Difference between revisions of "User:Maximilian Janisch/latexlist/latex/NoNroff/58"
Rui Martins (talk | contribs) |
Rui Martins (talk | contribs) |
||
Line 36: | Line 36: | ||
18. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028064.png ; $\langle U _ { \mu } ( x ) , \rho \rangle = \int \langle U _ { t } ( x ) , \rho \rangle d \mu ( t )$ ; confidence 1.000 | 18. https://www.encyclopediaofmath.org/legacyimages/a/a120/a120280/a12028064.png ; $\langle U _ { \mu } ( x ) , \rho \rangle = \int \langle U _ { t } ( x ) , \rho \rangle d \mu ( t )$ ; confidence 1.000 | ||
− | 19. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008087.png ; $\lambda \int _ { 0 } ^ { \infty } \frac { \int _ { 0 } ^ { x } y [ 1 - B ( y ) ] d y } { [ 1 - \rho ( x ) ] ^ { 2 } } d B ( x ) + \int _ { 0 } ^ { \infty } \frac { 1 - B ( x ) } { 1 - \rho ( x ) } d x,$ ; confidence 0.507 | + | 19. https://www.encyclopediaofmath.org/legacyimages/q/q120/q120080/q12008087.png ; $=\lambda \int _ { 0 } ^ { \infty } \frac { \int _ { 0 } ^ { x } y [ 1 - B ( y ) ] d y } { [ 1 - \rho ( x ) ] ^ { 2 } } d B ( x ) + \int _ { 0 } ^ { \infty } \frac { 1 - B ( x ) } { 1 - \rho ( x ) } d x,$ ; confidence 0.507 |
20. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011019.png ; $\operatorname { lim } _ { N \rightarrow \infty } \operatorname { sup } _ { \varepsilon } \left| \frac { 1 } { N } \sum _ { n = 1 } ^ { N } f ( T ^ { n } x ) e ^ { 2 \pi i n \varepsilon } \right| = 0.$ ; confidence 0.507 | 20. https://www.encyclopediaofmath.org/legacyimages/w/w130/w130110/w13011019.png ; $\operatorname { lim } _ { N \rightarrow \infty } \operatorname { sup } _ { \varepsilon } \left| \frac { 1 } { N } \sum _ { n = 1 } ^ { N } f ( T ^ { n } x ) e ^ { 2 \pi i n \varepsilon } \right| = 0.$ ; confidence 0.507 | ||
Line 104: | Line 104: | ||
52. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200234.png ; $1 = | z _ { 1 } | \geq \ldots \geq | z _ { n } | > 0$ ; confidence 0.505 | 52. https://www.encyclopediaofmath.org/legacyimages/t/t120/t120200/t120200234.png ; $1 = | z _ { 1 } | \geq \ldots \geq | z _ { n } | > 0$ ; confidence 0.505 | ||
− | 53. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300103.png ; $( - ) ^ { * } : \cal C ^ { \ | + | 53. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130010/a1300103.png ; $( - ) ^ { * } : \cal C ^ { \operatorname{op} } \rightarrow C$ ; confidence 1.000 |
54. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040367.png ; $\tilde { \Omega }$ ; confidence 0.505 | 54. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130040/a130040367.png ; $\tilde { \Omega }$ ; confidence 0.505 | ||
Line 312: | Line 312: | ||
156. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065043.png ; $\psi _ { n } ( z ) = \frac { 1 } { 2 \pi } \int _ { - \pi } ^ { \pi } R ( e ^ { i \theta } , z ) [ \phi _ { n } ( e ^ { i \theta } ) - \phi _ { n } ( z ) ] d \mu ( \theta ).$ ; confidence 0.500 | 156. https://www.encyclopediaofmath.org/legacyimages/s/s130/s130650/s13065043.png ; $\psi _ { n } ( z ) = \frac { 1 } { 2 \pi } \int _ { - \pi } ^ { \pi } R ( e ^ { i \theta } , z ) [ \phi _ { n } ( e ^ { i \theta } ) - \phi _ { n } ( z ) ] d \mu ( \theta ).$ ; confidence 0.500 | ||
− | 157. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021027.png ; $\wedge ^ { k } ( | + | 157. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120210/b12021027.png ; $\wedge ^ { k } (\mathfrak{a} )$ ; confidence 1.000 |
158. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240336.png ; ${\bf Z = X} \Gamma + \bf F$ ; confidence 1.000 | 158. https://www.encyclopediaofmath.org/legacyimages/a/a130/a130240/a130240336.png ; ${\bf Z = X} \Gamma + \bf F$ ; confidence 1.000 | ||
− | 159. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060185.png ; $ | + | 159. https://www.encyclopediaofmath.org/legacyimages/i/i130/i130060/i130060185.png ; $\leq 2 a$ ; confidence 0.500 |
160. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042085.png ; $\operatorname{Vec}_n$ ; confidence 1.000 | 160. https://www.encyclopediaofmath.org/legacyimages/b/b120/b120420/b12042085.png ; $\operatorname{Vec}_n$ ; confidence 1.000 |
Latest revision as of 17:10, 10 May 2020
List
1. ; $X _ { f }$ ; confidence 0.508
2. ; $f \preceq g$ ; confidence 1.000
3. ; $\sigma ( L _ {\bf C } ^ { \infty } ( \hat { G } ) , L _ {\bf C } ^ { 1 } ( \hat { G } ) )$ ; confidence 1.000
4. ; $\bf l \in C$ ; confidence 1.000
5. ; $Z ( x ( n ) ^ { * } y ( n ) ) = Z ( x ( n ) ) .Z ( y ( n ) ).$ ; confidence 1.000
6. ; $\frac { 1 } { n } \sum _ { j = 1 } ^ { n } \frac { x _ { j } - 1 + p _ { j } } { 2 p _ { j } - 1 }$ ; confidence 0.508
7. ; $\frak V$ ; confidence 1.000
8. ; $ Z ^ { * }$ ; confidence 1.000
9. ; $g ( x , k ) = - b ( - k ) f ( x , k ) + a ( k ) f ( x , - k ),$ ; confidence 0.508
10. ; $\langle x \rangle ^ { G }$ ; confidence 1.000
11. ; $v _ { i } \phi _ { , i } = ( {\bf v} . \nabla ) \phi$ ; confidence 1.000
12. ; $( \operatorname{Hom} _ {\frak a } ( D , N ) , \delta ^ { \prime } )$ ; confidence 1.000
13. ; $( {\bf v} . \nabla ) {\bf v} = \frac { 1 } { 2 } \nabla v ^ { 2 } + ( \operatorname { curl } {\bf v} ) \times {\bf v}.$ ; confidence 1.000
14. ; $\beta _ { 1 }$ ; confidence 1.000
15. ; $\& , \vee , \supset , \neg$ ; confidence 0.508
16. ; $B _ { n } f$ ; confidence 1.000
17. ; $x \subseteq y$ ; confidence 0.507
18. ; $\langle U _ { \mu } ( x ) , \rho \rangle = \int \langle U _ { t } ( x ) , \rho \rangle d \mu ( t )$ ; confidence 1.000
19. ; $=\lambda \int _ { 0 } ^ { \infty } \frac { \int _ { 0 } ^ { x } y [ 1 - B ( y ) ] d y } { [ 1 - \rho ( x ) ] ^ { 2 } } d B ( x ) + \int _ { 0 } ^ { \infty } \frac { 1 - B ( x ) } { 1 - \rho ( x ) } d x,$ ; confidence 0.507
20. ; $\operatorname { lim } _ { N \rightarrow \infty } \operatorname { sup } _ { \varepsilon } \left| \frac { 1 } { N } \sum _ { n = 1 } ^ { N } f ( T ^ { n } x ) e ^ { 2 \pi i n \varepsilon } \right| = 0.$ ; confidence 0.507
21. ; $a ^ { N_ 0} \neq 0$ ; confidence 1.000
22. ; $\partial \phi / \partial x _ { i } = \phi _ { ,i }$ ; confidence 1.000
23. ; $h ( x ) \not\equiv 0$ ; confidence 1.000
24. ; $\operatorname{GL}_l$ ; confidence 1.000
25. ; $0 \in {\bf R} ^ { n }$ ; confidence 1.000
26. ; $\hat{\eta}$ ; confidence 1.000
27. ; $\theta \geq 0$ ; confidence 1.000
28. ; $d _ { \text{in} } \leq 2$ ; confidence 1.000
29. ; $\operatorname { diag } ( t _ { 1 } , \ldots , t _ { n } ) \mapsto t _ { 1 } ^ { \lambda _ { 1 } } \ldots t _ { n } ^ { \lambda _ { n } } \in K,$ ; confidence 0.507
30. ; $\rho ^ { \prime } = \operatorname { grad } \rho = ( \partial \rho / \partial \zeta _ { 1 } , \dots , \partial \rho / \partial \zeta _ { n } )$ ; confidence 0.507
31. ; $A _ { j_{n _ { k } }} \subset B , \quad k \in \bf N$ ; confidence 1.000
32. ; $\gamma = ( \gamma _ { 1 } , \gamma _ { 2 } , \dots )$ ; confidence 0.506
33. ; $\dot { x } ( t ) = f ( t , x ( t - h _ { 1 } ( t ) ) , \ldots , x ( t - h _ { k } ( t ) ),$ ; confidence 0.506
34. ; $\Pi _ { \kappa }$ ; confidence 1.000
35. ; $Z _ { G } ( - q ^ { - 1 } )$ ; confidence 0.506
36. ; $n \in {\bf N} , \epsilon = \pm 1.$ ; confidence 1.000
37. ; $R _ { n } > \frac { \operatorname { log } 2 } { 1 + \frac { 1 } { 2 } + \ldots + \frac { 1 } { n } }.$ ; confidence 0.506
38. ; $a = B / \overline { u } T$ ; confidence 1.000
39. ; $C _ { m } ^ { 1 } , \ldots$ ; confidence 0.506
40. ; $k_G$ ; confidence 1.000
41. ; $\operatorname{IF} ( x ; T , G )$ ; confidence 1.000
42. ; $F \in \operatorname { Hol } ( \bf B )$ ; confidence 1.000
43. ; $i = 0 , \dots , m$ ; confidence 0.506
44. ; $T _ { \text { vert } } ^ { * } Y$ ; confidence 0.506
45. ; $K [ f _ { 1 } , \ldots , f _ { d } ]$ ; confidence 0.506
46. ; $\langle a b \langle c d e \rangle \rangle = \langle \langle a b c \rangle \rangle + \varepsilon \langle c \langle b a d \rangle e \rangle + \langle c d \langle a b e \rangle \rangle,$ ; confidence 1.000
47. ; $\hat { X } = ( A , B )$ ; confidence 1.000
48. ; $m _ { i j } \in \{ 0,1 \}$ ; confidence 0.505
49. ; $U ( g ) \varphi_j ( f ) U ( g ^ { - 1 } )$ ; confidence 1.000
50. ; ${\bf T} ^ { 2 }$ ; confidence 1.000
51. ; $\mathfrak { n } ^ { + } = [ \mathfrak { b } , \mathfrak { b } ]$ ; confidence 0.505
52. ; $1 = | z _ { 1 } | \geq \ldots \geq | z _ { n } | > 0$ ; confidence 0.505
53. ; $( - ) ^ { * } : \cal C ^ { \operatorname{op} } \rightarrow C$ ; confidence 1.000
54. ; $\tilde { \Omega }$ ; confidence 0.505
55. ; $\Lambda M = M \Lambda ^ { t }$ ; confidence 1.000
56. ; $S \subset M ^ { n }$ ; confidence 1.000
57. ; $\left( \begin{array} { c } { [ n ] } \\ { k } \end{array} \right) : = \{ X \subseteq [ n ] : | X | = k \}$ ; confidence 0.505
58. ; $S _ { \text{V} }$ ; confidence 1.000
59. ; $\beta_j > 0$ ; confidence 1.000
60. ; $\{ B x _ { n } \}$ ; confidence 1.000
61. ; $b _ { N } = 0$ ; confidence 0.505
62. ; $B = k [ [ X _ { 1 } , \dots , X _ { d } , Y _ { 1 } , \dots , Y _ { d } ]]$ ; confidence 0.505
63. ; $a _ { n + 1 }$ ; confidence 1.000
64. ; $n / 2$ ; confidence 1.000
65. ; $Y , Y _ { 1 } , Y _ { 2 } , \dots$ ; confidence 0.505
66. ; $\{ y _ { n } \}$ ; confidence 1.000
67. ; $d _ { 1 } , \dots , d _ { n }$ ; confidence 0.504
68. ; $\varphi ^ { \prime }$ ; confidence 1.000
69. ; $\sum _ { i } a _ { i } x _ { i } \leq c$ ; confidence 0.504
70. ; $y ( \lambda z z ) \equiv y ( \lambda x x ) \not \equiv w ( \lambda x x )$ ; confidence 0.504
71. ; $Y = [ 0,2 \pi [ ^ { N } $ ; confidence 1.000
72. ; $( \alpha _ { 1 } , \alpha _ { 2 } , \dots , \alpha _ { q } \cup \gamma ^ { d } ) \in {\cal F} ( S ^ { d } ) ^ { q }$ ; confidence 1.000
73. ; $k \langle x _ { i } \rangle$ ; confidence 1.000
74. ; $\mathsf{E} [ T _ { p } ] _ {\text{PR} } = \frac { 1 } { 2 ( 1 - \sigma _ { p - 1 } ) ( 1 - \sigma _ { p } ) } \sum _ { k = 1 } ^ { p } \lambda _ { k } b _ { k } ^ { ( 2 ) } + \frac { b _ { p } } { 1 - \sigma _ { p - 1 } }$ ; confidence 1.000
75. ; $\Pi ^ { \text { re } }$ ; confidence 0.504
76. ; $\omega _ { n } = \frac { 2 \pi ^ { n / 2 } } { \Gamma ( \frac { n } { 2 } ) }$ ; confidence 0.504
77. ; $\mu _ { k }$ ; confidence 0.504
78. ; $\square ^ { t } a P a$ ; confidence 0.504
79. ; $f = ( \lambda - a ) ^ { s }$ ; confidence 0.504
80. ; $a_3$ ; confidence 1.000
81. ; $[ \varphi \bigotimes x , \psi \bigotimes Y ] =$ ; confidence 1.000
82. ; $+\frac { - 1 } { k ! ( \text{l} - 1 ) ! } \times \times \sum _ { \sigma } \operatorname { sign } \sigma \omega ( [ K ( X _ { \sigma 1 } , \ldots , X _ { \sigma k } ) , X _ { \sigma ( k + 1 ) } ] , X _ { \sigma ( k + 2 ) } , \ldots )+$ ; confidence 1.000
83. ; $k$ ; confidence 0.504
84. ; $\cal E$ ; confidence 1.000
85. ; $M _ { 6 } = \operatorname { min } _ { j } | \operatorname { arc } z _ { j } |$ ; confidence 0.504
86. ; $\Delta ( \Lambda , M ) = \text { Det } [ E \bigotimes \Lambda - A \bigotimes M ] =$ ; confidence 1.000
87. ; $\partial S ( \phi ) = S ( d \phi )$ ; confidence 0.504
88. ; $\mu ( A ) = | A |$ ; confidence 0.504
89. ; $\operatorname{GL} _ { s } ( K )$ ; confidence 1.000
90. ; $T$ ; confidence 0.504
91. ; $E _ { 1 } = E _ { 0 } + \int _ { 0 } ^ { \infty } \frac { | ( V \phi | \lambda \rangle | ^ { 2 } } { E _ { 1 } - \lambda } d \lambda < 0.$ ; confidence 0.504
92. ; ${\bf R} _ { x } ^ { 3 N } \times {\bf R} _ { p } ^ { 3 N }$ ; confidence 1.000
93. ; $\mathsf{E} _ { \mathsf{P} _ { n } } ( d ) = \mathsf{E} _ { \mathsf{P}_ { n } } ( d ^ { * } )$ ; confidence 1.000
94. ; $\delta > ( 3 n - 2 ) / 6$ ; confidence 0.503
95. ; $\left( \begin{array} { c c } { L ( a , b ) } & { 0 } \\ { 0 } & { \varepsilon L ( b , a ) } \end{array} \right);$ ; confidence 1.000
96. ; $M _ { 5 } = \operatorname { max } _ { j } | b _ { j } |$ ; confidence 0.503
97. ; $P _ { + } T P _ { - }$ ; confidence 0.503
98. ; $= - J - k _ { B }T \operatorname { ln } \left\{ \operatorname { cosh } \left( \frac { H } { k _ { B } T } \right) + + \left[ \operatorname { sinh } ^ { 2 } \left( \frac { H } { k _ { B } T } \right) + \operatorname { exp } \left( - \frac { 4 J } { k _ { B } T } \right) \right] ^ { 1 / 2 } \right\},$ ; confidence 1.000
99. ; $\tilde { h } : Z \rightarrow B$ ; confidence 0.503
100. ; $\lambda_j$ ; confidence 1.000
101. ; $y \in H$ ; confidence 0.503
102. ; $R _ { L }$ ; confidence 1.000
103. ; $a \in B$ ; confidence 0.503
104. ; $g \in \operatorname { Gal } ( k _ { \infty } ^ { \prime } / k )$ ; confidence 0.503
105. ; $( \epsilon \bigotimes \operatorname{id} _ { A } ) \circ L = \operatorname{id} _ { A }.$ ; confidence 1.000
106. ; $u . v$ ; confidence 1.000
107. ; $q _ { A_ { 2 } } \circ \mu = q _ { A _ { 1 } }$ ; confidence 1.000
108. ; $P .P \subseteq P$ ; confidence 1.000
109. ; $D _ { \xi } = ( 1 , \xi _ { 1 } , \dots , \xi _ { N } , | \xi | ^ { 2 } / 2 )\bf R _ { + }$ ; confidence 1.000
110. ; $\xi : X \rightarrow B O _ { n }$ ; confidence 1.000
111. ; $\times \int _ { 0 } ^ { \alpha } [ K _ { i \tau } ( \alpha ) I _ { i \tau } ( x ) - I _ { i \tau } ( \alpha ) K _ { i \tau } ( x ) ] f ( x ) \frac { d x } { x },$ ; confidence 0.502
112. ; $O ( | V |+ | E | )$ ; confidence 1.000
113. ; $h _ { \lambda _ { i } }$ ; confidence 0.502
114. ; $\int _ { \operatorname{SO} ( n ) } d \gamma \int _ { 0 } ^ { \infty } \frac { f ^ { * } \mu _ { \gamma , t } } { t } d t = c _ { \mu } f.$ ; confidence 1.000
115. ; $\operatorname{Wh} ^ { * }$ ; confidence 1.000
116. ; $m _ { n } : {\cal A} \rightarrow [ 0 , + \infty )$ ; confidence 1.000
117. ; $j = 1 , \dots , k$ ; confidence 0.502
118. ; $n _ { + }$ ; confidence 0.502
119. ; $X = C ( S \times T )$ ; confidence 0.502
120. ; $\mathsf{E} X$ ; confidence 1.000
121. ; ${\cal C} = \operatorname { co }\cal C$ ; confidence 1.000
122. ; $x \in U$ ; confidence 0.502
123. ; $f \in \operatorname { Lip } 1$ ; confidence 0.502
124. ; $\lambda _ { 1 } ( \Omega ) \geq \frac { a } { r _ { \Omega } ^ { 2 } }$ ; confidence 0.502
125. ; $\operatorname{Sp} ( n )$ ; confidence 1.000
126. ; $K _ { 1 } ( {\cal O} _ { n } ) = 0$ ; confidence 1.000
127. ; $e ^ { \pi z }$ ; confidence 0.502
128. ; $\tilde { \Omega } _ { S 5 } T$ ; confidence 0.501
129. ; $\{ f_j \}$ ; confidence 1.000
130. ; $q \in L ^ { 1 } ( 0 , \infty )$ ; confidence 0.501 NOTE: should the bracket be closed?
131. ; $\operatorname { GCD } ( a , b ) = 1$ ; confidence 1.000
132. ; $m$ ; confidence 0.501
133. ; $\operatorname { size } ( x ) = n$ ; confidence 0.501
134. ; $d _ { i + 1 }$ ; confidence 1.000
135. ; $q \in k$ ; confidence 0.501
136. ; $Z \subset X$ ; confidence 0.501
137. ; $\gamma \rho ^ { 2 / 3 } = \Phi$ ; confidence 1.000
138. ; $\frac { \partial c } { \partial t } = \operatorname { div } \{ M \operatorname { grad } [ f _ { 0 } ^ { \prime } ( c ) - 2 \kappa \Delta c ] \} \text { in } V,$ ; confidence 0.501
139. ; $K ( ., s ) \in L ^ { 1 } ( \mu )$ ; confidence 1.000
140. ; $\varphi ( a , b , 1 ) = a. b$ ; confidence 1.000
141. ; $K = e ^ { - \beta h } \in T _ { 1 } ( H )$ ; confidence 0.501
142. ; $p \in \bf R$ ; confidence 1.000
143. ; $\beta _ { 1 } , \ldots , \beta _ { p }$ ; confidence 0.501
144. ; $( 1 + a ) ^ { - 1 } = 1 - a + a ^ { 2 } - a ^ { 3 } +\dots .$ ; confidence 1.000
145. ; $F ( 2,2 n ) = \pi _ { 1 } ( M _ { n } )$ ; confidence 0.501
146. ; $\lambda _ { 1 } + j , \ldots , \lambda _ { \nu } + j$ ; confidence 0.501
147. ; $\pi _ { n } ( X ; A , B , x _ { 0 } )$ ; confidence 1.000
148. ; ${\bf l} _ { A } ( M / \text{q}M )$ ; confidence 0.501
149. ; $\delta _ { \text{BRST} } ^ { 2 } = 0$ ; confidence 1.000
150. ; $0 < m \leq n$ ; confidence 0.500
151. ; $\tilde {\cal P }$ ; confidence 1.000
152. ; $V _ { 1 } \bigotimes \ldots \bigotimes V _ { n } \rightarrow V _ { \sigma ( 1 ) } \bigotimes \ldots \bigotimes V _ { \sigma ( n ) }$ ; confidence 1.000
153. ; $W _ { \text{loc} } ^ { 1 , n } ( G )$ ; confidence 1.000
154. ; $x _ { 1 } , \dots , x _ { r }$ ; confidence 0.500
155. ; ${\bf Z} / 2 {\bf Z}$ ; confidence 1.000
156. ; $\psi _ { n } ( z ) = \frac { 1 } { 2 \pi } \int _ { - \pi } ^ { \pi } R ( e ^ { i \theta } , z ) [ \phi _ { n } ( e ^ { i \theta } ) - \phi _ { n } ( z ) ] d \mu ( \theta ).$ ; confidence 0.500
157. ; $\wedge ^ { k } (\mathfrak{a} )$ ; confidence 1.000
158. ; ${\bf Z = X} \Gamma + \bf F$ ; confidence 1.000
159. ; $\leq 2 a$ ; confidence 0.500
160. ; $\operatorname{Vec}_n$ ; confidence 1.000
161. ; $\mathsf{E} ( {\bf Z} _ { 1 } ) = 0$ ; confidence 1.000
162. ; $q ^ { - 1 } \sum _ { i = 1 } ^ { q } ( z _ { i } - \zeta _ { i } ) ^ { 2 } / \operatorname{MS} _ { e }$ ; confidence 1.000
163. ; $TT'$ ; confidence 1.000
164. ; $\{ D ^ { \lambda } : \lambda \text { a $p\square$ regular partition of } n\}$ ; confidence 1.000
165. ; $( x _ { 0 } , x _ { 1 } ] , \ldots , ( x _ { k - 1} , x _ { k } )$ ; confidence 0.500
166. ; $\operatorname { prin } K I$ ; confidence 1.000
167. ; $\operatorname { sup } _ { z _ { 1 } , \ldots , z _ { n } \in U } \operatorname { min } _ { k \in S } \frac { | \sum _ { j = 1 } ^ { n } b _ { j } z _ { j } ^ { k } | } { M _ { d } ( k ) }$ ; confidence 1.000
168. ; $I + ( P _ { 1 } , \dots , P _ { m } )$ ; confidence 0.499
169. ; $\mathbf{l} ( w )$ ; confidence 1.000
170. ; $\Delta ( \lambda ) = K \operatorname{GL} _ { n } ( K ) z _ { \lambda },$ ; confidence 1.000
171. ; $x,x_0$ ; confidence 1.000
172. ; $V _ { \text { simp } } ( O _ { K , p } ) \neq \emptyset$ ; confidence 1.000
173. ; $t \in {\bf R}_ +$ ; confidence 1.000
174. ; $\pi '$ ; confidence 1.000
175. ; $m$ ; confidence 0.499
176. ; $P ( E _ { l } ) = \frac { \operatorname { exp } ( - E _ { l } / k _ { B } T ) } { \sum _ { l } \operatorname { exp } ( - E _ { l } / k _ { B } T ) }.$ ; confidence 0.499
177. ; $\bf C A$ ; confidence 1.000
178. ; $x _ { i } \in \cal X$ ; confidence 1.000
179. ; $x _ { j } ^ { \prime } = \sum _ { i , k } c _ { i k } f _ { i } f _ { k }$ ; confidence 0.499
180. ; $X : = U \Lambda V,$ ; confidence 1.000
181. ; $k ( 0 ) = I$ ; confidence 1.000
182. ; $G = \operatorname{SL} ( 2 , {\bf C} ) \rtimes {\bf R} ^ { 4 }$ ; confidence 1.000
183. ; $a \neq b \in {\bf C} ^ { n }$ ; confidence 1.000
184. ; $\operatorname{ Mp } ( n )$ ; confidence 1.000
185. ; $C_{abcd}$ ; confidence 1.000
186. ; $\sum _ { n \leq x } G _ { K } ( n ) = A _ { K } x + O ( x ^ { \eta_K} ) \text { as } x \rightarrow \infty,$ ; confidence 1.000
187. ; $q _ { m } \in L _ { 1,1 }$ ; confidence 0.498
188. ; $\operatorname{GL} _ { n } ( {\bf Z} A )$ ; confidence 1.000
189. ; $M : \sigma$ ; confidence 0.498
190. ; $A _ { i } : = M _ { z _ { i } }$ ; confidence 0.498
191. ; $\overline { T G }$ ; confidence 0.498
192. ; $f \in L ^ { 1 } ( {\bf R} ^ { 2 n } )$ ; confidence 1.000
193. ; $K _ { Z } \in H$ ; confidence 0.498
194. ; $E ( \Gamma , \Delta ) \vdash _ {\cal D } \epsilon _ { i } ( \varphi , \psi )$ ; confidence 1.000
195. ; $O _ { s + 2,2} (\bf R )$ ; confidence 1.000
196. ; $I _ { \epsilon } ( X )$ ; confidence 0.498
197. ; $\chi _ { K I } : K _ { 0 } ( \operatorname { prin } K I ) \rightarrow \bf Z$ ; confidence 1.000
198. ; $\mathsf{P} _ { K _ { + } } ( v , z ) - \mathsf{P} _ { K _ { - } } ( v , z ) \equiv \operatorname { lk } ( K _ { 0 } ) \operatorname { mod } ( v ^ { 2 } - 1 , z ),$ ; confidence 1.000
199. ; $[ P , . ] _ { A }$ ; confidence 0.497
200. ; $P = \cap _ { i \in I } P _ { i }$ ; confidence 0.497
201. ; $| X | ^ { r }$ ; confidence 1.000
202. ; $\left. \begin{cases} { U _ { 0 } ( x ) = 0, } \\ { U _ { 1 } ( x ) = 1, } \\ { U _ { n } ( x ) = x U _ { n - 1 } ( x ) + U _ { n - 2 } ( x ) , \quad n = 2,3, \dots . } \end{cases} \right.$ ; confidence 1.000
203. ; $[ .,. ] : \cal K \times K \rightarrow \bf C$ ; confidence 1.000
204. ; $\| F \| _ { \infty } = \operatorname { esssup } _ { \omega } | F ( i \omega ) |.$ ; confidence 0.497
205. ; $\operatorname { lim } _ { N \rightarrow \infty } \| f - f _ { N } \| _ { \cal A ^ { * } }= 0.$ ; confidence 1.000
206. ; $( E _ { n } : n \in {\bf Z} ^ { + } )$ ; confidence 1.000
207. ; ${\cal T} _ { A } \xi = \kappa _ { M } \circ T _ { A } \xi,$ ; confidence 1.000
208. ; $f ( \overset{\rightharpoonup}{ D } ( A ) ) = ( - A ^ { 3 } ) ^ { - \operatorname { Tait } ( \overset{\rightharpoonup}{ D } ) } ( D )$ ; confidence 1.000
209. ; $a _ { 1 } , \dots , a _ { r }$ ; confidence 0.497
210. ; $\mathsf{E} ( Y ) = 2 \theta - 1$ ; confidence 1.000
211. ; $u \in Q _ { \text{l} } ( R )$ ; confidence 0.497
212. ; ${\cal P} = ( P _ { s s ^ { \prime } } ) = ( \langle S | {\cal P} | S ^ { \prime } \rangle )$ ; confidence 1.000
213. ; $\psi _ { n } \in L ^ { 2 } ( - \infty , \infty )$ ; confidence 1.000
214. ; ${\bf y} _ { 1 } , \dots , {\bf y} _ { p }$ ; confidence 1.000
215. ; $L _ { p } ( 1 - n , \chi ) = L ( 1 - n , \chi \omega ^ { - n } ) \prod _ { {\frak p} | p } ( 1 - \chi \omega ^ { - n } ( {\frak p} ) N {\frak p} ^ { n - 1 } )$ ; confidence 1.000
216. ; $\rho \in \mathfrak { h } ^ { * }$ ; confidence 0.496
217. ; $E ( a ) = \operatorname { exp } \left( \int _ { 0 } ^ { \infty } t \hat{s} ( t ) \hat{s} ( - t ) d t \right) .$ ; confidence 1.000
218. ; $\rho _ { d }$ ; confidence 0.496
219. ; $S ^ { n - 1 }$ ; confidence 0.496
220. ; $x \mu _ { n } ( x )$ ; confidence 1.000
221. ; $\sum _ { i = 1 } ^ { k } \lambda _ { i } \geq \frac { n } { n + 2 } \frac { 4 \pi ^ { 2 } k ^ { 1 + 2 / n } } { ( C _ { n } | \Omega | ) ^ { 2 / n } } k = 1,2 , \ldots ,$ ; confidence 0.496
222. ; $\psi _ { x y } + u ( x , y ) \psi = 0$ ; confidence 1.000
223. ; $a, b , x , y , z \in E$ ; confidence 1.000
224. ; ${\cal M} _ { n } = \operatorname { det } M _ { n }$ ; confidence 1.000
225. ; $\Phi : ( \otimes ) \otimes \rightarrow \otimes ( \otimes )$ ; confidence 1.000
226. ; ${\cal H}_*$ ; confidence 1.000
227. ; ${\cal Q}_2$ ; confidence 1.000
228. ; $D ^ { \alpha } = D _ { 1 } ^ { \alpha _ { 1 } } \ldots D _ { N } ^ { \alpha _ { N } }$ ; confidence 0.496
229. ; $r \equiv \operatorname { rank } M ( n )$ ; confidence 0.496
230. ; $E$ ; confidence 1.000
231. ; $p \in \hat{K}$ ; confidence 1.000
232. ; $P _ { M } ( v ) \neq 0$ ; confidence 0.496
233. ; $( \lambda x y . y x ) A B = B A$ ; confidence 1.000
234. ; $F ( 2,2 n ) \subset \operatorname { PSL } _ { 2 } ( {\bf C} )$ ; confidence 1.000
235. ; $\| X \| { * } \leq 1$ ; confidence 1.000
236. ; $\operatorname { Th } \cal D$ ; confidence 1.000
237. ; $\| t g ( t ) \| _ { 2 } \| \gamma \hat{g} ( \gamma ) \| _ { 2 } = \infty$ ; confidence 1.000
238. ; $U ^ { ( n )_ t} = \sum _ { k = 0 } ^ { n } \frac { ( - 1 ) ^ { k } } { k ! ( n - k ) ! } S ^ { s + n - k } ( - t , x _ { 1 } , \dots , x _ { s + n - k} )$ ; confidence 1.000
239. ; $( F ^ { n } , h : F \rightarrow F ) \rightarrow T ( h ),$ ; confidence 1.000
240. ; $s _ { i } ( z )$ ; confidence 0.496
241. ; $S ^ { n } \times S ^ { m }$ ; confidence 0.496
242. ; $\{ t = t_j \} \cup K$ ; confidence 1.000
243. ; $X \sim N _ { p , n } ( 0 , \Sigma \otimes I _ { n } )$ ; confidence 0.495
244. ; $\operatorname{lim\,sup}_R S _ { R } ^ { ( n - 1 ) / 2 } f ( 0 ) = + \infty$ ; confidence 1.000
245. ; ${\cal X} _ { t } \sim {\cal X}_{ - t }$ ; confidence 1.000
246. ; $a _2$ ; confidence 1.000
247. ; $\tilde{\omega}$ ; confidence 1.000
248. ; $X ^ { 2 } = \sum _ { i = 1 } ^ { k } \frac { ( \nu _ { i } - n p _ { i } ) ^ { 2 } } { n p _ { i } } = \frac { 1 } { n } \sum \frac { \nu _ { i } ^ { 2 } } { p _ { i } } - n , \quad n = \nu _ { 1 } + \ldots + \nu _ { k },$ ; confidence 0.495
249. ; $\varphi_j ( f )$ ; confidence 1.000
250. ; $a _ { 1 } , \dots , a _ { t }$ ; confidence 0.495
251. ; $f \in A _ { s } ^ { + }$ ; confidence 0.495
252. ; $\operatorname{lbl} ( D )$ ; confidence 1.000
253. ; $- ( \text {const} ) \int _ { {\bf R} ^ { 3 } } \rho ( x ) ^ { 4 / 3 } d x$ ; confidence 1.000
254. ; $h \in \cal H$ ; confidence 1.000
255. ; $( G m _ { i } ) \circ f = ( G f _ { i } ) \circ e$ ; confidence 0.495
256. ; $K \subset D ^ { n }$ ; confidence 1.000
257. ; $S _ { m } [ f ] = \sum _ { v = 1 } ^ { m } b _ { v , m } f ( y_{v , m} ),$ ; confidence 1.000
258. ; $\overset{\rightharpoonup} { \Delta }$ ; confidence 1.000
259. ; $\theta _ { n } ^ { * }$ ; confidence 0.495
260. ; $M = \int ( \partial / \partial e ) \eta ( \overset{\rightharpoonup} { x } , e ) \overset{\rightharpoonup} { x } \overset{\rightharpoonup} {x } ^ { t } d H _ { \overset{\rightharpoonup} { \theta } } ( \overset{\rightharpoonup} { x } , y )$ ; confidence 1.000
261. ; $\frac { d \operatorname { ln } g ( L ; m , s ) } { d m } \frac { d \operatorname { ln } g ( R ; m , s ) } { d s }=$ ; confidence 1.000
262. ; $H ^ { N - 1 - k } ( S ^ { n } \backslash X )$ ; confidence 1.000
263. ; $i = 0 , \ldots , n - 1$ ; confidence 0.495
264. ; $\int _ { \partial D } \operatorname { exp } \left( \varepsilon | \varphi ( e ^ { i \vartheta } ) - \varphi _ { I } | \right) d \vartheta$ ; confidence 0.495
265. ; $s _ { A } : A \times L A \rightarrow L A$ ; confidence 1.000
266. ; $( X _ { n } ) _ { n \geq 0}$ ; confidence 1.000
267. ; $\varphi ( q )$ ; confidence 0.494
268. ; $X = {\bf P} ^ { d }$ ; confidence 1.000
269. ; $u ( x , k ) = e ^ { i \delta } \operatorname { sin } ( k x + \delta ) + o ( 1 ) , \quad \text { as } x \rightarrow \infty.$ ; confidence 0.494
270. ; $\operatorname{Re} \lambda _ { i } < 0$ ; confidence 1.000
271. ; $\Omega \subset {\bf C} ^ { n }$ ; confidence 1.000
272. ; ${\cal F} _ { k }$ ; confidence 1.000
273. ; $l \neq p$ ; confidence 1.000
274. ; $\{ e _ { i } : - 1 \leq i \leq p ^ { m } - 2 \}$ ; confidence 0.494
275. ; $\tilde{I} ( \nu ) = \operatorname { lim } _ { j \rightarrow \infty } I ( u _ { j } )$ ; confidence 1.000
276. ; $V ^ { 1 } , V ^ { 2 } , \dots,$ ; confidence 0.494
277. ; $V _ { f } = \{ f ( a ) : a \in {\bf F} _ { q } \}$ ; confidence 1.000
278. ; $\operatorname{coh} \bf X$ ; confidence 1.000
279. ; $\frac { \mu _ { n } ( x ) } { \mu _ { n } } \stackrel { \mathsf{P} } { \rightarrow } \alpha ( x ) = - \int _ { 0 } ^ { \infty } \frac { \lambda ^ { x } e ^ { - \lambda } } { x ! } R ( d \lambda )$ ; confidence 0.493
280. ; $x = 1 , \dots , f_{( 1 , n )}$ ; confidence 1.000
281. ; $r_j > 0$ ; confidence 1.000
282. ; $\sigma _ { \text{T} } ( A , {\cal X} ) : = \{ \lambda \in {\bf C} ^ { n } : A - \lambda \text { is singular } \}.$ ; confidence 1.000
283. ; $\pi _ { v , p } ( d \theta ) \mathsf{P} ( \theta , \mu ) ( d x )$ ; confidence 1.000
284. ; $P ( t ) = \prod _ { m = 1 } ^ { n } ( t - t _ { m } ) ^ { r _ { m } }$ ; confidence 0.493
285. ; ${\bf R} ^ { n } \backslash K _ { 2 }$ ; confidence 1.000
286. ; $A X \sim \operatorname { RS } _ { q , n } ( \psi )$ ; confidence 0.493
287. ; $\Sigma n _ { j } = n$ ; confidence 0.493
288. ; $M ( {\cal E} ) = \dot { X }$ ; confidence 1.000
289. ; $A _ { 0 } , \ldots , A _ { n }$ ; confidence 1.000
290. ; $\in \mathsf{A} ^ { 2 } {\cal E} \bigotimes \mathsf{A} ^ { 2 } {\cal E};$ ; confidence 1.000
291. ; $x \otimes y \rightarrow x . y$ ; confidence 0.493
292. ; $\lambda x x \equiv \lambda x x \not \equiv \lambda x y$ ; confidence 0.493
293. ; $i = 0 , \ldots , N$ ; confidence 0.492
294. ; $l _ { i } = \delta _ { i } ^ { * } G _ { i } \Theta _ { i } \left( \begin{array} { c } { 1 } \\ { 0 } \end{array} \right) , d _ { i } = | \delta _ { i } | ^ { 2 }.$ ; confidence 0.492
295. ; $a _ { 2 } = 1 , \dots , a _ { k - 1 } = k - 2$ ; confidence 1.000
296. ; $M [ z ^ { n } ] = c _ { n } , n = 0 , \pm 1 , \pm 2 , \dots,$ ; confidence 0.492
297. ; $G \times ^ { R } V$ ; confidence 0.492
298. ; $P = \{ ( z _ { 1 } , \dots , z _ { n } ) : | z _ { j } - a _ { j } | < r _ { j } , j = 1 , \dots , n \}$ ; confidence 0.492
299. ; $( g, f ( z ) )$ ; confidence 1.000
300. ; $f _{ t _ { 1 } \ldots t _ { \rho } ( f )} \in T$ ; confidence 1.000
Maximilian Janisch/latexlist/latex/NoNroff/58. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximilian_Janisch/latexlist/latex/NoNroff/58&oldid=45832