ x \in B : \frac { | 1 - ( x , a ) | ^ { 2 } } { 1 - \| x \| ^ { 2 } } < R \}$ ; confidence 0.363 | + | 201. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008063.png ; $E ( a , R ) = \left\{ x \in \mathbf{B} : \frac { | 1 - ( x , a ) | ^ { 2 } } { 1 - \| x \| ^ { 2 } } < R \right\}$ ; confidence 0.363 |
| − | 202. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130040/o1300407.png ; $\mu _ { \varepsilon } ^ { x } : = P _ { x } \{ \omega : \rho ( X _ { t } ( \omega ) , \phi ( t ) ) \leq \varepsilon \text { for | + | 202. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130040/o1300407.png ; $\mu _ { \varepsilon } ^ { x } : = \mathcal{P} _ { x } \{ \omega : \rho ( X _ { t } ( \omega ) , \phi ( t ) ) \leq \varepsilon \text { for every }t \in [ 0 , T ] \},$ ; confidence 0.363 |
| − | 203. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b1203002.png ; $\psi ( y ) = e ^ { i \eta \cdot y } \phi ( y ) \text { a.e. for } y \in R ^ { N }$ ; confidence 0.363 | + | 203. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120300/b1203002.png ; $\psi ( y ) = e ^ { i \eta \cdot y } \phi ( y ) \text { a.e. for } y \in \mathbf{R} ^ { N }$ ; confidence 0.363 |
204. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017510/b01751021.png ; $x \in E _ { 1 }$ ; confidence 0.363 | 204. https://www.encyclopediaofmath.org/legacyimages/b/b017/b017510/b01751021.png ; $x \in E _ { 1 }$ ; confidence 0.363 | ||
| − | 205. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080115.png ; $= \left\{ \begin{array} { l l } { I _ { n } , } & { p = q = 0 } \\ { 0 , } & { p \neq 0 \text { or } / \text { and } q \neq 0 } \end{array} \right.$ ; confidence 0.363 | + | 205. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120080/c120080115.png ; $= \left\{ \begin{array} { l l } { I _ { n } , } & { p = q = 0, } \\ { 0 , } & { p \neq 0 \text { or } / \text { and } q \neq 0. } \end{array} \right.$ ; confidence 0.363 |
| − | 206. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002023.png ; $\operatorname { sup } _ { I } \frac { 1 } { | I | } \int _ { I } | f - f _ { I } | d m < \infty$ ; confidence 0.363 | + | 206. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h12002023.png ; $\operatorname { sup } _ { I } \frac { 1 } { | I | } \int _ { I } | f - f _ { I } | d m < \infty,$ ; confidence 0.363 |
| − | 207. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010063.png ; $ | + | 207. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130100/b13010063.png ; $L_\alpha^2$ ; confidence 0.363 |
| − | 208. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016051.png ; $\lambda \notin \sigma _ { \text { | + | 208. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120160/f12016051.png ; $\lambda \notin \sigma _ {| \text { re } } ( T )$ ; confidence 0.362 |
209. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008026.png ; $\alpha \in \partial \Delta$ ; confidence 0.362 | 209. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130080/d13008026.png ; $\alpha \in \partial \Delta$ ; confidence 0.362 | ||
| − | 210. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l0600402.png ; $f ( z ) = a _ { 0 } z ^ { | + | 210. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l0600402.png ; $f ( z ) = a _ { 0 } z ^ { n } + \ldots + a _ { n } - 1 z + a _ { n } =$ ; confidence 0.362 |
| − | 211. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130130/s13013011.png ; $ | + | 211. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130130/s13013011.png ; $\operatorname{exp} ( G )$ ; confidence 0.362 |
212. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520460.png ; $\{ Y : y _ { i } = 0 , \square i = i _ { 1 } , \dots , i _ { l } \}$ ; confidence 0.362 | 212. https://www.encyclopediaofmath.org/legacyimages/n/n067/n067520/n067520460.png ; $\{ Y : y _ { i } = 0 , \square i = i _ { 1 } , \dots , i _ { l } \}$ ; confidence 0.362 | ||
| − | 213. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034076.png ; $x = ( x , u )$ ; confidence 0.362 | + | 213. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120340/s12034076.png ; $\tilde{x} = ( x , u )$ ; confidence 0.362 |
214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040316.png ; $h ( x ) = a , \ldots , h ( w ) = d$ ; confidence 0.362 | 214. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040316.png ; $h ( x ) = a , \ldots , h ( w ) = d$ ; confidence 0.362 | ||
| − | 215. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110124.png ; $= 2 ^ { 2 n } \int \int e ^ { - 4 i \pi [ X - Y , X - Z ] | + | 215. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110124.png ; $= 2 ^ { 2 n } \int \int e ^ { - 4 i \pi [ X - Y , X - Z ] } { a } ( Y ) b ( Z ) d Y d Z ,$ ; confidence 0.362 |
| − | 216. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013067.png ; $x \in V ( \ | + | 216. https://www.encyclopediaofmath.org/legacyimages/l/l120/l120130/l12013067.png ; $\bar{x} \in V ( \tilde{\mathbf{Q}} )$ ; confidence 0.362 |
| − | 217. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050133.png ; $\ | + | 217. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120050/a120050133.png ; $\alpha_j ( .,. )$ ; confidence 0.362 |
218. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067035.png ; $j _ { X } ^ { k } ( u )$ ; confidence 0.362 | 218. https://www.encyclopediaofmath.org/legacyimages/s/s090/s090670/s09067035.png ; $j _ { X } ^ { k } ( u )$ ; confidence 0.362 | ||
| − | 219. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021087.png ; $L = \alpha ^ { [ 2 ] } ( z ) z ^ { 2 } ( \frac { d } { d z } ) ^ { 2 } + \alpha ^ { [ 1 ] } ( z ) z ( \frac { d } { d z } ) + \alpha ^ { [ 0 ] } ( z )$ ; confidence 0.362 | + | 219. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120210/f12021087.png ; $L = \alpha ^ { [ 2 ] } ( z ) z ^ { 2 } ( \frac { d } { d z } ) ^ { 2 } + \alpha ^ { [ 1 ] } ( z ) z ( \frac { d } { d z } ) + \alpha ^ { [ 0 ] } ( z ).$ ; confidence 0.362 |
| − | 220. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042094.png ; $w | + | 220. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042094.png ; $w $ ; confidence 0.362 |
| − | 221. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042056.png ; $b _ { i } b _ { i | + | 221. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042056.png ; $b _ { i } b _ { i + 1} b _ { i } = b _ { i } + 1 b _ { i } b _ { i } + 1 , b _ { i } b _ { j } = b _ { j } b _ { i } , \quad | i - j | \geq 2,$ ; confidence 0.362 |
| − | 222. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025028.png ; $ | + | 222. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130250/c13025028.png ; $Z _ { k } ( t )$ ; confidence 0.362 |
| − | 223. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021062.png ; $( M ) \subset Z ( \mathfrak { g } ) ^ { * }$ ; confidence 0.361 | + | 223. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021062.png ; $\Theta( M ) \subset Z ( \mathfrak { g } ) ^ { * }$ ; confidence 0.361 |
224. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030113.png ; $c : T ^ { * } M \cong T M \rightarrow \operatorname { End } ( W )$ ; confidence 0.361 | 224. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130030/i130030113.png ; $c : T ^ { * } M \cong T M \rightarrow \operatorname { End } ( W )$ ; confidence 0.361 | ||
| − | 225. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130040/n1300401.png ; $C _ { | + | 225. https://www.encyclopediaofmath.org/legacyimages/n/n130/n130040/n1300401.png ; $\mathcal{C} _ { n } = \left( \begin{array} { c } { 2 n } \\ { n } \end{array} \right) - \left( \begin{array} { c } { 2 n } \\ { n - 1 } \end{array} \right)$ ; confidence 0.361 |
| − | 226. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140108.png ; $\sum _ { i , j \in Q _ { 0 } } e _ { j } I | + | 226. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t130140108.png ; $\sum _ { i , j \in Q _ { 0 } } e _ { j } I { e }_i$ ; confidence 0.361 |
| − | 227. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040142.png ; $P _ { L } ( e ^ { \pi i / 3 } , i ) = \varepsilon ( L ) i ^ { \operatorname { com } ( L ) - 1 } ( i \sqrt { 3 } ) ^ { \operatorname { dim } ( H _ { 1 } ( M ^ { ( 2 ) } , Z _ { 3 } ) ) }$ ; confidence 0.361 | + | 227. https://www.encyclopediaofmath.org/legacyimages/j/j130/j130040/j130040142.png ; $P _ { L } ( e ^ { \pi i / 3 } , i ) = \varepsilon ( L ) i ^ { \operatorname { com } ( L ) - 1 } ( i \sqrt { 3 } ) ^ { \operatorname { dim } ( H _ { 1 } ( M ^ { ( 2 ) } , \mathbf{Z} _ { 3 } ) ) }$ ; confidence 0.361 |
| − | 228. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080060/r08006041.png ; $III _ { 1 }$ ; confidence 0.361 | + | 228. https://www.encyclopediaofmath.org/legacyimages/r/r080/r080060/r08006041.png ; $\operatorname{III} _ { 1 }$ ; confidence 0.361 |
| − | 229. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032130/d032130166.png ; $d ^ { | + | 229. https://www.encyclopediaofmath.org/legacyimages/d/d032/d032130/d032130166.png ; $d ^ { \prime \prime }$ ; confidence 0.361 |
| − | 230. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020103.png ; $y _ { 0 } \in Fix G$ ; confidence 0.361 | + | 230. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020103.png ; $y _ { 0 } \in \operatorname{Fix} G$ ; confidence 0.361 |
231. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023060.png ; $K ^ { \prime } K = I _ { m }$ ; confidence 0.361 | 231. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023060.png ; $K ^ { \prime } K = I _ { m }$ ; confidence 0.361 | ||
| − | 232. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005049.png ; $H _ { | + | 232. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120050/b12005049.png ; $\mathcal{H} _ { b } ( E )$ ; confidence 0.361 |
| − | 233. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090359.png ; $( V ) = \Lambda$ ; confidence 0.361 | + | 233. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120090/w120090359.png ; $\Lambda( V ) = \Lambda$ ; confidence 0.361 |
| − | 234. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024044.png ; $ | + | 234. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130240/f13024044.png ; $L_{ - 2}$ ; confidence 0.360 |
| − | 235. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085260/s08526050.png ; $\overline { D } | + | 235. https://www.encyclopediaofmath.org/legacyimages/s/s085/s085260/s08526050.png ; $\overline { D^- } $ ; confidence 0.360 |
| − | 236. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022020.png ; $\sum ^ { n _ { k = 1 } } c _ { k } ( b - a ) ^ { k } \| p _ { k } \| < 1$ ; confidence 0.360 | + | 236. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110220/d11022020.png ; $\sum ^ { n _ { k = 1 } } c _ { k } ( b - a ) ^ { k } \| p _ { k } \| < 1,$ ; confidence 0.360 |
| − | 237. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014084.png ; $ | + | 237. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120140/d12014084.png ; $\mathbf{Z} _ { n }$ ; confidence 0.360 |
| − | 238. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110010/h11001010.png ; $\sum _ { n | + | 238. https://www.encyclopediaofmath.org/legacyimages/h/h110/h110010/h11001010.png ; $\sum _ { n \leq x } f ( n ) = c x ^ { 1 + i x } \cdot L ( \operatorname { log } x ) + o ( x ).$ ; confidence 0.360 |
| − | 239. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008030.png ; $f ( x ) \operatorname { | + | 239. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130080/a13008030.png ; $f ( x ) / \operatorname { g } ( x ; m , s )$ ; confidence 0.360 |
| − | 240. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030550/d03055027.png ; $ | + | 240. https://www.encyclopediaofmath.org/legacyimages/d/d030/d030550/d03055027.png ; $x \in \mathbf{R}$ ; confidence 0.360 |
| − | 241. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060101.png ; $ | + | 241. https://www.encyclopediaofmath.org/legacyimages/a/a014/a014060/a014060101.png ; $\beta _ { j }$ ; confidence 0.359 |
| − | 242. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010057.png ; $R ^ { * } g : = \int _ { S ^ { n - 1 } g ( \alpha , \alpha x ) d \alpha | + | 242. https://www.encyclopediaofmath.org/legacyimages/l/l130/l130100/l13010057.png ; $R ^ { * } g : = \int _ { S ^ { n - 1 }} g ( \alpha , \alpha x ) d \alpha $ ; confidence 0.359 |
| − | 243. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001025.png ; $\hat { f } \in H$ ; confidence 0.359 | + | 243. https://www.encyclopediaofmath.org/legacyimages/m/m130/m130010/m13001025.png ; $\hat { f } \in \mathcal{H}$ ; confidence 0.359 |
| − | 244. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008021.png ; $S ^ { \prime } ( R ^ { 2 | + | 244. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120080/w12008021.png ; $S ^ { \prime } ( \mathbf{R} ^ { 2 n } )$ ; confidence 0.359 |
| − | 245. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017022.png ; $D = \{ 1,0 , - 1 \} ^ { | + | 245. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120170/s12017022.png ; $D = \{ 1,0 , - 1 \} ^ { n }$ ; confidence 0.359 |
| − | 246. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020113.png ; $\rho _ { n } ( \phi ) = \operatorname { inf } \{ \| \phi - r \| _ { BMO } : \rho \in R _ { n } \}$ ; confidence 0.359 | + | 246. https://www.encyclopediaofmath.org/legacyimages/h/h120/h120020/h120020113.png ; $\rho _ { n } ( \phi ) = \operatorname { inf } \{ \| \phi - r \| _ { BMO } : \rho \in \mathbf{R} _ { n } \},$ ; confidence 0.359 |
247. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005028.png ; $\sum _ { l = 1 } ^ { m } w _ { l } \cdot \frac { p _ { l } - x _ { 0 } } { \| p _ { l } - x _ { 0 } \| } = 0$ ; confidence 0.359 | 247. https://www.encyclopediaofmath.org/legacyimages/f/f130/f130050/f13005028.png ; $\sum _ { l = 1 } ^ { m } w _ { l } \cdot \frac { p _ { l } - x _ { 0 } } { \| p _ { l } - x _ { 0 } \| } = 0$ ; confidence 0.359 | ||
| Line 496: | Line 496: | ||
248. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013063.png ; $\zeta _ { \lambda } ^ { \lambda } = i ^ { ( n - r ( \lambda ) + 1 ) / 2 } \sqrt { ( \lambda _ { 1 } \ldots \lambda _ { r ( \lambda ) } ) / 2 }$ ; confidence 0.359 | 248. https://www.encyclopediaofmath.org/legacyimages/p/p130/p130130/p13013063.png ; $\zeta _ { \lambda } ^ { \lambda } = i ^ { ( n - r ( \lambda ) + 1 ) / 2 } \sqrt { ( \lambda _ { 1 } \ldots \lambda _ { r ( \lambda ) } ) / 2 }$ ; confidence 0.359 | ||
| − | 249. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005086.png ; $\Sigma ^ { i _ { 1 } , \ldots , i _ { r } } ( f ) = \Sigma ^ { i _ { r } } ( f | _ { \Sigma ^ { i _ { 1 } } , \ldots , i _ { r - 1 } ( f ) } )$ ; confidence 0.359 | + | 249. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120050/t12005086.png ; $\dots \Sigma ^ { i _ { 1 } , \ldots , i _ { r } } ( f ) = \Sigma ^ { i _ { r } } ( f | _ { \Sigma ^ { i _ { 1 } } , \ldots , i _ { r - 1 } ( f ) } ).$ ; confidence 0.359 |
| − | 250. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d1301107.png ; $= ( \alpha _ { x } p _ { x } + \alpha _ { y } p y + \alpha _ { z } p _ { z } + \beta m _ { 0 } c ) ^ { 2 }$ ; confidence 0.359 | + | 250. https://www.encyclopediaofmath.org/legacyimages/d/d130/d130110/d1301107.png ; $= ( \alpha _ { x } \mathbf{p} _ { x } + \alpha _ { y } \mathbf{p}_ y + \alpha _ { z } \mathbf{p} _ { z } + \beta m _ { 0 } c ) ^ { 2 }.$ ; confidence 0.359 |
| − | 251. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006019.png ; $a _ { k | + | 251. https://www.encyclopediaofmath.org/legacyimages/k/k130/k130060/k13006019.png ; $a _ { k - 1} + 1$ ; confidence 0.359 |
| − | 252. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007086.png ; $\{ p _ | + | 252. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e12007086.png ; $\{ p _ M\}$ ; confidence 0.359 |
| − | 253. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021900/c0219009.png ; $T _ { | + | 253. https://www.encyclopediaofmath.org/legacyimages/c/c021/c021900/c0219009.png ; $T _ { n } ( x )$ ; confidence 0.359 |
254. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008071.png ; $= \sum _ { S _ { 1 } = \pm 1 } \cdots \sum _ { S _ { N } = \pm 1 } \prod _ { i = 1 } ^ { N }$ ; confidence 0.359 | 254. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120080/i12008071.png ; $= \sum _ { S _ { 1 } = \pm 1 } \cdots \sum _ { S _ { N } = \pm 1 } \prod _ { i = 1 } ^ { N }$ ; confidence 0.359 | ||
| Line 510: | Line 510: | ||
255. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090211.png ; $k _ { \infty } ^ { \prime }$ ; confidence 0.359 | 255. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i130090211.png ; $k _ { \infty } ^ { \prime }$ ; confidence 0.359 | ||
| − | 256. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050019.png ; $\nabla ( A ) : = \{ Y \in \left( \begin{array} { l } { [ n ] } \\ { l + 1 } \end{array} \right) : Y \supset \text { | + | 256. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130500/s13050019.png ; $\nabla ( A ) : = \left\{ Y \in \left( \begin{array} { l } { [ n ] } \\ { l + 1 } \end{array} \right) : Y \supset X \text { for some } X\in \mathcal{A} \right\}.$ ; confidence 0.359 |
257. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004012.png ; $A = \{ | h _ { 1 } ( z ) | < 1 , \dots , | h _ { 1 } ( z ) | < 1 \}$ ; confidence 0.358 | 257. https://www.encyclopediaofmath.org/legacyimages/i/i120/i120040/i12004012.png ; $A = \{ | h _ { 1 } ( z ) | < 1 , \dots , | h _ { 1 } ( z ) | < 1 \}$ ; confidence 0.358 | ||
| − | 258. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i1300408.png ; $bv = \{ d = \{ d _ { k } \} : \| | + | 258. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i1300408.png ; $bv = \left\{ d = \{ d _ { k } \} : \| d \| _ { bv } = \sum _ { k = 0 } ^ { \infty } | \Delta d _ { k } | < \infty \right\}$ ; confidence 0.358 |
| − | 259. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003052.png ; $x _ { | + | 259. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120030/d12003052.png ; $x _ { n } \searrow x _ { 0 }$ ; confidence 0.358 |
| − | 260. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220111.png ; $L ( i , m ) = \operatorname { det } _ { Q } H _ { B } ^ { i } ( | + | 260. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220111.png ; $\mathcal{L} ( i , m ) = \operatorname { det } _ { Q } H _ { B } ^ { i } ( X_{ / R} , \mathbf{R} ( i - m ) ).$ ; confidence 0.358 |
| − | 261. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024088.png ; $\in H ^ { 1 } ( Z [ 1 / p L ] ; Z / M ( n ) )$ ; confidence 0.358 | + | 261. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120240/e12024088.png ; $\Lambda_L \in H ^ { 1 } ( \mathbf{Z} [ 1 / p L ] ; \mathbf{Z} / M ( n ) )$ ; confidence 0.358 |
| − | 262. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027032.png ; $A _ { s } ^ { + } = \left\{ \begin{array} { l l } { f : } & { f \in A _ { s } } \\ | + | 262. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120270/s12027032.png ; $A _ { s } ^ { + } = \left\{ \begin{array} { l l } { f : } & { f \in A _ { s } } \\ & { f ^ { ( s ) } \text { has no change of } \operatorname { sign } \operatorname { in } ( a , b ) } \end{array} \right\}.$ ; confidence 0.358 |
| − | 263. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120020/w12002021.png ; $l _ { 1 } ( P , Q ) = \operatorname { sup } \{ \int f d ( P - Q ) : \operatorname { Lip } f \leq 1 \}$ ; confidence 0.358 | + | 263. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120020/w12002021.png ; $l _ { 1 } ( P , Q ) = \operatorname { sup } \right\{ \int f d ( P - Q ) : \operatorname { Lip } f \leq 1 \left\}.$ ; confidence 0.358 |
| − | 264. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020133.png ; $\Lambda ( F ) = \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \operatorname { tr } ( r * | + | 264. https://www.encyclopediaofmath.org/legacyimages/v/v120/v120020/v120020133.png ; $\Lambda ( F ) = \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \operatorname { tr } ( r _n* \circ t_n * ^ { - 1 } );$ ; confidence 0.358 |
265. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002015.png ; $\| \alpha _ { N } + \beta _ { N } \|$ ; confidence 0.358 | 265. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120020/b12002015.png ; $\| \alpha _ { N } + \beta _ { N } \|$ ; confidence 0.358 | ||
| Line 532: | Line 532: | ||
266. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008016.png ; $A _ { K } / p$ ; confidence 0.358 | 266. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130080/c13008016.png ; $A _ { K } / p$ ; confidence 0.358 | ||
| − | 267. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011840/a011840142.png ; $ | + | 267. https://www.encyclopediaofmath.org/legacyimages/a/a011/a011840/a011840142.png ; $q_ki$ ; confidence 0.358 |
| − | 268. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023051.png ; $| I _ { p } + \Sigma ^ { - 1 } X X ^ { \prime } | ^ { - ( \delta + n + p - 1 ) / 2 } , X \in R ^ { p \times n }$ ; confidence 0.357 | + | 268. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s12023051.png ; $.| I _ { p } + \Sigma ^ { - 1 } X X ^ { \prime } | ^ { - ( \delta + n + p - 1 ) / 2 } , X \in \mathbf{R} ^ { p \times n },$ ; confidence 0.357 |
| − | 269. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031078.png ; $x \in T ^ { | + | 269. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120310/b12031078.png ; $x \in \mathcal{T} ^ { n }$ ; confidence 0.357 |
| − | 270. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021021.png ; $L _ { | + | 270. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130210/c13021021.png ; $L _ { + }$ ; confidence 0.357 |
| − | 271. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007010.png ; $\operatorname { ch } V = \sum _ { \mu \in h ^ { * } } ( \operatorname { dim } V _ { \mu } ) e ^ { \mu }$ ; confidence 0.357 | + | 271. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130070/w13007010.png ; $\operatorname { ch } V = \sum _ { \mu \in \mathfrak{h} ^ { * } } ( \operatorname { dim } V _ { \mu } ) e ^ { \mu }.$ ; confidence 0.357 |
| − | 272. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005087.png ; $v _ { n } \in G$ ; confidence 0.357 | + | 272. https://www.encyclopediaofmath.org/legacyimages/o/o130/o130050/o13005087.png ; $v _ { n } \in \mathfrak{G}$ ; confidence 0.357 |
| − | 273. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110269.png ; $g _ { 1 } = | d x | ^ { 2 } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } } \leq | + | 273. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120110/w120110269.png ; $g _ { 1 } = | d x | ^ { 2 } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } } \leq g_2 = \frac { | d x | ^ { 2 } } { | x | ^ { 2 } } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } },$ ; confidence 0.357 |
| − | 274. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160156.png ; $NC = \text { ASPACETIME } [ \operatorname { log } n , ( \operatorname { log } n ) ^ { O ( 1 ) } ]$ ; confidence 0.357 | + | 274. https://www.encyclopediaofmath.org/legacyimages/c/c130/c130160/c130160156.png ; $NC = \text { ASPACETIME } [ \operatorname { log } n , ( \operatorname { log } n ) ^ { O ( 1 ) } ].$ ; confidence 0.357 |
| − | 275. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012022.png ; $T _ { W d } = T _ { H }$ ; confidence 0.357 | + | 275. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130120/w13012022.png ; $T _ { W d } = T _ { \operatorname{H}d }$ ; confidence 0.357 |
| − | 276. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013290/a0132908.png ; $\ | + | 276. https://www.encyclopediaofmath.org/legacyimages/a/a013/a013290/a0132908.png ; $\neg$ ; confidence 0.357 |
277. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290219.png ; $G ( I ) = \oplus _ { n } \geq 0 I ^ { n } / I ^ { n + 1 }$ ; confidence 0.357 | 277. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130290/b130290219.png ; $G ( I ) = \oplus _ { n } \geq 0 I ^ { n } / I ^ { n + 1 }$ ; confidence 0.357 | ||
| − | 278. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070109.png ; $\ | + | 278. https://www.encyclopediaofmath.org/legacyimages/e/e120/e120070/e120070109.png ; $\tilde { H } ^ { 1 }$ ; confidence 0.357 |
| − | 279. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020115.png ; $x ^ { ( | + | 279. https://www.encyclopediaofmath.org/legacyimages/d/d120/d120020/d120020115.png ; $x ^ { ( l ) }$ ; confidence 0.356 |
| − | 280. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004025.png ; $\operatorname { lim } _ { k \rightarrow \infty } g _ { k , p } = \frac { f ^ { * } ( z ) } { ( z - r _ { 1 } ) \ldots ( z - r _ { p } ) }$ ; confidence 0.356 | + | 280. https://www.encyclopediaofmath.org/legacyimages/l/l060/l060040/l06004025.png ; $\operatorname { lim } _ { k \rightarrow \infty } \bar{g} _ { k , p } = \frac { f ^ { * } ( z ) } { ( z - r _ { 1 } ) \ldots ( z - r _ { p } ) },$ ; confidence 0.356 |
281. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011041.png ; $\underline { x } = ( x _ { 1 } , \dots , x _ { x } )$ ; confidence 0.356 | 281. https://www.encyclopediaofmath.org/legacyimages/n/n120/n120110/n12011041.png ; $\underline { x } = ( x _ { 1 } , \dots , x _ { x } )$ ; confidence 0.356 | ||
| Line 564: | Line 564: | ||
282. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120020/w12002017.png ; $l _ { p } ( P , Q ) = \operatorname { inf } \{ \| d ( X , Y ) \| _ { p } \}$ ; confidence 0.356 | 282. https://www.encyclopediaofmath.org/legacyimages/w/w120/w120020/w12002017.png ; $l _ { p } ( P , Q ) = \operatorname { inf } \{ \| d ( X , Y ) \| _ { p } \}$ ; confidence 0.356 | ||
| − | 283. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170126.png ; $V ( z _ { 0 } , \dots , z _ { r | + | 283. https://www.encyclopediaofmath.org/legacyimages/c/c120/c120170/c120170126.png ; $V ( z _ { 0 } , \dots , z _ { r - 1} ) ( \rho _ { 0 } , \dots , \rho _ { r - 1 } ) ^ { T } = ( \gamma _ { 00 } , \dots , \gamma _ { 0 , r - 1 } ) ^ { T }$ ; confidence 0.356 |
| − | 284. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011037.png ; $\Delta \subset R ^ { | + | 284. https://www.encyclopediaofmath.org/legacyimages/f/f120/f120110/f12011037.png ; $\Delta \subset \mathbf{R} ^ { n }$ ; confidence 0.356 |
| − | 285. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210148.png ; $\mathfrak { p } \supset b$ ; confidence 0.356 | + | 285. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b120210148.png ; $\mathfrak { p } \supset \mathfrak{b}$ ; confidence 0.356 |
286. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003033.png ; $m b$ ; confidence 0.356 | 286. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120030/b12003033.png ; $m b$ ; confidence 0.356 | ||
| − | 287. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040365.png ; $\tilde { \Omega } _ { D } F = \cap \{ \Omega G : F \subseteq G \in Fi _ { D } A \}$ ; confidence 0.356 | + | 287. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040365.png ; $\tilde { \Omega } _ { \mathcal{D} } F = \cap \{ \Omega G : F \subseteq G \in Fi _ { \mathcal{D} } A \}.$ ; confidence 0.356 |
| − | 288. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003097.png ; $ | + | 288. https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003097.png ; $vp ( . )$ ; confidence 0.356 |
289. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020014.png ; $[ e _ { i } f _ { j } ] = \delta _ { i j } h _ { i }$ ; confidence 0.355 | 289. https://www.encyclopediaofmath.org/legacyimages/b/b130/b130200/b13020014.png ; $[ e _ { i } f _ { j } ] = \delta _ { i j } h _ { i }$ ; confidence 0.355 | ||
| − | 290. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220176.png ; $_ { s = m } L ( h ^ { i } ( X ) , s ) =$ ; confidence 0.355 | + | 290. https://www.encyclopediaofmath.org/legacyimages/b/b110/b110220/b110220176.png ; $\operatorname{ord}_ { s = m } L ( h ^ { i } ( X ) , s ) =$ ; confidence 0.355 |
| − | 291. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001085.png ; $ | + | 291. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120010/t12001085.png ; $\mathbf{Q}$ ; confidence 0.355 |
292. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009035.png ; $r _ { 1 } ( k )$ ; confidence 0.355 | 292. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130090/i13009035.png ; $r _ { 1 } ( k )$ ; confidence 0.355 | ||
| − | 293. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001062.png ; $ | + | 293. https://www.encyclopediaofmath.org/legacyimages/z/z130/z130010/z13001062.png ; $z/ z - \alpha$ ; confidence 0.355 |
| − | 294. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020053.png ; $N = r | + | 294. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120200/a12020053.png ; $N = r _1 + \ldots + r _ { n }$ ; confidence 0.355 |
| − | 295. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i1300405.png ; $ | + | 295. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130040/i1300405.png ; $\hat{L^1}$ ; confidence 0.355 |
| − | 296. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110230/d11023013.png ; $ | + | 296. https://www.encyclopediaofmath.org/legacyimages/d/d110/d110230/d11023013.png ; $\bar{L}$ ; confidence 0.354 |
| − | 297. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014026.png ; $X = ( X _ { i } , \phi _ { \beta } ) _ { j \in Q _ { 0 } , | + | 297. https://www.encyclopediaofmath.org/legacyimages/t/t130/t130140/t13014026.png ; $\mathbf{X} = ( X _ { i } , \phi _ { \beta } ) _ { j \in Q _ { 0 } , \beta \in Q _ { 1 }}$ ; confidence 0.354 |
| − | 298. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230156.png ; $ | + | 298. https://www.encyclopediaofmath.org/legacyimages/s/s120/s120230/s120230156.png ; $\operatorname{rank} ( A _ { i } ) = n_i$ ; confidence 0.354 |
| − | 299. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700062.png ; $F A _ { 1 } \ldots A _ { | + | 299. https://www.encyclopediaofmath.org/legacyimages/l/l057/l057000/l05700062.png ; $F A _ { 1 } \ldots A _ { n }$ ; confidence 0.354 |
| − | 300. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008039.png ; $\frac { 1 } { 2 ( 1 - \sigma _ { p - 1 } ) ( 1 - \sigma _ { p } ) } [ \sum _ { k = 1 } ^ { q - 1 } \lambda _ { k } b _ { k } ^ { ( 2 ) } + ( 1 - \sigma _ { p - 1 } ) \frac { b _ { q } ^ { ( 2 ) } } { b _ { | + | 300. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008039.png ; $\frac { 1 } { 2 ( 1 - \sigma _ { p - 1 } ) ( 1 - \sigma _ { p } ) } [ \sum _ { k = 1 } ^ { q - 1 } \lambda _ { k } b _ { k } ^ { ( 2 ) } + ( 1 - \sigma _ { p - 1 } ) \frac { b _ { q } ^ { ( 2 ) } } { b _ { q } } ] , 1 \leq p \leq q - 1$ ; confidence 0.354 |
Revision as of 19:31, 10 May 2020
List
1.
; $\mathbf{D} ^ { * } = \hat { \mathbf{C} } \backslash \overline { \mathbf{D} }$ ; confidence 0.378
2.
; $\{ ( 1 , t , t ^ { 2 } , \dots , t ^ { n } ) : t \in GF ( q ) \} \cup \{ ( 0 , \dots , 0,1 ) \}$ ; confidence 0.378
3.
; $a_5$ ; confidence 0.378
4.
; $\tau_{ U , V } ( u \otimes v ) = v \otimes u$ ; confidence 0.378
5.
; $\operatorname{Sp} ( 0 )$ ; confidence 0.378
6.
; $( u , \varphi_j ) = \lambda _ { j } w _ { j }$ ; confidence 0.378
7.
; $\operatorname { lim } _ { n \rightarrow \infty } m _ { n } ( E ) = m ( E )$ ; confidence 0.378
8.
; $n \in \mathbf{N} _ { 0 } = \{ 0,1,2 , \dots \}$ ; confidence 0.378
9.
; $( f _ { 1 } ( \bar{X} ) , \dots , f _ { m } ( \bar{X} ) )$ ; confidence 0.378
10.
; $H _ { \pm }$ ; confidence 0.378
11.
; $0 \rightarrow D _ { n } \stackrel { \delta _ { n } } { \rightarrow } \ldots \stackrel { \delta _ { 1 } } { \rightarrow } D _ { 0 } \stackrel { \delta _ { 0 } } { \rightarrow } \mathbf{C} \rightarrow 0$ ; confidence 0.378
12.
; $p_ x$ ; confidence 0.378
13.
; $- \Delta _ { k } ^ { 0 }$ ; confidence 0.378
14.
; $( a | b ) ^ { * } ( c | d ) = ( a ^ { * } c ) | ( b ^ { * } d )$ ; confidence 0.378
15.
; $\mathcal{I} _ { nd }$ ; confidence 0.378
16.
; $\|A \| _ { 2 } = \operatorname { max } _ { x \neq 0} \|Ax\|_2 / \| x \|_2$ ; confidence 0.377
17.
; $\mathcal{Y} ( T _ { A } ) = \{ N _ { B } : \operatorname { Tor } _ { 1 } ^ { B } ( N , T ) = 0 \}$ ; confidence 0.377
18.
; $\mathfrak { g } / Ad$ ; confidence 0.377
19.
; $x _ { n } \in X _ { n }$ ; confidence 0.377
20.
; $\dot { y } _ { i } = \psi _ { i } ( x _ { 1 } , \ldots , y _ { n } ) , \quad i = 1 , \ldots , n,$ ; confidence 0.377
21.
; $n - r$ ; confidence 0.377
22.
; $( a \sharp b ) ( X ) =$ ; confidence 0.377
23.
; $L _ { 0 , n }$ ; confidence 0.377
24.
; $V ^ { \prime }$ ; confidence 0.377
25.
; $= \langle ( \xi _ { 1 } \sigma _ { 1 } + \xi _ { 2 } \sigma _ { 2 } ) u , u \rangle _ { \mathcal{E} } - \langle ( \xi _ { 1 } \sigma _ { 1 } + \xi _ { 2 } \sigma _ { 2 } ) v , v \rangle _ { \mathcal{E} }$ ; confidence 0.377
26.
; $c_0$ ; confidence 0.377
27.
; $Q _ { \lambda } = \operatorname { Pf } ( M _ { \lambda } ),$ ; confidence 0.377
28.
; $R S [ i ] = id_X$ ; confidence 0.376
29.
; $g \in \mathbf{M}$ ; confidence 0.376
30.
; $g = \{ d x ^ { 1 } \otimes d x ^ { 1 } + \ldots + d x ^ { p } \otimes d x ^ { p } \} +$ ; confidence 0.376
31.
; $\zeta \in \mathbf{C} ^ { n }$ ; confidence 0.376
32.
; $\Delta _ { h _ { i } } ^ { \bar{s} }$ ; confidence 0.376
33.
; $\operatorname{Aut} ( \mathfrak{g} )$ ; confidence 0.376
34.
; $\sigma _T$ ; confidence 0.376
35.
; $\Psi _ { V \otimes W , Z } = \Psi _ { V , Z } \circ \Psi _ { W , Z },$ ; confidence 0.376
36.
; $\operatorname{Bel}_{X,\text{known}}= \bigoplus _ { h_ { i } \in H } \operatorname{Bel} _ { h_i, \text{know} }.$ ; confidence 0.376
37.
; $B _ { i }$ ; confidence 0.376
38.
; $k x = k _ { 1 } x _ { 1 } + \ldots + k _ { n } x _ { n }$ ; confidence 0.376
39.
; $| S ^ { * } ( \alpha / q ) |$ ; confidence 0.375
40.
; $\operatorname { inf } _ { z _ { j } } \operatorname { max } _ { j = 1 , \ldots , n^2 } | s _ { j } | \geq \sqrt { n }$ ; confidence 0.375
41.
; $\{ \alpha _ { n } \}$ ; confidence 0.375
42.
; $r \in R _ { W }$ ; confidence 0.375
43.
; $j _0$ ; confidence 0.375
44.
; $\gamma _ { j } = \hat { \phi } ( j ) , j \in \mathbf{Z},$ ; confidence 0.375
45.
; $\operatorname{Ad} K$ ; confidence 0.375
46.
; $\{ \psi _ { X } ( . ) \hat{=} f ^ { * } ( x ) : x \in M \}.$ ; confidence 0.375
47.
; $\operatorname { lnt } C ^ { 2 }$ ; confidence 0.375
48.
; $f _ { 1 } , \dots , f _ { n } \in \mathcal{D}$ ; confidence 0.375
49.
; $| \mathbf{a} _ { \alpha } | \leq C ^ { | \alpha | + 1 } , \alpha \in \mathbf{Z} _ { + } ^ { n }.$ ; confidence 0.375
50.
; $u _ { N } = \sum _ { n = 0 } ^ { N } a _ { n } \phi _ { n } ( x )$ ; confidence 0.375
51.
; $D _ { n } ( x , a ) = x D _ { n - 1 } ( x , a ) - a D _ { n - 2 } ( x , a ) , \quad n \geq 2,$ ; confidence 0.375
52.
; $\tilde { D } _ { m } \supset \tilde { D }$ ; confidence 0.375
53.
; $- A ^ { \pm 3 }$ ; confidence 0.375
54.
; $b / 1$ ; confidence 0.375
55.
; $\sigma _ { n }$ ; confidence 0.375
56.
; $X _ { H } , \tilde{x}$ ; confidence 0.374
57.
; $( \mathcal{L} _ { h k } V ) _ { j } ^ { n + 1 } = \frac { V _ { j } ^ { n + 1 } - V _ { j } ^ { n } } { k } - \delta ^ { 2 } \left( \frac { V _ { j } ^ { n + 1 } + V _ { j } ^ { n } } { 2 } \right),$ ; confidence 0.374
58.
; $\varphi \in G ^ { s_0 } ( \Omega )$ ; confidence 0.374
59.
; $\mathcal{P} _ { j } ^ { i }$ ; confidence 0.374
60.
; $\dot{c}$ ; confidence 0.374
61.
; $M _ { k }$ ; confidence 0.374
62.
; $\frac { \mu _ { N } ( x ) } { M } \stackrel { d } { \rightarrow } U ( 1 - U ) ^ { x - 1 },$ ; confidence 0.374
63.
; $P = P _ { 0 } z + P _ { 1 } : = \left( \begin{array} { c c } { - i } & { 0 } \\ { 0 } & { i } \end{array} \right) z + \left( \begin{array} { l l } { 0 } & { q } \\ { r } & { 0 } \end{array} \right),$ ; confidence 0.374
64.
; $\Lambda _ { m } ^ { \alpha , \beta , r , s } \sim \operatorname { log }m$ ; confidence 0.374
65.
; $\mathbf{Me} _ { \mathcal{S} _ { P } } ^ { *L } \mathfrak { M }$ ; confidence 0.374
66.
; $k = 0 , \dots , m.$ ; confidence 0.374
67.
; $\| f \| _ { W ^ { k - 1 } L _ { \Phi } ( \partial \Omega )} + \textbf { inf } $ ; confidence 0.374
68.
; $a \in \mathcal{A}$ ; confidence 0.374
69.
; $T ^ { 2 }$ ; confidence 0.373
70.
; $\operatorname{HF} _ { * } ^ { symp } ( M , \phi )$ ; confidence 0.373
71.
; $\int _ { 0 } ^ { \infty } | F ( x ) | ^ { 2 } ( 1 + x ) ^ { c - 2 a } \frac { d x } { x } =$ ; confidence 0.373
72.
; $#$ ; confidence 0.373
73.
; $\mathfrak { g } ^ { c }$ ; confidence 0.373
74.
; $G \times F / \sim$ ; confidence 0.373
75.
; $f _ { k }$ ; confidence 0.373
76.
; $- b _ { \gamma }$ ; confidence 0.373
77.
; $\operatorname { limsup } _ { k \rightarrow \infty } \sqrt [ |\alpha _k |] {k}\leq 1$ ; confidence 0.373
78.
; $X \sim \mathcal{U} _ { p , n}$ ; confidence 0.373
79.
; $H ^ { * op}$ ; confidence 0.373
80.
; $N_\mathcal{X}$ ; confidence 0.372
81.
; $| F ( u ) | \leq C _ { 1 } \sum _ { \alpha \in K } \rho ^ { m - N / p } \| D ^ { \alpha } u \| _ { p , T }.$ ; confidence 0.372
82.
; $\alpha ( k ) = \operatorname{Vol} ( S ^ { k } )$ ; confidence 0.372
83.
; $X _ { 1 } , \dots , X _ { m }$ ; confidence 0.372
84.
; $( \mathcal{E} ^ { \alpha } ( L ) \circ \sigma ^ { 2 k } ) ( Z ^ { \alpha } \circ \sigma ) \Delta.$ ; confidence 0.372
85.
; $\| g _ { n } \| \rightarrow 0$ ; confidence 0.372
86.
; $d z = d z _ { 1 } \wedge \ldots \wedge d z _ { n } , \quad \langle a , b \rangle = a _ { 1 } b _ { 1 } + \ldots + a _ { n } b _ { n }$ ; confidence 0.372
87.
; $F _ { n-1 } $ ; confidence 0.372
88.
; $H ^ { q } ( \Gamma , C )$ ; confidence 0.372
89.
; $A _ { l }$ ; confidence 0.372
90.
; $\mathbf{Q} ( \alpha ^ { \beta } , \ldots , \alpha ^ { \beta ^ { d - 1 } } )$ ; confidence 0.372
91.
; $A _ { i j } A _ { k l } = A _ { k l } A _ { i j }$ ; confidence 0.372
92.
; $K _ { N } ( D ^ { \circ } ) . D ^ { \circ }$ ; confidence 0.372
93.
; $F_{i}$ ; confidence 0.372
94.
; $n = ( n _{1} , \ldots , n _ { m } )$ ; confidence 0.372
95.
; $x \nleq y$ ; confidence 0.372
96.
; $\mathcal{P} = \langle x _ { 1 } , \dots , x _ { g } | R _ { 1 } , \dots , R _ { n } \rangle$ ; confidence 0.372
97.
; $A_{l} = ( \alpha _ { i,j })$ ; confidence 0.372
98.
; $\mathcal{S} _ { n }$ ; confidence 0.371
99.
; $\langle \alpha , b | \alpha ^ { p } b ^ { q } , \alpha ^ { r } b ^ { s } \rangle$ ; confidence 0.371
100.
; $2 ^ { d - 1 } ( 2 d - 1 )$ ; confidence 0.371
101.
; $\psi : \mathbf{R} ^ { n } \rightarrow \mathbf{R}$ ; confidence 0.371
102.
; $a_0 , a_1 , \dots$ ; confidence 0.371
103.
; $\mathcal{Y} = \operatorname { Sub } T$ ; confidence 0.371
104.
; $E ^ { \gamma}$ ; confidence 0.371
105.
; $x ^ { \prime \prime } = ( x _ { k+1}, \dots , x _ { n } )$ ; confidence 0.371
106.
; $\operatorname { lim } \{ \| x ^ { n } \| ^ { 1 / n } \} = \operatorname { max } \{ | \lambda | : \lambda \in \operatorname { sp } ( J , x ) \}$ ; confidence 0.370
107.
; $( f ^ { * } d \mu ) _ { N } : = \operatorname { lim } _ { h \rightarrow 0 } \int _ { \mathbf{R} } f _ { h } ( \frac { x - u } { N } ) d \mu ( u ),$ ; confidence 0.370
108.
; $S _ { k }$ ; confidence 0.370
109.
; $x \in \mathbf{R} ^ { m }$ ; confidence 0.370
110.
; $\{ f ( t ) \} _ { ( k ; t _ { i } ) } = \sum _ { m = 0 } ^ { k } \frac { ( t - t _ { i } ) ^ { m } } { m ! } \frac { d ^ { m } f ( t ) } { d t ^ { m } } | _ { t = t _ { i } }.$ ; confidence 0.370
111.
; $f e ^ { i \alpha \operatorname { ln } \tau } = f e ^ { \alpha i } = \xi$ ; confidence 0.370
112.
; $C _ { m , N, \epsilon}$ ; confidence 0.370
113.
; $\hat { f } ( \alpha , p ) = \int _ { \operatorname { l_ \alpha p } } f ( x ) d s$ ; confidence 0.370
114.
; $d ^ { m }$ ; confidence 0.370
115.
; $\{ E _ { t } ^ { S } \} _ { 1 } \leq s , t \leq n$ ; confidence 0.370
116.
; $R = c$ ; confidence 0.370
117.
; $\xi ^ { * } \tilde { \eta }$ ; confidence 0.370
118.
; $C _ { j } = ( 1 - x ^ { 2 } ) \frac { T _ { N } ^ { \prime } ( x ) ( - 1 ) ^ { j + 1 } } { [ \bar{c} _ { j } N ^ { 2 } ( x - x _ { j } ) ] }$ ; confidence 0.370
119.
; $w _ { n } \in S_n$ ; confidence 0.370
120.
; $\alpha = ( \alpha _ { 1 } , \ldots , \alpha _ { n } )$ ; confidence 0.370
121.
; $\mathcal{D}_ { n } ( x , \alpha ) = \sum _ { i = 0 } ^ { \lfloor n / 2 \rfloor } \frac { n } { n - i } \left( \begin{array} { c } { n - i } \\ { i } \end{array} \right) ( - a ) ^ { i } x ^ { n - 2 i },$ ; confidence 0.369
122.
; $\psi _ { 0 } , \ldots , \psi _ { n - 1 } \vDash _ { K } \varphi$ ; confidence 0.369
123.
; $\mathcal{D} = ( D _ { 1 } , \dots , D _ { n } )$ ; confidence 0.369
124.
; $\mu _ { 2 } ( \Omega ) \leq ( \frac { 1 } { | \Omega | } ) ^ { 2 / n } C _ { n } ^ { 2 / n } p _ { n / 2,1 } ^ { 2 },$ ; confidence 0.369
125.
; $\operatorname { Im } \zeta$ ; confidence 0.369
126.
; $\tilde { K } ( X / A ) = K ( X , A )$ ; confidence 0.369
127.
; $\pi _ { C } ^ { \# } ( x ) = \sum _ { n \leq x } P _ { C } ^ { \# } ( n )$ ; confidence 0.369
128.
; $\Box_R \text { Mod } ( ? , C )$ ; confidence 0.369
129.
; $z \in \mathbf{C}$ ; confidence 0.369
130.
; $\varnothing$ ; confidence 0.369
131.
; $M _ { N } = [ m _ { i+j }] _ { i , j = 0 } ^ { n }$ ; confidence 0.369
132.
; $\| \mathcal{F} f \| _ { L } 2 _ { (\mathbf{R} ^ { 3 } )} = \| f \| _ { L ^ { 2 } ( D ^ { \prime } ) }$ ; confidence 0.369
133.
; $L _ { loc} ^ { 2 } ( R ^ { N } )$ ; confidence 0.369
134.
; $Y _ { N } = \operatorname { span } \{ \psi _ { 1 } , \dots , \psi _ { N } \}$ ; confidence 0.369
135.
; $\sum _ { l = 1 } ^ { r } g_i ( a ^ { i } x )$ ; confidence 0.368
136.
; $i = 1 , \ldots , I$ ; confidence 0.368
137.
; $\hat{A} ( t , u )$ ; confidence 0.368
138.
; $H _ { \mathcal{D} } ^ { i } ( X _ { C } , A ( j ) )$ ; confidence 0.368
139.
; $( S _ { n+m } )$ ; confidence 0.368
140.
; $\|x_n \| < C$ ; confidence 0.368
141.
; $h \in \operatorname{BMO}$ ; confidence 0.368
142.
; $\mathbf{P} \{ M / N \leq x \} \stackrel { \omega } { \rightarrow } F ( x )$ ; confidence 0.368
143.
; $A = B ^ { \uparrow X }$ ; confidence 0.368
144.
; $\alpha : x \rightarrow y$ ; confidence 0.368
145.
; $u _ { j }$ ; confidence 0.368
146.
; $X : = X \Lambda$ ; confidence 0.368
147.
; $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right) : = \{ X \subseteq [ n ] : | X | = k \} , k = 0 , \ldots , n.$ ; confidence 0.367
148.
; $\operatorname { exp } \left\{ \frac { 1 } { k _ { B } T } \sum _ { i = 1 } ^ { N } [ J S _ { i } S _ { i+ 1 } + \frac { H } { 2 } ( S _ { i } + S _ { i+ 1 } ) ] \right\} =$ ; confidence 0.367
149.
; $\sigma _ { 1 } , \ldots , \sigma _ { \dot{e} }$ ; confidence 0.367
150.
; $\operatorname{det} \; \operatorname { Ad } ( g ) = 1$ ; confidence 0.367
151.
; $\mathbf{u}$ ; confidence 0.367
152.
; $n ^ { \omega }$ ; confidence 0.367
153.
; $\hat { E } _ { 8 }$ ; confidence 0.367
154.
; $\int _ { s } ^ { \infty } ( 1 + | x | ) | R _ { - } ^ { \prime } ( x ) | d x < \infty$ ; confidence 0.367
155.
; $\| T \| < \gamma ( A )$ ; confidence 0.367
156.
; $t \in G$ ; confidence 0.366
157.
; $L _ { \text{loc} } ^ { 2 }$ ; confidence 0.366
158.
; $S ^ { n } ( t )$ ; confidence 0.366
159.
; $V ^ { \sigma \langle y \rangle } / \operatorname { Ker } ( y )$ ; confidence 0.366
160.
; $C ^ { + } \subset \mathfrak { h } _ { R } ^ { * }$ ; confidence 0.366
161.
; $Mod ^ { * L} \mathcal{D} = Mod ^ { * S} \mathcal{ D }$ ; confidence 0.366
162.
; $( p , q ) _ { M } = \langle M \hat { p } , \hat { q } \rangle$ ; confidence 0.366
163.
; $\delta _ { P } = [ P , . ] ^ { \wedge }$ ; confidence 0.366
164.
; $\otimes ^{operatorname{op}} : \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ ; confidence 0.366
165.
; $I \subset \mathbf{N}$ ; confidence 0.366
166.
; $x \approx y \Dashv \vDash_\operatorname{K} K ( E ( x , y ) ) \approx L ( E ( x , y ) ).$ ; confidence 0.366
167.
; $A ( x ) = \sum _ { p \leq x } 1 / p \dot \operatorname { Im } ( f ( p ) p ^ { - i \alpha _ { 0 } } )$ ; confidence 0.366
168.
; $C_1$ ; confidence 0.366
169.
; $L_i$ ; confidence 0.366
170.
; $H _ { N } = \cup \left\{ m \in \mathbf{Z} ^ { n } : 2 ^ { \bar{s}_j } \leq | m _ { j } | < 2 ^ { \bar{s}_ j + 1} \right\}$ ; confidence 0.365
171.
; $\leq n / 2$ ; confidence 0.365
172.
; $A ( t _ { 0 } ) = A _ { 0 } , \dot { X } ( t ) = [ N ( X ( t ) , A ( t ) , t ) - X ( t ) ] \operatorname { exp } ( - k P ( t ) ),$ ; confidence 0.365
173.
; $( S _ { n } + 2 )$ ; confidence 0.365
174.
; $L _ { 1 } ( \mathbf{R} _ { + } ; e ^ { - x } / \sqrt { x } )$ ; confidence 0.365
175.
; $E$ ; confidence 0.365
176.
; $Q _ { x } V ^ { \mp } = 0$ ; confidence 0.365
177.
; $v _ { i , t }$ ; confidence 0.365
178.
; $\mathbf{C}$ ; confidence 0.365
179.
; $\Lambda _ { p , q }$ ; confidence 0.365
180.
; $\mathcal{A} _ { n }$ ; confidence 0.365
181.
; $P _ { L } ( i , i ) = ( i \sqrt { 2 } ) ^ { \operatorname { dim } ( H _ { 1 } ( M ^ { ( 3 ) } , \mathbf{Z} _ { 2 } ) ) }$ ; confidence 0.365
182.
; $L \oplus \dot { k } = \{ l \oplus \dot { k } : l \in L \}$ ; confidence 0.365
183.
; $x ^ { * } : = 2 ( 1 | x ) 1 - \sigma ( x ) , \| x \| ^ { 2 } : = ( x | x ) + ( ( x | x ) ^ { 2 } - | ( x | \sigma ( x ) ) | ^ { 2 } ) ^ { 1 / 2 },$ ; confidence 0.365
184.
; $\langle S \rangle = G$ ; confidence 0.365
185.
; $\operatorname { Gal } ( N / E )$ ; confidence 0.365
186.
; $H _ { n + 1 } ^ { ( k ) } ( x ) = \sum \frac { ( n _ { 1 } + \ldots + n _ { k } ) ! } { n _ { 1 } ! \ldots n _ { k } ! } x _ { 1 } ^ { n _ { 1 } } \ldots x _ { k } ^ { n _ { k } },$ ; confidence 0.364
187.
; $i , j , k = 1 , \dots , m$ ; confidence 0.364
188.
; $\Delta y = y \otimes 1 + 1 \otimes y , \varepsilon y = 0,$ ; confidence 0.364
189.
; $N / K$ ; confidence 0.364
190.
; $F _ { \mathcal{X} }$ ; confidence 0.364
191.
; $( \lambda | f )$ ; confidence 0.364
192.
; $q \in k ^ { * }$ ; confidence 0.364
193.
; $L _ { n } = - z ^ { n } D$ ; confidence 0.364
194.
; $\phi ^ { o p }$ ; confidence 0.363
195.
; $\sum \mathfrak { c } _ { i } x _ { i }$ ; confidence 0.363
196.
; $\mathbf{R} ^ { n } \times \mathbf{R} ^ { p }$ ; confidence 0.363
197.
; $\mathcal{Z} _ { 0 } ^ { o } ( t ) : = \{ s : M _ { s } - W _ { s } = 0 , s \leq t \}$ ; confidence 0.363
198.
; $\mu ( \alpha )$ ; confidence 0.363
199.
; $\Gamma ( A ) = \operatorname { inf } _ { M } \| A |_M \|$ ; confidence 0.363
200.
; $\frac { 1 } { 4 n } \operatorname { max } \{ \alpha _ { i } : 0 \leq i \leq t \} \leq \Delta _ { 2 } \leq \frac { 1 } { 4 n } \left( \sum _ { i = 0 } ^ { t } \alpha _ { i } + 2 \right).$ ; confidence 0.363
201.
; $E ( a , R ) = \left\{ x \in \mathbf{B} : \frac { | 1 - ( x , a ) | ^ { 2 } } { 1 - \| x \| ^ { 2 } } < R \right\}$ ; confidence 0.363
202.
; $\mu _ { \varepsilon } ^ { x } : = \mathcal{P} _ { x } \{ \omega : \rho ( X _ { t } ( \omega ) , \phi ( t ) ) \leq \varepsilon \text { for every }t \in [ 0 , T ] \},$ ; confidence 0.363
203.
; $\psi ( y ) = e ^ { i \eta \cdot y } \phi ( y ) \text { a.e. for } y \in \mathbf{R} ^ { N }$ ; confidence 0.363
204.
; $x \in E _ { 1 }$ ; confidence 0.363
205.
; $= \left\{ \begin{array} { l l } { I _ { n } , } & { p = q = 0, } \\ { 0 , } & { p \neq 0 \text { or } / \text { and } q \neq 0. } \end{array} \right.$ ; confidence 0.363
206.
; $\operatorname { sup } _ { I } \frac { 1 } { | I | } \int _ { I } | f - f _ { I } | d m < \infty,$ ; confidence 0.363
207.
; $L_\alpha^2$ ; confidence 0.363
208.
; $\lambda \notin \sigma _ {| \text { re } } ( T )$ ; confidence 0.362
209.
; $\alpha \in \partial \Delta$ ; confidence 0.362
210.
; $f ( z ) = a _ { 0 } z ^ { n } + \ldots + a _ { n } - 1 z + a _ { n } =$ ; confidence 0.362
211.
; $\operatorname{exp} ( G )$ ; confidence 0.362
212.
; $\{ Y : y _ { i } = 0 , \square i = i _ { 1 } , \dots , i _ { l } \}$ ; confidence 0.362
213.
; $\tilde{x} = ( x , u )$ ; confidence 0.362
214.
; $h ( x ) = a , \ldots , h ( w ) = d$ ; confidence 0.362
215.
; $= 2 ^ { 2 n } \int \int e ^ { - 4 i \pi [ X - Y , X - Z ] } { a } ( Y ) b ( Z ) d Y d Z ,$ ; confidence 0.362
216.
; $\bar{x} \in V ( \tilde{\mathbf{Q}} )$ ; confidence 0.362
217.
; $\alpha_j ( .,. )$ ; confidence 0.362
218.
; $j _ { X } ^ { k } ( u )$ ; confidence 0.362
219.
; $L = \alpha ^ { [ 2 ] } ( z ) z ^ { 2 } ( \frac { d } { d z } ) ^ { 2 } + \alpha ^ { [ 1 ] } ( z ) z ( \frac { d } { d z } ) + \alpha ^ { [ 0 ] } ( z ).$ ; confidence 0.362
220.
; $w $ ; confidence 0.362
221.
; $b _ { i } b _ { i + 1} b _ { i } = b _ { i } + 1 b _ { i } b _ { i } + 1 , b _ { i } b _ { j } = b _ { j } b _ { i } , \quad | i - j | \geq 2,$ ; confidence 0.362
222.
; $Z _ { k } ( t )$ ; confidence 0.362
223.
; $\Theta( M ) \subset Z ( \mathfrak { g } ) ^ { * }$ ; confidence 0.361
224.
; $c : T ^ { * } M \cong T M \rightarrow \operatorname { End } ( W )$ ; confidence 0.361
225.
; $\mathcal{C} _ { n } = \left( \begin{array} { c } { 2 n } \\ { n } \end{array} \right) - \left( \begin{array} { c } { 2 n } \\ { n - 1 } \end{array} \right)$ ; confidence 0.361
226.
; $\sum _ { i , j \in Q _ { 0 } } e _ { j } I { e }_i$ ; confidence 0.361
227.
; $P _ { L } ( e ^ { \pi i / 3 } , i ) = \varepsilon ( L ) i ^ { \operatorname { com } ( L ) - 1 } ( i \sqrt { 3 } ) ^ { \operatorname { dim } ( H _ { 1 } ( M ^ { ( 2 ) } , \mathbf{Z} _ { 3 } ) ) }$ ; confidence 0.361
228.
; $\operatorname{III} _ { 1 }$ ; confidence 0.361
229.
; $d ^ { \prime \prime }$ ; confidence 0.361
230.
; $y _ { 0 } \in \operatorname{Fix} G$ ; confidence 0.361
231.
; $K ^ { \prime } K = I _ { m }$ ; confidence 0.361
232.
; $\mathcal{H} _ { b } ( E )$ ; confidence 0.361
233.
; $\Lambda( V ) = \Lambda$ ; confidence 0.361
234.
; $L_{ - 2}$ ; confidence 0.360
235.
; $\overline { D^- } $ ; confidence 0.360
236.
; $\sum ^ { n _ { k = 1 } } c _ { k } ( b - a ) ^ { k } \| p _ { k } \| < 1,$ ; confidence 0.360
237.
; $\mathbf{Z} _ { n }$ ; confidence 0.360
238.
; $\sum _ { n \leq x } f ( n ) = c x ^ { 1 + i x } \cdot L ( \operatorname { log } x ) + o ( x ).$ ; confidence 0.360
239.
; $f ( x ) / \operatorname { g } ( x ; m , s )$ ; confidence 0.360
240.
; $x \in \mathbf{R}$ ; confidence 0.360
241.
; $\beta _ { j }$ ; confidence 0.359
242.
; $R ^ { * } g : = \int _ { S ^ { n - 1 }} g ( \alpha , \alpha x ) d \alpha $ ; confidence 0.359
243.
; $\hat { f } \in \mathcal{H}$ ; confidence 0.359
244.
; $S ^ { \prime } ( \mathbf{R} ^ { 2 n } )$ ; confidence 0.359
245.
; $D = \{ 1,0 , - 1 \} ^ { n }$ ; confidence 0.359
246.
; $\rho _ { n } ( \phi ) = \operatorname { inf } \{ \| \phi - r \| _ { BMO } : \rho \in \mathbf{R} _ { n } \},$ ; confidence 0.359
247.
; $\sum _ { l = 1 } ^ { m } w _ { l } \cdot \frac { p _ { l } - x _ { 0 } } { \| p _ { l } - x _ { 0 } \| } = 0$ ; confidence 0.359
248.
; $\zeta _ { \lambda } ^ { \lambda } = i ^ { ( n - r ( \lambda ) + 1 ) / 2 } \sqrt { ( \lambda _ { 1 } \ldots \lambda _ { r ( \lambda ) } ) / 2 }$ ; confidence 0.359
249.
; $\dots \Sigma ^ { i _ { 1 } , \ldots , i _ { r } } ( f ) = \Sigma ^ { i _ { r } } ( f | _ { \Sigma ^ { i _ { 1 } } , \ldots , i _ { r - 1 } ( f ) } ).$ ; confidence 0.359
250.
; $= ( \alpha _ { x } \mathbf{p} _ { x } + \alpha _ { y } \mathbf{p}_ y + \alpha _ { z } \mathbf{p} _ { z } + \beta m _ { 0 } c ) ^ { 2 }.$ ; confidence 0.359
251.
; $a _ { k - 1} + 1$ ; confidence 0.359
252.
; $\{ p _ M\}$ ; confidence 0.359
253.
; $T _ { n } ( x )$ ; confidence 0.359
254.
; $= \sum _ { S _ { 1 } = \pm 1 } \cdots \sum _ { S _ { N } = \pm 1 } \prod _ { i = 1 } ^ { N }$ ; confidence 0.359
255.
; $k _ { \infty } ^ { \prime }$ ; confidence 0.359
256.
; $\nabla ( A ) : = \left\{ Y \in \left( \begin{array} { l } { [ n ] } \\ { l + 1 } \end{array} \right) : Y \supset X \text { for some } X\in \mathcal{A} \right\}.$ ; confidence 0.359
257.
; $A = \{ | h _ { 1 } ( z ) | < 1 , \dots , | h _ { 1 } ( z ) | < 1 \}$ ; confidence 0.358
258.
; $bv = \left\{ d = \{ d _ { k } \} : \| d \| _ { bv } = \sum _ { k = 0 } ^ { \infty } | \Delta d _ { k } | < \infty \right\}$ ; confidence 0.358
259.
; $x _ { n } \searrow x _ { 0 }$ ; confidence 0.358
260.
; $\mathcal{L} ( i , m ) = \operatorname { det } _ { Q } H _ { B } ^ { i } ( X_{ / R} , \mathbf{R} ( i - m ) ).$ ; confidence 0.358
261.
; $\Lambda_L \in H ^ { 1 } ( \mathbf{Z} [ 1 / p L ] ; \mathbf{Z} / M ( n ) )$ ; confidence 0.358
262.
; $A _ { s } ^ { + } = \left\{ \begin{array} { l l } { f : } & { f \in A _ { s } } \\ & { f ^ { ( s ) } \text { has no change of } \operatorname { sign } \operatorname { in } ( a , b ) } \end{array} \right\}.$ ; confidence 0.358
263.
; $l _ { 1 } ( P , Q ) = \operatorname { sup } \right\{ \int f d ( P - Q ) : \operatorname { Lip } f \leq 1 \left\}.$ ; confidence 0.358
264.
; $\Lambda ( F ) = \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \operatorname { tr } ( r _n* \circ t_n * ^ { - 1 } );$ ; confidence 0.358
265.
; $\| \alpha _ { N } + \beta _ { N } \|$ ; confidence 0.358
266.
; $A _ { K } / p$ ; confidence 0.358
267.
; $q_ki$ ; confidence 0.358
268.
; $.| I _ { p } + \Sigma ^ { - 1 } X X ^ { \prime } | ^ { - ( \delta + n + p - 1 ) / 2 } , X \in \mathbf{R} ^ { p \times n },$ ; confidence 0.357
269.
; $x \in \mathcal{T} ^ { n }$ ; confidence 0.357
270.
; $L _ { + }$ ; confidence 0.357
271.
; $\operatorname { ch } V = \sum _ { \mu \in \mathfrak{h} ^ { * } } ( \operatorname { dim } V _ { \mu } ) e ^ { \mu }.$ ; confidence 0.357
272.
; $v _ { n } \in \mathfrak{G}$ ; confidence 0.357
273.
; $g _ { 1 } = | d x | ^ { 2 } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } } \leq g_2 = \frac { | d x | ^ { 2 } } { | x | ^ { 2 } } + \frac { | d \xi | ^ { 2 } } { | \xi | ^ { 2 } },$ ; confidence 0.357
274.
; $NC = \text { ASPACETIME } [ \operatorname { log } n , ( \operatorname { log } n ) ^ { O ( 1 ) } ].$ ; confidence 0.357
275.
; $T _ { W d } = T _ { \operatorname{H}d }$ ; confidence 0.357
276.
; $\neg$ ; confidence 0.357
277.
; $G ( I ) = \oplus _ { n } \geq 0 I ^ { n } / I ^ { n + 1 }$ ; confidence 0.357
278.
; $\tilde { H } ^ { 1 }$ ; confidence 0.357
279.
; $x ^ { ( l ) }$ ; confidence 0.356
280.
; $\operatorname { lim } _ { k \rightarrow \infty } \bar{g} _ { k , p } = \frac { f ^ { * } ( z ) } { ( z - r _ { 1 } ) \ldots ( z - r _ { p } ) },$ ; confidence 0.356
281.
; $\underline { x } = ( x _ { 1 } , \dots , x _ { x } )$ ; confidence 0.356
282.
; $l _ { p } ( P , Q ) = \operatorname { inf } \{ \| d ( X , Y ) \| _ { p } \}$ ; confidence 0.356
283.
; $V ( z _ { 0 } , \dots , z _ { r - 1} ) ( \rho _ { 0 } , \dots , \rho _ { r - 1 } ) ^ { T } = ( \gamma _ { 00 } , \dots , \gamma _ { 0 , r - 1 } ) ^ { T }$ ; confidence 0.356
284.
; $\Delta \subset \mathbf{R} ^ { n }$ ; confidence 0.356
285.
; $\mathfrak { p } \supset \mathfrak{b}$ ; confidence 0.356
286.
; $m b$ ; confidence 0.356
287.
; $\tilde { \Omega } _ { \mathcal{D} } F = \cap \{ \Omega G : F \subseteq G \in Fi _ { \mathcal{D} } A \}.$ ; confidence 0.356
288.
; $vp ( . )$ ; confidence 0.356
289.
; $[ e _ { i } f _ { j } ] = \delta _ { i j } h _ { i }$ ; confidence 0.355
290.
; $\operatorname{ord}_ { s = m } L ( h ^ { i } ( X ) , s ) =$ ; confidence 0.355
291.
; $\mathbf{Q}$ ; confidence 0.355
292.
; $r _ { 1 } ( k )$ ; confidence 0.355
293.
; $z/ z - \alpha$ ; confidence 0.355
294.
; $N = r _1 + \ldots + r _ { n }$ ; confidence 0.355
295.
; $\hat{L^1}$ ; confidence 0.355
296.
; $\bar{L}$ ; confidence 0.354
297.
; $\mathbf{X} = ( X _ { i } , \phi _ { \beta } ) _ { j \in Q _ { 0 } , \beta \in Q _ { 1 }}$ ; confidence 0.354
298.
; $\operatorname{rank} ( A _ { i } ) = n_i$ ; confidence 0.354
299.
; $F A _ { 1 } \ldots A _ { n }$ ; confidence 0.354
300.
; $\frac { 1 } { 2 ( 1 - \sigma _ { p - 1 } ) ( 1 - \sigma _ { p } ) } [ \sum _ { k = 1 } ^ { q - 1 } \lambda _ { k } b _ { k } ^ { ( 2 ) } + ( 1 - \sigma _ { p - 1 } ) \frac { b _ { q } ^ { ( 2 ) } } { b _ { q } } ] , 1 \leq p \leq q - 1$ ; confidence 0.354
Maximilian Janisch/latexlist/latex/NoNroff/65. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/65&oldid=45842